The low-cycle fatigue behavior of solutionized(T4)and aged(T6)WE43 magnesium alloys was studied at room temperature.The total strain amplitudes(△ε_(t)/2)were 0.4%,0.5%,0.6%,0.7%and 1.0%.Detailed microstructure evolu...The low-cycle fatigue behavior of solutionized(T4)and aged(T6)WE43 magnesium alloys was studied at room temperature.The total strain amplitudes(△ε_(t)/2)were 0.4%,0.5%,0.6%,0.7%and 1.0%.Detailed microstructure evolution was characterized by scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and transmission electron microscopy(TEM).The results showed that plastic strain amplitude decreased with the increasing cycle number in T4 alloy,which is due to the dense persistent slip bands(PSBs)and dynamic precipitates hinderingdislocation slip.In contrast,the plastic strain amplitude increases gradually in T6 alloy,which is attributed to the enhanced activation of pyramidal slip.The low-cycle fatigue life of T6 alloy with larger fatigue ductility coefficient is longer than that of T4 alloy.The Coffin-Manson model can accurately predict the fatigue life of T4 and T6 alloys compared to Jahed-Varvani(JV)energy model.For T4 alloy,the fatigue damage mechanism was dominated by basal slip.For T6 alloy,the enhanced pyramidal slip plays an important role to accommodate plastic deformation.展开更多
In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandston...In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandstone considering temperatures(25℃,200℃,400℃,600℃,and 800℃)and fissure angles(0°,30°,60°,and 90°)were evaluated under constant-amplitude and low-cycle(CALC)impacts actuated by a modified split Hopkinson pressure bar(SHPB)system.Subsequently,fracture morphology and second-order statistics within the grey-level co-occurrence matrix(GLCM)were examined using scanning electron microscopy(SEM).Meanwhile,the deep analysis and discussion of the mechanical response were conducted through the synchronous thermal analyzer(STA)test,numerical simulations,one-dimensional stress wave theory,and material structure.The multiple regression models between response variables and interactive effects of independent variables were established using the response surface method(RSM).The results demonstrate the fatigue strength and life diminish as temperatures rise and increase with increasing fissure angles,while the strain rate exhibits an inverse behavior.Furthermore,the peak stress intensification and strain rate softening observed during CALC impact exhibit greater prominence at increased fissure angles.The failure is dominated by tensile damage with concise evolution paths and intergranular cracks as well as the compressor-crushed zone which may affect the failure mode after 400℃.The second-order statistics of GLCM in SEM images exhibit a considerable dependence on the temperatures.Also,thermal damage dominated by thermal properties controls the material structure and wave impedance and eventually affects the incident wave intensity.The tensile wave reflected from the fissure surface is the inherent mechanism responsible for the angle effect exhibited by the fatigue strength and life.Ultimately,the peak stress intensification and strain rate softening during impact are determined by both the material structure and compaction governed by thermal damage and tensile wave.展开更多
The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are inve...The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are investigated,with particular focus on the influence of the extrusion temperature.In the AZ91 and SEN9 materials extruded at 300°C(300-materials),numerous fine Mg_(17)Al_(12)particles are inhomogeneously distributed owing to localized dynamic precipitation during extrusion,unlike those extruded at 400°C(400-materials).These fine particles suppress the coarsening of recrystallized grains,decreasing the average grain size of 300-materials.Although the four extruded materials have considerably different microstructures,the difference in their tensile yield strengths is insignificant because strong grain-boundary hardening and precipitation hardening effects in 300-materials are offset almost completely by a strong texture hardening effect in 400-materials.However,owing to their finer grains and weaker texture,300-materials have higher compressive yield strengths than400-materials.During the LCF tests,{10-12}twinning is activated at lower stresses in 400-materials than in 300-materials.Because the fatigue damage accumulated per cycle is smaller in 400-materials,they have longer fatigue lives than those of 300-materials.A fatigue life prediction model for the investigated materials is established on the basis of the relationship between the total strain energy density(ΔW_(t))and the number of cycles to fatigue failure(N_(f)),and it is expressed through a simple equation(ΔW_(t)=10·N_(f)-0.59).This model enables fatigue life prediction of both the investigated alloys regardless of the extrusion temperature and strain amplitude.展开更多
This study aimed to investigate the effect of fatigue characteristics on the static and dynamic performance of Eucommia ulmoides gum isolators, and to explore the performance changes of Eucommia ulmoides gum isolators...This study aimed to investigate the effect of fatigue characteristics on the static and dynamic performance of Eucommia ulmoides gum isolators, and to explore the performance changes of Eucommia ulmoides gum isolators with different formulations. For this purpose, we used five formulations of Eucommia ulmoides gum isolators and set different fatigue test methods to study the static and dynamic performance changes of Eucommia ulmoides gum isolators with different formulations by changing the amplitude. The experimental results showed that the addition of Eucommia ulmoides gum had an impact on the performance of the isolator, and the number of fatigue cycles would lead to the hardening of the Eucommia ulmoides gum isolator and changes in its static and dynamic performance. In the range of two million vibrations, the performance change of the isolator was significant in the early stage and then tended to be flat, indicating that the impact of fatigue on the performance of the isolator would not continue to persist. It is worth noting that the study found that the addition of 30% Eucommia ulmoides gum had the least impact on the performance of the isolator under fatigue. Therefore, for long-term use of Eucommia ulmoides gum isolators, attention should be paid to their fatigue characteristics to ensure their stability and reliability. Additionally, this study provides a reference for the design and application of Eucommia ulmoides gum isolators. In summary, this study provides important reference value for a deeper understanding of the fatigue characteristics of Eucommia ulmoides gum isolators and for ensuring their stable and reliable performance. .展开更多
In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,...In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,Brookfield viscosity,rheological index,infrared spectrum and dielectric constant test.This paper discusses the changes of asphalt basic indexes,fatigue properties and asphalt components based on dielectric properties under different modifier contents,and analyzes the grey correlation degree between components and asphalt pavement performance indexes.The results show that the optimum content of RCA modifier is 16.7%of the asphalt quality according to the penetration,ductility,softening point,Brockfield viscosity,viscosity temperature curve and fatigue life.In the phase angle-strain curve,there is disorder in the latter part of the curve.According to the strain (ε_(d)) corresponding to the disorder point,a new fatigue failure criterion is proposed and proved.Based on the new asphalt fatigue failure criterion,the fatigue prediction model of asphalt mixture is improved,and the fatigue life predicted by the improved fatigue model is compared with the fatigue life obtained by four-point bending fatigue test.The results show that the proposed new asphalt fatigue failure criterion is reasonable,and the fatigue life predicted by the improved asphalt mixture fatigue prediction model is accurate.The research method of classifying asphalt components based on dielectric properties is simple and effective,and the components have a high correlation with the road performance of base asphalt and modified asphalt.展开更多
The fatigue contrast tests of unload longitudinal direction comer joints asoriginal welded and treated by ultrasonic peening of Q235B in various stress ratio are directed. Theimprovements of fatigue performance of unl...The fatigue contrast tests of unload longitudinal direction comer joints asoriginal welded and treated by ultrasonic peening of Q235B in various stress ratio are directed. Theimprovements of fatigue performance of unload longitudinal direction corner joints resulted byultrasonic peening are studied. The effect pattern of stress ratio on fatigue performance of weldedjoints that are treated by ultrasonic peening is studied. As tests results indicate that: ① In thecondition of stress ratio .R=-l, the fatigue strength 'of specimen treated by ultrasonic peening isincreased by 165 percent of that of the original welded specimen. And the fatigue life of specimentreated by ultrasonic peening is as much as 75 approx 210 times of that of the latter. When R=0.1,the fatigue strength is increased by 87 percent and the fatigue life is extended by 21 approx 29times. When R=-0.5, the fatigue strength is increased by 123 percent and the fatigue life isextended by 42 approx 59 times. When R=0.45, the fatigue strength is increased by 51 percent and thefatigue life is extended by 3 approx 14 times. ② If the welded joints are treated by ultrasonicpeening, the fatigue strength is no longer independent on the applied mean stress. The more thestress ratio R, the less the fatigue stress range which can be sustained by the joints is. ③Whether the high value residual stress is in the joints or not, the dead load portion of the appliedload must be considered in the design of the joints which should be treated by ultrasonic peening.展开更多
To research the possibility of steel-making dust as a kind of mineral filler in asphalt mixture, two steel-making dusts and one ordinary mineral filler were adopted. The specific density, specific surface area, finene...To research the possibility of steel-making dust as a kind of mineral filler in asphalt mixture, two steel-making dusts and one ordinary mineral filler were adopted. The specific density, specific surface area, fineness modulus and mineralogy component of the dusts were tested. Scanning electron microscopy(SEM) was carried out to research the microstructure of the dusts; dynamic shear rheological(DSR) test and time sweep test were used to research the high temperature and fatigue performance of asphalt mortars containing steel-making dust. The experimental results indicate that, compared with ordinary mineral filler, steel-making dusts have more active ingredients, difference surface characteristics and micro-structure. Furthermore, the high temperature and fatigue performance of steel-making dusts corresponding asphalt mortars are superior to those of reference group. Therefore, the steel-making dust would be an alternative to the ordinary mineral filler to improve the performance of asphalt mortars and reduce the harm of the dusts to the environment at the same time.展开更多
In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission ele...In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission electron microscope equipped with a high-angle annular dark-field detector.Under a total strain-controlled low-cyclic loading at573K,the mechanical response and failure mechanism of Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr alloy(T6peak-aging heat treatment)were investigated.Results show that the alloy exhibits cyclic softening response at diverse total strain amplitudes and573K.The experimental observations using scanning electron microscopy show that the micro-cracks initiate preferentially at the interface between long-period stacking order structures andα-Mg matrix and extend along the basal plane ofα-Mg.The massive long-period stacking order structures distributed at grain boundaries impede the transgranular propagation of cracks.展开更多
Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys. To feature their mechanical aspect of fatigue behavior, the low-cycle fatigue behavior of permanent mold cast and die-cast AI-Si- Cu-Mg ...Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys. To feature their mechanical aspect of fatigue behavior, the low-cycle fatigue behavior of permanent mold cast and die-cast AI-Si- Cu-Mg alloys at room temperature was investigated. The experimental results show that both permanent mold cast and die-cast AI-Si-Cu-Mg alloys mainly exhibit cyclic strain hardening. At the same total strain amplitude, the diecast AI-Si-Cu-Mg alloy shows higher cyclic deformation resistance and longer fatigue life than does the permanent mold cast AI-Si-Cu-Mg alloy. The relationship between both elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior, and can be described by the Basquin and Coffin-Manson equations, respectively.展开更多
Fatigue performance is a serious concern for mechanical components subject to cyclical stresses,particularly where safety is paramount.The fatigue performance of components relies closely on their surface integrity be...Fatigue performance is a serious concern for mechanical components subject to cyclical stresses,particularly where safety is paramount.The fatigue performance of components relies closely on their surface integrity because the fatigue cracks generally initiate from free surfaces.This paper reviewed the published data,which addressed the effects of machined surface integrity on the fatigue performance of metal workpieces.Limitations in existing studies and the future directions in anti-fatigue manufacturing field were proposed.The remarkable surface topography(e.g.,low roughness and few local defects and inclusions)and large compressive residual stress are beneficial to fatigue performance.However,the indicators that describe the effects of surface topography and residual stress accurately need further study and exploration.The effect of residual stress relaxation under cycle loadings needs to be precisely modeled precisely.The effect of work hardening on fatigue performance had two aspects.Work hardening could increase the material yield strength,thereby delaying crack nucleation.However,increased brittleness could accel-erate crack propagation.Thus,finding the effective control mechanism and method of work hardening is urgently needed to enhance the fatigue performance of machined components.The machining-induced metallurgical structure changes,such as white layer,grain refinement,dislocation,and martensitic transformation affect the fatigue performance of a workpiece significantly.However,the unified and exact conclusion needs to be investigated deeply.Finally,different surface integrity factors had complicated reciprocal effects on fatigue performance.As such,studying the comprehensive influence of surface integrity further and establishing the reliable prediction model of workpiece fatigue performance are meaningful for improving reliability of components and reducing test cost.展开更多
In order to research the strengthening effects of aramid fiber reinforced polymer (AFRP) sheets on the flexural performance of corroded reinforced concrete (RC) beams, the static and fatigue performance of corrode...In order to research the strengthening effects of aramid fiber reinforced polymer (AFRP) sheets on the flexural performance of corroded reinforced concrete (RC) beams, the static and fatigue performance of corroded RC beams strengthened with non-prestressed AFRP sheets under different degrees of corrosion (minor: reinforcement mass loss is 2.0%, medium: reinforcement mass loss is 6.0%) have been researched experimentally in this paper, to compare with that of the control beams (un-strengthened and un-corroded) and un-strengthened corroded beams, and additionally compare with fatigue performance of those medium corroded RC beams strengthened with prestressed AFRP sheets with permanent anchors. The results show that, (1) compared with un-strengthened corroded beams under the same degrees of corrosion, the cracking, yield and ultimate monotonic loads of the minor corroded RC beam strengthened with non-prestressed AFRP sheets is respectively increased by 20%, 27% and 60%, whereas for the medium corroded RC beam strengthened with non-prestressed AFRP sheets increased by 15%, 36% and 83% respectively. The ultimate deflection of the medium corroded beam strengthened with non-prestressed AFRP sheets is 166% larger than that of the corroded un-strengthened beam under the monotonic load. (2) The fatigue life of the non-prestressed AFRP strengthened medium corroded beam is 10.4 times more than that of the un-strengthened corroded beam, but lower than that of the unstrengthened-uncorroded (virgin) beam. (3) Fatigue experiments of the beams strengthened with prestressed AFRP sheets and with those non-prestressed AFRP sheets show that the fatigue life of the retrofit RC beams increase with increasing prestress level of AFRP sheets.(4) The use of AFRP sheets for strengthening corroded RC beams is an efficient technique that can maintain the structural integrity and enhance the structural behavior of such beams.展开更多
Stent-grafts were commercialized rapidly and gained a broad clinical acceptance over the past two decades. However,relatively more recent recognition of particular stent-graft design shortcomings have been identified ...Stent-grafts were commercialized rapidly and gained a broad clinical acceptance over the past two decades. However,relatively more recent recognition of particular stent-graft design shortcomings have been identified which need to be addressed. It appears that various stent-graft designs may be more or less resistant to metal fatigue and /or fabric abrasions which can lead to type III and type IV endoleaks over the long term. Therefore,it is necessary to investigate the fatigue performance of the most common stentgraft designs: Z-stents and ringed stents,in a long-term in vitro fatigue simulation environment. This paper aimed to analyze nondestructively( gross observations) and destructively( fabric characteristics,mechanical and chemical properties) in order to put forward suggestions to improve the fabric and stent characteristics that may prevent type III and IV endoleaks. The fabric supported with ringed stent-grafts remained nearly completely intact after 168h. However, the fabric supported with Z-stents demonstrated significant damage. Fabric characteristics and tensile strength of the fibers did not present a significant difference between the control and fatigue simulated specimens. The crystallinity declined for both specimens. The fatigue performance of fabrics supported with ringed stents appears to be superior to that supported with Z-stents. The potential for a dynamic and destructive interaction between the apices of Z-stents which can lead to fraying and /or tearing of the graft fabric must be addressed in future designs.展开更多
With the loading test equipment of corrosion fatigue specially designed, the corrosion fatigue characteristics of high performance concrete (HPC) withstanding the interaction of third point fatigue loading and Na_2SO_...With the loading test equipment of corrosion fatigue specially designed, the corrosion fatigue characteristics of high performance concrete (HPC) withstanding the interaction of third point fatigue loading and Na_2SO_4 solution were investigated and analyzed. The experimental results indicate that water-binder ratio evidently influences the corrosion fatigue characteristics of HPC, and a moderate quantitative fine mineral admixture enhances the corrosion fatigue resistance of HPC. The effect is more significant when fly ash and silica fume are added.展开更多
Use of stainless reinforcing steel (SRS) in reinforced concrete (RC) structures is a promising solution to corrosion issues. However, for SRS to be used in seismic applications, several mechanical properties need ...Use of stainless reinforcing steel (SRS) in reinforced concrete (RC) structures is a promising solution to corrosion issues. However, for SRS to be used in seismic applications, several mechanical properties need to be investigated. These include specified and actual yield strengths, tensile strengths, uniform elongations and low-cycle fatigue behavior. Three types of SRSs (Talley S24100, Talley 316LN and Talley 2205) were tested and the results are reported in this paper. They were compared with the properties of A706 carbon reinforcing steel (RS), which is typical for seismic applications, and MMFX II, which is a high strength, corrosion resistant RS. Low-cycle fatigue tests of the RS coupons were conducted under strain control with constant amplitude to obtain strain life models of the steels. Test results show that the SRSs have slightly lower moduli of elasticity, higher uniform elongations before necking, and better low-cycle fatigue performance than A706 and MMFX II. All five types of RSs tested satisfy the requirements of the ACI 318 code on the lower limit of the tensile to yield strength ratio. Except Talley 2205, the other four types of RSs investigated meet the ACI 318 requirement that the actual yield strength does not exceed the specified yield strength by more than 18 ksi (124 MPa). Among the three types of SRSs tested, Talley S24100 possesses the highest uniform elongation before necking, and the best low-cycle fatigue performance.展开更多
The characteristics and microstructural changes of cyclic softening in hot-working die steels 5CrNiMo and 5Cr2NiMoVSi were studied under strain controlled low-cycle fatigue.The re- sults show that the cyclic softening...The characteristics and microstructural changes of cyclic softening in hot-working die steels 5CrNiMo and 5Cr2NiMoVSi were studied under strain controlled low-cycle fatigue.The re- sults show that the cyclic softening is featured in both steels hardened in different conditions under the strain controlled amplitude range of Δε_t/2=0.6-1.8×10^(-2).The softening effect mainly occurs in some initial cycles and the stress amplitude varies slightly in the sequential cycles,i.e.the softening effect is minified.No obvious stress saturation phenomenon was ob- served during the whole cyclic deformation.The TEM analysis shows that the cyclic softening is related to heterogenity of plastic deformation.The softening of the tested steels is caused by the formation of the dislocation cell structure with low density and low internal stress,and by the fragmentation and redissolution of fine carbides into matrix.展开更多
Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete...Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete and steel. The seismic performance of CFT columns and failure modes were analyzed. The test results show that different axial load ratios and loading sequences have effects on the load carrying capacity, ductility and energy dissipation capacity of CFT columns, as well as the failure modes of the CFT columns. The failure pattern can be categorized into two types: local buckling failure of steel tube in compression zone, and low cycle fatigue tearing rupture failure of steel tube. The seismic behavior was evaluated through the energy index obtained from each cycle.展开更多
This paper studies the effect of different environmental factors, including the axle load weight, environmental temperature, vehicle speed, and the aging level of asphalt, on the fatigue performance of asphalt mixes b...This paper studies the effect of different environmental factors, including the axle load weight, environmental temperature, vehicle speed, and the aging level of asphalt, on the fatigue performance of asphalt mixes based on four-point bending beam fatigue tests. A fractional factorial design method named "uniform design" was applied in experimental design. The relations of the environmental factors to initial stiffness, fatigue life, phase angle and cumulative dissipated energy were established with the general linear modeling method. It is found that there exists very good correlativity between the environmental factors and the fatigue performance indices of asphalt mixes. The coefficients of total correlation are mainly beyond 0. 95. The results indicate that the consideration of the effect of environmental factors is necessary in the fatigue performance evaluation on real asphalt pavement.展开更多
The constitutive equation under the low-cycle fatigue (LCF) was discussed, and a two-dimensional (2-D) model for simulating fatigue crack extension was put forward in order to propose a new cyclic J-integral. The ...The constitutive equation under the low-cycle fatigue (LCF) was discussed, and a two-dimensional (2-D) model for simulating fatigue crack extension was put forward in order to propose a new cyclic J-integral. The definition, primary characteristics, physical interpretations and numerical evaluation of the new parameter were investigated in detail. Moreover, the new cyclic J-integral for LCF behaviors was validated by the compact tension (CT) specimens. Results show that the calculated values of the new parameter can correlate well with LCF crack growth rate, during constant-amplitude loading. In addition, the phenomenon of fatigue retardation was explained through the viewpoint of energy based on the concept of the new parameter.展开更多
Low cycle fatigue tests and crack growth propagations tests on P91 pipe base metal and its weld joints were conducted at three different temperatures: room temperature, 550℃ and 575℃. The strain-life was analyzed, a...Low cycle fatigue tests and crack growth propagations tests on P91 pipe base metal and its weld joints were conducted at three different temperatures: room temperature, 550℃ and 575℃. The strain-life was analyzed, and the changes in fatigue life behavior and fatigue growth rates with increasing temperature were discussed. The different properties of the base metal and its weld joint have been analyzed.展开更多
For a longitudinal welded joint, the tensile residual stresses are as high as the yield stress of the metal, so that the weld toes are sensitive to fatigue load. In this case a low transformation temperature electrode...For a longitudinal welded joint, the tensile residual stresses are as high as the yield stress of the metal, so that the weld toes are sensitive to fatigue load. In this case a low transformation temperature electrode (LTTE) is one of the most useful methods used to improve the fatigue strength of the longitudinal welded joint, because the tensile residual stress is reduced or changed into compressive stress. Three kinds of longitudinal welded joints were selected to conduct fatigue tests. The tests results show that the fatigue strengths at 2×10 6 cycles of the joints welded with LTTE were improved by 41%, 47% and 59% respectively compared with those of the joints welded with E5015, and the fatigue lives at 162 MPa were improved by 9.9 times, 9.6 times and 46.8 times respectively. Furthermore, the LTTE method is not necessary to add process after welding and so that it can be valuable method to improve the fatigue performance of longitudinal welded joints.展开更多
基金financially supported by the Natural Science Foundation of Liaoning Province(No.2020-MS-004)the Natural Science Foundation of Liaoning(ZR2021ME241)+1 种基金the National Natural Science Foundation of China(Nos.51601193 and 51701218)the National Key Research and Development Program of China(No.2016YFB0301104)。
文摘The low-cycle fatigue behavior of solutionized(T4)and aged(T6)WE43 magnesium alloys was studied at room temperature.The total strain amplitudes(△ε_(t)/2)were 0.4%,0.5%,0.6%,0.7%and 1.0%.Detailed microstructure evolution was characterized by scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and transmission electron microscopy(TEM).The results showed that plastic strain amplitude decreased with the increasing cycle number in T4 alloy,which is due to the dense persistent slip bands(PSBs)and dynamic precipitates hinderingdislocation slip.In contrast,the plastic strain amplitude increases gradually in T6 alloy,which is attributed to the enhanced activation of pyramidal slip.The low-cycle fatigue life of T6 alloy with larger fatigue ductility coefficient is longer than that of T4 alloy.The Coffin-Manson model can accurately predict the fatigue life of T4 and T6 alloys compared to Jahed-Varvani(JV)energy model.For T4 alloy,the fatigue damage mechanism was dominated by basal slip.For T6 alloy,the enhanced pyramidal slip plays an important role to accommodate plastic deformation.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.41972283)the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2021zzts0287)the China Scholarship Council(Grant No.202206370109).
文摘In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandstone considering temperatures(25℃,200℃,400℃,600℃,and 800℃)and fissure angles(0°,30°,60°,and 90°)were evaluated under constant-amplitude and low-cycle(CALC)impacts actuated by a modified split Hopkinson pressure bar(SHPB)system.Subsequently,fracture morphology and second-order statistics within the grey-level co-occurrence matrix(GLCM)were examined using scanning electron microscopy(SEM).Meanwhile,the deep analysis and discussion of the mechanical response were conducted through the synchronous thermal analyzer(STA)test,numerical simulations,one-dimensional stress wave theory,and material structure.The multiple regression models between response variables and interactive effects of independent variables were established using the response surface method(RSM).The results demonstrate the fatigue strength and life diminish as temperatures rise and increase with increasing fissure angles,while the strain rate exhibits an inverse behavior.Furthermore,the peak stress intensification and strain rate softening observed during CALC impact exhibit greater prominence at increased fissure angles.The failure is dominated by tensile damage with concise evolution paths and intergranular cracks as well as the compressor-crushed zone which may affect the failure mode after 400℃.The second-order statistics of GLCM in SEM images exhibit a considerable dependence on the temperatures.Also,thermal damage dominated by thermal properties controls the material structure and wave impedance and eventually affects the incident wave intensity.The tensile wave reflected from the fissure surface is the inherent mechanism responsible for the angle effect exhibited by the fatigue strength and life.Ultimately,the peak stress intensification and strain rate softening during impact are determined by both the material structure and compaction governed by thermal damage and tensile wave.
基金supported by the National Research Foundation(NRF)Grant(No.2019R1A2C1085272)the National Research Council of Science and Technology(NST)Grant(No.CRC-15-06-KIGAM)funded by the Korean government(MSIP,South Korea)
文摘The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are investigated,with particular focus on the influence of the extrusion temperature.In the AZ91 and SEN9 materials extruded at 300°C(300-materials),numerous fine Mg_(17)Al_(12)particles are inhomogeneously distributed owing to localized dynamic precipitation during extrusion,unlike those extruded at 400°C(400-materials).These fine particles suppress the coarsening of recrystallized grains,decreasing the average grain size of 300-materials.Although the four extruded materials have considerably different microstructures,the difference in their tensile yield strengths is insignificant because strong grain-boundary hardening and precipitation hardening effects in 300-materials are offset almost completely by a strong texture hardening effect in 400-materials.However,owing to their finer grains and weaker texture,300-materials have higher compressive yield strengths than400-materials.During the LCF tests,{10-12}twinning is activated at lower stresses in 400-materials than in 300-materials.Because the fatigue damage accumulated per cycle is smaller in 400-materials,they have longer fatigue lives than those of 300-materials.A fatigue life prediction model for the investigated materials is established on the basis of the relationship between the total strain energy density(ΔW_(t))and the number of cycles to fatigue failure(N_(f)),and it is expressed through a simple equation(ΔW_(t)=10·N_(f)-0.59).This model enables fatigue life prediction of both the investigated alloys regardless of the extrusion temperature and strain amplitude.
文摘This study aimed to investigate the effect of fatigue characteristics on the static and dynamic performance of Eucommia ulmoides gum isolators, and to explore the performance changes of Eucommia ulmoides gum isolators with different formulations. For this purpose, we used five formulations of Eucommia ulmoides gum isolators and set different fatigue test methods to study the static and dynamic performance changes of Eucommia ulmoides gum isolators with different formulations by changing the amplitude. The experimental results showed that the addition of Eucommia ulmoides gum had an impact on the performance of the isolator, and the number of fatigue cycles would lead to the hardening of the Eucommia ulmoides gum isolator and changes in its static and dynamic performance. In the range of two million vibrations, the performance change of the isolator was significant in the early stage and then tended to be flat, indicating that the impact of fatigue on the performance of the isolator would not continue to persist. It is worth noting that the study found that the addition of 30% Eucommia ulmoides gum had the least impact on the performance of the isolator under fatigue. Therefore, for long-term use of Eucommia ulmoides gum isolators, attention should be paid to their fatigue characteristics to ensure their stability and reliability. Additionally, this study provides a reference for the design and application of Eucommia ulmoides gum isolators. In summary, this study provides important reference value for a deeper understanding of the fatigue characteristics of Eucommia ulmoides gum isolators and for ensuring their stable and reliable performance. .
基金Funded by Natural Science Foundation of Inner Mongolia,China (No. 2019MS05033)。
文摘In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,Brookfield viscosity,rheological index,infrared spectrum and dielectric constant test.This paper discusses the changes of asphalt basic indexes,fatigue properties and asphalt components based on dielectric properties under different modifier contents,and analyzes the grey correlation degree between components and asphalt pavement performance indexes.The results show that the optimum content of RCA modifier is 16.7%of the asphalt quality according to the penetration,ductility,softening point,Brockfield viscosity,viscosity temperature curve and fatigue life.In the phase angle-strain curve,there is disorder in the latter part of the curve.According to the strain (ε_(d)) corresponding to the disorder point,a new fatigue failure criterion is proposed and proved.Based on the new asphalt fatigue failure criterion,the fatigue prediction model of asphalt mixture is improved,and the fatigue life predicted by the improved fatigue model is compared with the fatigue life obtained by four-point bending fatigue test.The results show that the proposed new asphalt fatigue failure criterion is reasonable,and the fatigue life predicted by the improved asphalt mixture fatigue prediction model is accurate.The research method of classifying asphalt components based on dielectric properties is simple and effective,and the components have a high correlation with the road performance of base asphalt and modified asphalt.
文摘The fatigue contrast tests of unload longitudinal direction comer joints asoriginal welded and treated by ultrasonic peening of Q235B in various stress ratio are directed. Theimprovements of fatigue performance of unload longitudinal direction corner joints resulted byultrasonic peening are studied. The effect pattern of stress ratio on fatigue performance of weldedjoints that are treated by ultrasonic peening is studied. As tests results indicate that: ① In thecondition of stress ratio .R=-l, the fatigue strength 'of specimen treated by ultrasonic peening isincreased by 165 percent of that of the original welded specimen. And the fatigue life of specimentreated by ultrasonic peening is as much as 75 approx 210 times of that of the latter. When R=0.1,the fatigue strength is increased by 87 percent and the fatigue life is extended by 21 approx 29times. When R=-0.5, the fatigue strength is increased by 123 percent and the fatigue life isextended by 42 approx 59 times. When R=0.45, the fatigue strength is increased by 51 percent and thefatigue life is extended by 3 approx 14 times. ② If the welded joints are treated by ultrasonicpeening, the fatigue strength is no longer independent on the applied mean stress. The more thestress ratio R, the less the fatigue stress range which can be sustained by the joints is. ③Whether the high value residual stress is in the joints or not, the dead load portion of the appliedload must be considered in the design of the joints which should be treated by ultrasonic peening.
基金Funded by the National Natural Science Foundation of China(51778482)
文摘To research the possibility of steel-making dust as a kind of mineral filler in asphalt mixture, two steel-making dusts and one ordinary mineral filler were adopted. The specific density, specific surface area, fineness modulus and mineralogy component of the dusts were tested. Scanning electron microscopy(SEM) was carried out to research the microstructure of the dusts; dynamic shear rheological(DSR) test and time sweep test were used to research the high temperature and fatigue performance of asphalt mortars containing steel-making dust. The experimental results indicate that, compared with ordinary mineral filler, steel-making dusts have more active ingredients, difference surface characteristics and micro-structure. Furthermore, the high temperature and fatigue performance of steel-making dusts corresponding asphalt mortars are superior to those of reference group. Therefore, the steel-making dust would be an alternative to the ordinary mineral filler to improve the performance of asphalt mortars and reduce the harm of the dusts to the environment at the same time.
基金Project(2015TP1035)supported by the Science and Technology Planning Project of Hunan Province,ChinaProject(531107040183)supported by the Fundamental Research Funds for the Central Universities,China
文摘In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission electron microscope equipped with a high-angle annular dark-field detector.Under a total strain-controlled low-cyclic loading at573K,the mechanical response and failure mechanism of Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr alloy(T6peak-aging heat treatment)were investigated.Results show that the alloy exhibits cyclic softening response at diverse total strain amplitudes and573K.The experimental observations using scanning electron microscopy show that the micro-cracks initiate preferentially at the interface between long-period stacking order structures andα-Mg matrix and extend along the basal plane ofα-Mg.The massive long-period stacking order structures distributed at grain boundaries impede the transgranular propagation of cracks.
文摘Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys. To feature their mechanical aspect of fatigue behavior, the low-cycle fatigue behavior of permanent mold cast and die-cast AI-Si- Cu-Mg alloys at room temperature was investigated. The experimental results show that both permanent mold cast and die-cast AI-Si-Cu-Mg alloys mainly exhibit cyclic strain hardening. At the same total strain amplitude, the diecast AI-Si-Cu-Mg alloy shows higher cyclic deformation resistance and longer fatigue life than does the permanent mold cast AI-Si-Cu-Mg alloy. The relationship between both elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior, and can be described by the Basquin and Coffin-Manson equations, respectively.
基金Supported by National Natural Science Foundation of China(Grant No.52005281)Major Program of Shandong Province Natural Science Foundation of China(Grant No.ZR2018ZA0401)Applied Basic Research Projects for Qingdao Innovation Plan(Grant No.18-2-2-67-jch).
文摘Fatigue performance is a serious concern for mechanical components subject to cyclical stresses,particularly where safety is paramount.The fatigue performance of components relies closely on their surface integrity because the fatigue cracks generally initiate from free surfaces.This paper reviewed the published data,which addressed the effects of machined surface integrity on the fatigue performance of metal workpieces.Limitations in existing studies and the future directions in anti-fatigue manufacturing field were proposed.The remarkable surface topography(e.g.,low roughness and few local defects and inclusions)and large compressive residual stress are beneficial to fatigue performance.However,the indicators that describe the effects of surface topography and residual stress accurately need further study and exploration.The effect of residual stress relaxation under cycle loadings needs to be precisely modeled precisely.The effect of work hardening on fatigue performance had two aspects.Work hardening could increase the material yield strength,thereby delaying crack nucleation.However,increased brittleness could accel-erate crack propagation.Thus,finding the effective control mechanism and method of work hardening is urgently needed to enhance the fatigue performance of machined components.The machining-induced metallurgical structure changes,such as white layer,grain refinement,dislocation,and martensitic transformation affect the fatigue performance of a workpiece significantly.However,the unified and exact conclusion needs to be investigated deeply.Finally,different surface integrity factors had complicated reciprocal effects on fatigue performance.As such,studying the comprehensive influence of surface integrity further and establishing the reliable prediction model of workpiece fatigue performance are meaningful for improving reliability of components and reducing test cost.
基金supported bythe National Natural Science Foundation of China (Grant No.50978006)
文摘In order to research the strengthening effects of aramid fiber reinforced polymer (AFRP) sheets on the flexural performance of corroded reinforced concrete (RC) beams, the static and fatigue performance of corroded RC beams strengthened with non-prestressed AFRP sheets under different degrees of corrosion (minor: reinforcement mass loss is 2.0%, medium: reinforcement mass loss is 6.0%) have been researched experimentally in this paper, to compare with that of the control beams (un-strengthened and un-corroded) and un-strengthened corroded beams, and additionally compare with fatigue performance of those medium corroded RC beams strengthened with prestressed AFRP sheets with permanent anchors. The results show that, (1) compared with un-strengthened corroded beams under the same degrees of corrosion, the cracking, yield and ultimate monotonic loads of the minor corroded RC beam strengthened with non-prestressed AFRP sheets is respectively increased by 20%, 27% and 60%, whereas for the medium corroded RC beam strengthened with non-prestressed AFRP sheets increased by 15%, 36% and 83% respectively. The ultimate deflection of the medium corroded beam strengthened with non-prestressed AFRP sheets is 166% larger than that of the corroded un-strengthened beam under the monotonic load. (2) The fatigue life of the non-prestressed AFRP strengthened medium corroded beam is 10.4 times more than that of the un-strengthened corroded beam, but lower than that of the unstrengthened-uncorroded (virgin) beam. (3) Fatigue experiments of the beams strengthened with prestressed AFRP sheets and with those non-prestressed AFRP sheets show that the fatigue life of the retrofit RC beams increase with increasing prestress level of AFRP sheets.(4) The use of AFRP sheets for strengthening corroded RC beams is an efficient technique that can maintain the structural integrity and enhance the structural behavior of such beams.
基金"111 Project"Biomedical Textile Materials Science and Technology of China(No.B07024)Fundamental Research Funds for the Central Universities of China(No.12D10112)+2 种基金National Students Innovation Plans of China(No.X120711287,No.12T1010601)National Natural Science Foundation of China(No.81371648)Research Fund for the Doctoral Program of Higher Education of China(No.20100075110001)
文摘Stent-grafts were commercialized rapidly and gained a broad clinical acceptance over the past two decades. However,relatively more recent recognition of particular stent-graft design shortcomings have been identified which need to be addressed. It appears that various stent-graft designs may be more or less resistant to metal fatigue and /or fabric abrasions which can lead to type III and type IV endoleaks over the long term. Therefore,it is necessary to investigate the fatigue performance of the most common stentgraft designs: Z-stents and ringed stents,in a long-term in vitro fatigue simulation environment. This paper aimed to analyze nondestructively( gross observations) and destructively( fabric characteristics,mechanical and chemical properties) in order to put forward suggestions to improve the fabric and stent characteristics that may prevent type III and IV endoleaks. The fabric supported with ringed stent-grafts remained nearly completely intact after 168h. However, the fabric supported with Z-stents demonstrated significant damage. Fabric characteristics and tensile strength of the fibers did not present a significant difference between the control and fatigue simulated specimens. The crystallinity declined for both specimens. The fatigue performance of fabrics supported with ringed stents appears to be superior to that supported with Z-stents. The potential for a dynamic and destructive interaction between the apices of Z-stents which can lead to fraying and /or tearing of the graft fabric must be addressed in future designs.
文摘With the loading test equipment of corrosion fatigue specially designed, the corrosion fatigue characteristics of high performance concrete (HPC) withstanding the interaction of third point fatigue loading and Na_2SO_4 solution were investigated and analyzed. The experimental results indicate that water-binder ratio evidently influences the corrosion fatigue characteristics of HPC, and a moderate quantitative fine mineral admixture enhances the corrosion fatigue resistance of HPC. The effect is more significant when fly ash and silica fume are added.
基金Federal Highway Administration Under Contract No.DTFH61-07-R-00121International Molybdenum Association,Nickel Institute,Talley Metals-A Carpenter Company,North American Stainless and Salit Specialty Steel Through MCEER,University at Buffalo
文摘Use of stainless reinforcing steel (SRS) in reinforced concrete (RC) structures is a promising solution to corrosion issues. However, for SRS to be used in seismic applications, several mechanical properties need to be investigated. These include specified and actual yield strengths, tensile strengths, uniform elongations and low-cycle fatigue behavior. Three types of SRSs (Talley S24100, Talley 316LN and Talley 2205) were tested and the results are reported in this paper. They were compared with the properties of A706 carbon reinforcing steel (RS), which is typical for seismic applications, and MMFX II, which is a high strength, corrosion resistant RS. Low-cycle fatigue tests of the RS coupons were conducted under strain control with constant amplitude to obtain strain life models of the steels. Test results show that the SRSs have slightly lower moduli of elasticity, higher uniform elongations before necking, and better low-cycle fatigue performance than A706 and MMFX II. All five types of RSs tested satisfy the requirements of the ACI 318 code on the lower limit of the tensile to yield strength ratio. Except Talley 2205, the other four types of RSs investigated meet the ACI 318 requirement that the actual yield strength does not exceed the specified yield strength by more than 18 ksi (124 MPa). Among the three types of SRSs tested, Talley S24100 possesses the highest uniform elongation before necking, and the best low-cycle fatigue performance.
文摘The characteristics and microstructural changes of cyclic softening in hot-working die steels 5CrNiMo and 5Cr2NiMoVSi were studied under strain controlled low-cycle fatigue.The re- sults show that the cyclic softening is featured in both steels hardened in different conditions under the strain controlled amplitude range of Δε_t/2=0.6-1.8×10^(-2).The softening effect mainly occurs in some initial cycles and the stress amplitude varies slightly in the sequential cycles,i.e.the softening effect is minified.No obvious stress saturation phenomenon was ob- served during the whole cyclic deformation.The TEM analysis shows that the cyclic softening is related to heterogenity of plastic deformation.The softening of the tested steels is caused by the formation of the dislocation cell structure with low density and low internal stress,and by the fragmentation and redissolution of fine carbides into matrix.
基金Projects(51178174,51308201)supported by the National Natural Science Foundation of China
文摘Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete and steel. The seismic performance of CFT columns and failure modes were analyzed. The test results show that different axial load ratios and loading sequences have effects on the load carrying capacity, ductility and energy dissipation capacity of CFT columns, as well as the failure modes of the CFT columns. The failure pattern can be categorized into two types: local buckling failure of steel tube in compression zone, and low cycle fatigue tearing rupture failure of steel tube. The seismic behavior was evaluated through the energy index obtained from each cycle.
文摘This paper studies the effect of different environmental factors, including the axle load weight, environmental temperature, vehicle speed, and the aging level of asphalt, on the fatigue performance of asphalt mixes based on four-point bending beam fatigue tests. A fractional factorial design method named "uniform design" was applied in experimental design. The relations of the environmental factors to initial stiffness, fatigue life, phase angle and cumulative dissipated energy were established with the general linear modeling method. It is found that there exists very good correlativity between the environmental factors and the fatigue performance indices of asphalt mixes. The coefficients of total correlation are mainly beyond 0. 95. The results indicate that the consideration of the effect of environmental factors is necessary in the fatigue performance evaluation on real asphalt pavement.
基金Project supported by the Municipal Key Subject Program of Shanghai (No.Y0103)
文摘The constitutive equation under the low-cycle fatigue (LCF) was discussed, and a two-dimensional (2-D) model for simulating fatigue crack extension was put forward in order to propose a new cyclic J-integral. The definition, primary characteristics, physical interpretations and numerical evaluation of the new parameter were investigated in detail. Moreover, the new cyclic J-integral for LCF behaviors was validated by the compact tension (CT) specimens. Results show that the calculated values of the new parameter can correlate well with LCF crack growth rate, during constant-amplitude loading. In addition, the phenomenon of fatigue retardation was explained through the viewpoint of energy based on the concept of the new parameter.
文摘Low cycle fatigue tests and crack growth propagations tests on P91 pipe base metal and its weld joints were conducted at three different temperatures: room temperature, 550℃ and 575℃. The strain-life was analyzed, and the changes in fatigue life behavior and fatigue growth rates with increasing temperature were discussed. The different properties of the base metal and its weld joint have been analyzed.
文摘For a longitudinal welded joint, the tensile residual stresses are as high as the yield stress of the metal, so that the weld toes are sensitive to fatigue load. In this case a low transformation temperature electrode (LTTE) is one of the most useful methods used to improve the fatigue strength of the longitudinal welded joint, because the tensile residual stress is reduced or changed into compressive stress. Three kinds of longitudinal welded joints were selected to conduct fatigue tests. The tests results show that the fatigue strengths at 2×10 6 cycles of the joints welded with LTTE were improved by 41%, 47% and 59% respectively compared with those of the joints welded with E5015, and the fatigue lives at 162 MPa were improved by 9.9 times, 9.6 times and 46.8 times respectively. Furthermore, the LTTE method is not necessary to add process after welding and so that it can be valuable method to improve the fatigue performance of longitudinal welded joints.