This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes...This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes are involved simultaneously i.e.spark erosion,chemical etching,and abrasive grinding for removal of material while the classical electrochemical discharge machining process involves double actions i.e.spark erosion,and chemical etching.The powder-mixed electrolyte process resulted in rapid material removal along with a better surface finish as compared to the classical microelectrochemical discharge machining(MECDM).Further,the results are optimized through a multiobjective optimization approach and study of the surface topography of the hole wall surface obtained at optimized parameters.In the selected range of experimental parameters,PMECDM shows a higher material removal rate(MRR) and lower surface roughness(R_(a))(MRR:2.8 mg/min and R_(a) of 0.61 μm) as compared to the MECDM process(MRR:2.01 mg/min and corresponding Raof 1.11 μm).A detailed analysis of the results is presented in this paper.展开更多
The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plastici...The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plasticity of bonded joint is improved significantly. When the bonding temperature is 800 °C or 900 °C, there is not intermetallic layer at the interface between stainless steel and niobium. When the bonding temperature is 1000 °C or 1050 °C, Fe-Nb intermetallic layer forms at the interface. When the bonding temperature is 1050 °C, cracking occurs between stainless steel and intermetallic layer. The maximum strength of -417.5 MPa is obtained at the bonding temperature of 900 °C, the reduction of 25% and the rolling speed of 38 mm/s, and the tensile specimen fractures in the niobium interlayer with plastic fracture characteristics. When the hot-roll bonded transition joints were TIG welded with titanium alloy and stainless steel respectively, the tensile strength of the transition joints after TIG welding is -410.3 MPa, and the specimen fractures in the niobium interlayer.展开更多
Niobium, as the most effective second-phase forming element, was added in the Fe-Crl3-C-N hard- facing alloy to get carbonitride precipitates. Morphology and composition of carbonitride in the hardfacing alloy were st...Niobium, as the most effective second-phase forming element, was added in the Fe-Crl3-C-N hard- facing alloy to get carbonitride precipitates. Morphology and composition of carbonitride in the hardfacing alloy were studied by optical microscopy, scanning electron microscopy, and electron probe microanalyzer. The ther- modynamics and the effect on the matrix of the formation of carbonitride were also discussed. It was found that niobium carbonitrides are complex Nb(C, N) precipitate distributed on grain boundary and matrix of the hardfacing alloy. Under as-welded condition, primary carbonitride particles were readily precipitated from the hardfacing alloy with large size and morphology as they were formed already during solidification. Under heat treatment condi- tion, a large number of secondary carbonitrides can pre- cipitate out with very fine size and make a great secondary hardening effect on the matrix. As a result, addition of niobium in the hardfacing alloy can prevent the formation of chromium-rich phase on grain boundaries and inter- granular chromium depletion.展开更多
This work addresses the alloying of titanium aluminides used in aircraft engine applications and automobiles. The oxidation resistance behavior of two titanium aluminides of α2 + γ (Ti3Al + TiAl) and orthorhombi...This work addresses the alloying of titanium aluminides used in aircraft engine applications and automobiles. The oxidation resistance behavior of two titanium aluminides of α2 + γ (Ti3Al + TiAl) and orthorhombic Ti2NbAl, recognized as candidates for high-temperature applications, was investigated by exposure of the alloys for 100 h in air. Thus, oxidation resistance was expressed as the mass gain rate, whereas surface aspects were analyzed using scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy, and the type of oxidation products was analyzed by X-ray diffraction and Raman spectroscopy. The orthorhombic Ti2NbAl alloy was embrittled, and pores and microcracks were formed as a result of oxygen diffusion through the external oxide layer formed during thermal oxidation for 100 h.展开更多
The effect of niobium on the formation of NbC phase and solidification structure in high carbon equivalent grey cast iron was investigated.The experimental results indicated that an increase in the niobium content is ...The effect of niobium on the formation of NbC phase and solidification structure in high carbon equivalent grey cast iron was investigated.The experimental results indicated that an increase in the niobium content is favorable to refining the graphite and eutectic cell;and the pearlite lamellar spacing is reduced.Based on the thermodynamic calculation the formation of NbC is prior to the eutectic reaction.The reduction in the pearlite lamellar spacing is mainly attributed to the decrease of eutectic temperature with the addition of niobium.Additionally,properties including hardness and wear resistance were improved after the addition of niobium.展开更多
A niobium-modified layer on pure titanium surface was obtained by means of double glow plasma surface alloying technique. The modified layer was uniform, continuous, compact and well adhered to the substrate. The niob...A niobium-modified layer on pure titanium surface was obtained by means of double glow plasma surface alloying technique. The modified layer was uniform, continuous, compact and well adhered to the substrate. The niobium composition in the modified layer decreased gradually from the surface to the substrate. The oxidation behavior of the niobium-modified layer was investigated and com- pared with the untreated surface at 900 ~C for 100 h. Characterization of the layers was performed using X-ray diffraction and scanning electron microscope, respectively. The test results show that the oxidation behavior of pure titanium was improved by niobium alloying process. Niobium has a positive influence on the oxidation resistance.展开更多
A silicide coating was prepared on the surface of the Nb521 alloy by the complex pack cemented method. The oxidation resistance properties of the present coating were examined by the static oxidation tests at 1 700 ℃...A silicide coating was prepared on the surface of the Nb521 alloy by the complex pack cemented method. The oxidation resistance properties of the present coating were examined by the static oxidation tests at 1 700 ℃ in air. The compositions and the microstructures of the coating before and after test were characterised and analysed through scanning electron microscopy(SEM),X-ray diffraction analysis(XRD),energy dispersive X-ray spectrometry(EDS) and electron probe microanalysis(EPMA),respectively. The present silicide coating can provide an effective protection for the Nb alloy for 25 h at 1 700 ℃ in air. The results show that the oxidation kinetics of the present silicide coating is parabolic. The diffusion of Si leads to the phase transformation and evolution during the oxidation.展开更多
The role of niobium in nickel-based superalloys is reviewed. The importance of niobium as a strengthener is discussed. New developments in nickel-based superalloys are also briefly mentioned, including some results th...The role of niobium in nickel-based superalloys is reviewed. The importance of niobium as a strengthener is discussed. New developments in nickel-based superalloys are also briefly mentioned, including some results that show improved resistance to sulfidation by niobium. Research results from a current program on the role of niobium in the Russian powder metallurgy alloy EP741NP are presented. Future research plans on the role of niobium in superalloys are also discussed.展开更多
High niobium β-γ TiAl alloy(HNBG) was diffusion bonded using spark plasma sintering with pure Ti as interlayer. The joint microstructural evolution, growth kinetics and mechanical properties were investigated. The j...High niobium β-γ TiAl alloy(HNBG) was diffusion bonded using spark plasma sintering with pure Ti as interlayer. The joint microstructural evolution, growth kinetics and mechanical properties were investigated. The joint included three diffusion zones. The β/B2 phase formed in the Zone Ⅰ, α_(2)phase in the Zone Ⅱ, and β-Ti and α-Ti phases in the Zone Ⅲ. The thickness of β/B2 phase, the average grain size of α_(2)phase and the amount of β-Ti phase increased with the increase of bonding temperature or bonding time. The growth activation energies of β/B2 and α_(2)phases were 582 and 253 kJ/mol, respectively. The joint acquired at 1000 °C, 10 min and 10 MPa showed the maximum shear strength of 308 MPa. Fracture mainly occurred along the interfaces between Zone Ⅰ and HNBG alloy, and between Zone I and Zone Ⅱ. Fracture mechanism of the joint was characterized by brittleness rupture along the phase boundary.展开更多
The purpose of this paper is to estimate the fatigue crack growth threshold of a high-Nb TiAl alloy at the different temperatures based on scanning electron microscopy (SEM) in-situ observation. The results indicate...The purpose of this paper is to estimate the fatigue crack growth threshold of a high-Nb TiAl alloy at the different temperatures based on scanning electron microscopy (SEM) in-situ observation. The results indicated that the fatigue crack growth threshold △Kth of a nearly lamellar high-Nb TiAl alloy with 8% Nb content at room temperature and 750℃ was determined as 12.89 MPa.m^1/2 and 8.69 MPa.m^1/2, respectively. The effect of the elevated temperature on the fatigue crack growth threshold cannot be ignored. At the same time, the early stage of fatigue crack propagation exhibited multicrack initiation and bridge-link behavior.展开更多
文摘This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes are involved simultaneously i.e.spark erosion,chemical etching,and abrasive grinding for removal of material while the classical electrochemical discharge machining process involves double actions i.e.spark erosion,and chemical etching.The powder-mixed electrolyte process resulted in rapid material removal along with a better surface finish as compared to the classical microelectrochemical discharge machining(MECDM).Further,the results are optimized through a multiobjective optimization approach and study of the surface topography of the hole wall surface obtained at optimized parameters.In the selected range of experimental parameters,PMECDM shows a higher material removal rate(MRR) and lower surface roughness(R_(a))(MRR:2.8 mg/min and R_(a) of 0.61 μm) as compared to the MECDM process(MRR:2.01 mg/min and corresponding Raof 1.11 μm).A detailed analysis of the results is presented in this paper.
基金Project(AWPT-M07)supported by State Key Laboratory of Advanced Welding and Joining,ChinaProject(20120041120015)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plasticity of bonded joint is improved significantly. When the bonding temperature is 800 °C or 900 °C, there is not intermetallic layer at the interface between stainless steel and niobium. When the bonding temperature is 1000 °C or 1050 °C, Fe-Nb intermetallic layer forms at the interface. When the bonding temperature is 1050 °C, cracking occurs between stainless steel and intermetallic layer. The maximum strength of -417.5 MPa is obtained at the bonding temperature of 900 °C, the reduction of 25% and the rolling speed of 38 mm/s, and the tensile specimen fractures in the niobium interlayer with plastic fracture characteristics. When the hot-roll bonded transition joints were TIG welded with titanium alloy and stainless steel respectively, the tensile strength of the transition joints after TIG welding is -410.3 MPa, and the specimen fractures in the niobium interlayer.
基金financially supported by the National Natural Science Foundation of China(No.51101050)Natural Science Foundation of Jiangsu Province of China(No.BK2011257)
文摘Niobium, as the most effective second-phase forming element, was added in the Fe-Crl3-C-N hard- facing alloy to get carbonitride precipitates. Morphology and composition of carbonitride in the hardfacing alloy were studied by optical microscopy, scanning electron microscopy, and electron probe microanalyzer. The ther- modynamics and the effect on the matrix of the formation of carbonitride were also discussed. It was found that niobium carbonitrides are complex Nb(C, N) precipitate distributed on grain boundary and matrix of the hardfacing alloy. Under as-welded condition, primary carbonitride particles were readily precipitated from the hardfacing alloy with large size and morphology as they were formed already during solidification. Under heat treatment condi- tion, a large number of secondary carbonitrides can pre- cipitate out with very fine size and make a great secondary hardening effect on the matrix. As a result, addition of niobium in the hardfacing alloy can prevent the formation of chromium-rich phase on grain boundaries and inter- granular chromium depletion.
基金funded by National Project PCCA contract No.65/2012POS-CCE O 2.2.1 project INFRANANOCHEM-No 19/January 3,2009 of the EU(ERDF)and Romanian Government
文摘This work addresses the alloying of titanium aluminides used in aircraft engine applications and automobiles. The oxidation resistance behavior of two titanium aluminides of α2 + γ (Ti3Al + TiAl) and orthorhombic Ti2NbAl, recognized as candidates for high-temperature applications, was investigated by exposure of the alloys for 100 h in air. Thus, oxidation resistance was expressed as the mass gain rate, whereas surface aspects were analyzed using scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy, and the type of oxidation products was analyzed by X-ray diffraction and Raman spectroscopy. The orthorhombic Ti2NbAl alloy was embrittled, and pores and microcracks were formed as a result of oxygen diffusion through the external oxide layer formed during thermal oxidation for 100 h.
基金supported by CITIC-CBMM R&D project (No.036)Graduate Innovation Fund of Shanghai University (No.SHUCX 102233)
文摘The effect of niobium on the formation of NbC phase and solidification structure in high carbon equivalent grey cast iron was investigated.The experimental results indicated that an increase in the niobium content is favorable to refining the graphite and eutectic cell;and the pearlite lamellar spacing is reduced.Based on the thermodynamic calculation the formation of NbC is prior to the eutectic reaction.The reduction in the pearlite lamellar spacing is mainly attributed to the decrease of eutectic temperature with the addition of niobium.Additionally,properties including hardness and wear resistance were improved after the addition of niobium.
文摘A niobium-modified layer on pure titanium surface was obtained by means of double glow plasma surface alloying technique. The modified layer was uniform, continuous, compact and well adhered to the substrate. The niobium composition in the modified layer decreased gradually from the surface to the substrate. The oxidation behavior of the niobium-modified layer was investigated and com- pared with the untreated surface at 900 ~C for 100 h. Characterization of the layers was performed using X-ray diffraction and scanning electron microscope, respectively. The test results show that the oxidation behavior of pure titanium was improved by niobium alloying process. Niobium has a positive influence on the oxidation resistance.
基金Supported by the Science and Technology Program of Hunan(05JT1065)
文摘A silicide coating was prepared on the surface of the Nb521 alloy by the complex pack cemented method. The oxidation resistance properties of the present coating were examined by the static oxidation tests at 1 700 ℃ in air. The compositions and the microstructures of the coating before and after test were characterised and analysed through scanning electron microscopy(SEM),X-ray diffraction analysis(XRD),energy dispersive X-ray spectrometry(EDS) and electron probe microanalysis(EPMA),respectively. The present silicide coating can provide an effective protection for the Nb alloy for 25 h at 1 700 ℃ in air. The results show that the oxidation kinetics of the present silicide coating is parabolic. The diffusion of Si leads to the phase transformation and evolution during the oxidation.
文摘The role of niobium in nickel-based superalloys is reviewed. The importance of niobium as a strengthener is discussed. New developments in nickel-based superalloys are also briefly mentioned, including some results that show improved resistance to sulfidation by niobium. Research results from a current program on the role of niobium in the Russian powder metallurgy alloy EP741NP are presented. Future research plans on the role of niobium in superalloys are also discussed.
基金supported by the National Natural Science Foundation of China (Nos. 51871012, 52071021)Beijing Natural Science Foundation (No. 2162024)+1 种基金Fundamental Research Funds for the Central Universities, China (No. FRF-GF-20-20B)the National Key Basic Research Program of China (No. 2011CB605502)。
文摘High niobium β-γ TiAl alloy(HNBG) was diffusion bonded using spark plasma sintering with pure Ti as interlayer. The joint microstructural evolution, growth kinetics and mechanical properties were investigated. The joint included three diffusion zones. The β/B2 phase formed in the Zone Ⅰ, α_(2)phase in the Zone Ⅱ, and β-Ti and α-Ti phases in the Zone Ⅲ. The thickness of β/B2 phase, the average grain size of α_(2)phase and the amount of β-Ti phase increased with the increase of bonding temperature or bonding time. The growth activation energies of β/B2 and α_(2)phases were 582 and 253 kJ/mol, respectively. The joint acquired at 1000 °C, 10 min and 10 MPa showed the maximum shear strength of 308 MPa. Fracture mainly occurred along the interfaces between Zone Ⅰ and HNBG alloy, and between Zone I and Zone Ⅱ. Fracture mechanism of the joint was characterized by brittleness rupture along the phase boundary.
基金financially supported by the National Basic Research Program of China (No.2011CB605506)
文摘The purpose of this paper is to estimate the fatigue crack growth threshold of a high-Nb TiAl alloy at the different temperatures based on scanning electron microscopy (SEM) in-situ observation. The results indicated that the fatigue crack growth threshold △Kth of a nearly lamellar high-Nb TiAl alloy with 8% Nb content at room temperature and 750℃ was determined as 12.89 MPa.m^1/2 and 8.69 MPa.m^1/2, respectively. The effect of the elevated temperature on the fatigue crack growth threshold cannot be ignored. At the same time, the early stage of fatigue crack propagation exhibited multicrack initiation and bridge-link behavior.