The optical embedded diffraction gratings with the internal refractive index modification in BK-7 glass plates were demonstrated using low-density plasma formation excited by a high-intensity femtosecond (130 fs) Ti...The optical embedded diffraction gratings with the internal refractive index modification in BK-7 glass plates were demonstrated using low-density plasma formation excited by a high-intensity femtosecond (130 fs) Ti: sapphire laser (λp=790 rim). The refractive index modifications with diameters ranging from 400 nm to 4 gm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 1 ×10^13 W/cm2. The graded refractive index profile was fabricated to be a symmetric around the center of the point at which low-density plasma occurred. The maximum refractive index change (An) was estimated to be 1.5x10 2. Several optical embedded gratings in BK-7 glass plate were demonstrated with refractive index modification induced by the scanning of low-density plasma formation.展开更多
In low-density steel,κ-carbides primarily precipitate in the form of nanoscale particles within austenite grains.However,their precipitation within ferrite matrix grains has not been comprehensively explored,and the ...In low-density steel,κ-carbides primarily precipitate in the form of nanoscale particles within austenite grains.However,their precipitation within ferrite matrix grains has not been comprehensively explored,and the second-phase evolution mechanism during aging remains unclear.In this study,the crystallographic characteristics and morphological evolution ofκ-carbides in Fe-28Mn-10Al-0.8C(wt%)low-density steel at different aging temperatures and times and the impacts of these changes on the steels’microhardness and properties were comprehensively analyzed.Under different heat treatment conditions,intragranularκ-carbides exhibited various morpho-logical and crystallographic characteristics,such as acicular,spherical,and short rod-like shapes.At the initial stage of aging,acicularκ-carbides primarily precipitated,accompanied by a few spherical carbides.κ-Carbides grew and coarsened with aging time,the spherical carbides were considerably reduced,and rod-like carbides coarsened.Vickers hardness testing demonstrated that the material’s hardness was affected by the volume fraction,morphology,and size ofκ-carbides.Extended aging at higher temperatures led to an increase in carbide size and volume fraction,resulting in a gradual rise in hardness.During deformation,the primary mechanisms for strengthening were dislocation strengthening and second-phase strengthening.Based on these findings,potential strategies for improving material strength are proposed.展开更多
The elemental distribution and microstructure near the surface of high-Mn/Al austenitic low-density steel were investigated after isothermal holding at temperatures of 900-1200℃ in different atmospheres,including air...The elemental distribution and microstructure near the surface of high-Mn/Al austenitic low-density steel were investigated after isothermal holding at temperatures of 900-1200℃ in different atmospheres,including air,N_(2),and N_(2)+CO_(2).No ferrite was formed near the surface of the experimental steel during isothermal holding at 900 and 1000℃ in air,while ferrite was formed near the steel sur-face at holding temperatures of 1100 and 1200℃.The ferrite fraction was larger at 1200℃ because more C and Mn diffused to the sur-face,exuded from the steel,and then reacted with N and O to form oxidation products.The thickness of the compound scale increased owing to the higher diffusion rate at higher temperatures.In addition,after isothermal holding at 1100℃ in N_(2),the Al content near the surface slightly decreased,while the C and Mn contents did not change.Therefore,no ferrite was formed near the surface.However,the near-surface C and Al contents decreased after holding at 1100℃in the N_(2)+CO_(2)mixed atmosphere,resulting in the formation of a small amount of ferrite.The compound scale was thickest in N_(2),followed by the N_(2)+CO_(2)mixed atmosphere,and thinnest in air.Overall,the element loss and ferrite fraction were largest after holding in air at the same temperature.The differences in element loss and ferrite frac-tion between in N_(2) and N_(2)+CO_(2)atmospheres were small,but the compound scale formed in N_(2) was significantly thicker.According to these results,N_(2)+CO_(2)is the ideal heating atmosphere for the industrial production of high-Mn/Al austenitic low-density steel.展开更多
Low-density lipoprotein receptor-related protein 2(LRP2)is a multifunctional endocytic receptor expressed in epithelial cells.In mammals,it acts as an endocytic receptor that mediates the cellular uptake of cholestero...Low-density lipoprotein receptor-related protein 2(LRP2)is a multifunctional endocytic receptor expressed in epithelial cells.In mammals,it acts as an endocytic receptor that mediates the cellular uptake of cholesterol-containing apolipoproteins to maintain lipid homeostasis.However,little is known about the role of LRP2 in lipid homeostasis in insects.In the present study,we investigated the function of LRP2 in the migratory locust Locusta migratoria(LmLRP2).The mRNA of LmLRP2 is widely distributed in various tissues,including integument,wing pads,foregut,midgut,hindgut,Malpighian tubules and fat body,and the amounts of LmLRP2 transcripts decreased gradually in the early stages and then increased in the late stages before ecdysis during the nymphal developmental stage.Fluorescence immunohistochemistry revealed that the LmLRP2 protein is mainly located in cellular membranes of the midgut and hindgut.Using RNAi to silence LmLRP2 caused molting defects in nymphs(more than 60%),and the neutral lipid was found to accumulate in the midgut and surface of the integument,but not in the fat body,of dsLmLRP2-treated nymphs.The results of a lipidomics analysis showed that the main components of lipids(diglyceride and triglyceride)were significantly increased in the midgut,but decreased in the fat body and hemolymph.Furthermore,the content of total triglyceride was significantly increased in the midgut,but markedly decreased in the fat body and hemolymph in dsLmLRP2-injected nymphs.Our results indicate that LmLRP2 is located in the cellular membranes of midgut cells,and is required for lipid export from the midgut to the hemolymphand fat body in locusts.展开更多
Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit...Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.展开更多
Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is mu...Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.展开更多
Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,ene...Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2) in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting.展开更多
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co...Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing.展开更多
Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In...Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In this work, a 120° opening angle of CPG nozzle is used as a plasma gun configuration that operates at the energy of 150 J. The ionization of polyethylene insulator between the electrodes of the gun produces a cloud of hydrogen and carbon plasma.The triple Langmuir probe and Faraday cup are used to measure plasma density and plasma temperature. These methods are used to measure the on-axis and off-axis plasma divergence of the coaxial plasma gun. The peak values of ion densities measured at a distance of 25 mm on-axis from the plasma gun are(1.6±0.5)×10^(19)m^(-3)and(2.8±0.6)×10^(19)m^(-3)for hydrogen and carbon plasma respectively and the peak temperature is 3.02±0.5 eV. The mean propagation velocity of plasma is calculated using the transit times of plasma at different distances from the plasma gun and is found to be 4.54±0.25 cm/μs and 1.81±0.18 cm/μs for hydrogen and carbon plasma respectively. The Debye radius is obtained from the measured experimental data that satisfies the thin sheath approximation. The shot-to-shot stability of plasma parameters facilitates the use of plasma guns in laboratory experiments. These types of plasma sources can be used in many applications like plasma opening switches, plasma devices, and as plasma sources.展开更多
The dual cylindrical inductively coupled plasma source,compared to the conventional structure of inductively coupled plasma source,can significantly improve the uniformity of plasma.It has an enhanced potential for ap...The dual cylindrical inductively coupled plasma source,compared to the conventional structure of inductively coupled plasma source,can significantly improve the uniformity of plasma.It has an enhanced potential for application in processes,such as etching and ashing.A uniform plasma can be obtained by allowing the remote plasma from the upper chamber modulate the main plasma generated in the lower chamber.In this study,a fluid model was employed to investigate a dual cylindrical inductively coupled Ar/O_(2)discharge.The effects of external parameters on electron density,electron temperature,O atomic density,and plasma uniformity in the main chamber were studied,and the reasons were analyzed.The results of this study show that remote power can control the plasma uniformity and increase the plasma density in the main chamber.As the remote power increased,plasma uniformity improved initially and then deteriorated.The main power affected the plasma density at the edge of the main chamber and can modulate the plasma density in the main chamber.The gas pressure affected both the uniformity and density of the plasma.As the gas pressure increased,the plasma uniformity deteriorated,but the free radical density improved.展开更多
During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks i...During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks in reflection data caused by the inhomogeneous plasma.Simulation results show that the multi-peak points fade away as the characteristic frequency is approached,resembling a series of gradually decreasing peaks.The positions and quantities of these points are positively correlated with electron density,yet they show no relation to collision frequency.This phenomenon is of significant reference value for future studies on the spatial distribution of plasmas,particularly for using microwave reflection signals in diagnosing the plasma sheath.展开更多
In astrophysics, the boundary conditions for plasma phenomena are provided by nature and the astronomer faces the problem of understanding them from a variety of observations [Hester J J et al 1996 Astrophys. J. 456 2...In astrophysics, the boundary conditions for plasma phenomena are provided by nature and the astronomer faces the problem of understanding them from a variety of observations [Hester J J et al 1996 Astrophys. J. 456 225], on the other hand, in laboratory plasma experiments the electromagnetic boundary conditions become a major problem in the set-up of the machine that produces the plasma, an issue that has to be investigated step by step and to be modified and adapted with great patience, in particular in the case of an innovative plasma confinement experiment. The PROTO-SPHERA machine [Alladio F et al 2006 Nucl. Fusion 46 S613] is a magnetic confinement experiment, that emulates in the laboratory the jet + torus plasma configurations often observed in astrophysics: an inner magnetized jet of plasma centered on the(approximate) axis of symmetry and surrounded by a magnetized plasma torus orthogonal to this jet. The PROTO-SPHERA plasma is simply connected, i.e., no metal current conducting rod is linked to the plasma torus, while instead it is the inner magnetized plasma jet(in the following always called the plasma centerpost) that is linked to the torus. It is mandatory that no spurious plasma current path modifies the optimal shape of the plasma centerpost. Moreover, as the plasma torus is produced and sustained, in absence of any applied inductive electric field, by the inner plasma centerpost through magnetic reconnections [Taylor J B and Turner M F 1989 Nucl.Fusion 29 219], it is required as well that spurious current paths do not surround the torus on its outboard, in order not to lower the efficiency of the magnetic reconnections that maintain the plasma torus at the expense of the plasma centerpost. Boundary conditions have been corrected,up to the point that the first sustainment in steady state has been achieved for the combined plasma.展开更多
A three-fluid equilibrium plasma with bulk plasma and energetic electrons has been observed on the Xuanlong-50(EXL-50) spherical torus, where the energetic electrons play a crucial role in sustaining the plasma curren...A three-fluid equilibrium plasma with bulk plasma and energetic electrons has been observed on the Xuanlong-50(EXL-50) spherical torus, where the energetic electrons play a crucial role in sustaining the plasma current and pressure. In this study, the equilibrium of a multi-fluid plasma was investigated by analyzing the relationship between the external vertical magnetic field(B_(V)),plasma current(I_(p)), the poloidal ratio(β_(p)) and the Shafranov formula. Remarkably, our research demonstrates some validity of the Shafranov formula in the presence of multi-fluid plasma in EXL-50 spherical torus. This finding holds significant importance for future reactors as it allows for differentiation between alpha particles and background plasma. The study of multi-fluid plasma provides a significant reference value for the equilibrium reconstruction of burning plasma involving alpha particles.展开更多
The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals an...The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals and aluminum alloys to measure plasma temperature and electron density through laser-induced breakdown spectroscopy,in order to investigate the effect of matrix thermal properties on laser-induced plasma.In pure metals,a significant negative linear correlation was observed between the matrix thermal storage coefficient and plasma temperature,while a weak correlation was observed with electron density.The results indicate that metals with low thermal conductivity or specific heat capacity require less laser energy for thermal diffusion or melting and evaporation,resulting in higher ablation rates and higher plasma temperatures.However,considering ionization energy,thermal effects may be a secondary factor affecting electron density.The experiment of aluminum alloy further confirms the influence of thermal conductivity on plasma temperature and its mechanism explanation.展开更多
A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static m...A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications.展开更多
X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulati...X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulation.In this paper,we present a scheme for tuning the energy spectrum of a betatron x-ray generated from a relativistic electron bunch oscillating in a plasma wakefield.The center energy of the x-ray source can be tuned from several keV to several hundred keV by changing the plasma density,thereby extending the control range by an order of magnitude.At different central energies,the brightness of the betatron radiation is in the range of 3.7×10^(22)to 5.5×10^(22)photons/(0.1%BW·s·mm^(2)·mrad^(2))and the photon divergence angle is about 2 mrad.This high-brightness,energy-controlled betatron source could pave the way to a wide range of applications requiring photons of specific energy,such as phase-contrast imaging in medicine,non-destructive testing and material analysis in industry,and imaging in nuclear physics.展开更多
This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used t...This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress.展开更多
Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this stu...Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this study presents a novel method for acquiring plasma spectral information from various spatial directions.A parabolic-shaped plasma spectral collection device(PSCD)is employed to effectively collect more spectral information into the spectrometer,thereby enhancing the overall spectral intensity.The research objects in this study were soil samples containing different concentrations of heavy metals Pb,Cr,and Cd.The results indicate that the PSCD significantly enhances the spectral signal,with an enhancement rate of up to 45%.Moreover,the signal-to-noise ratio also increases by as much as 36%.Simultaneously,when compared to the absence of a device,it is found that there is no significant variation in plasma temperature when the PSCD is utilized.This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity.Consequently,a concentrationspectral intensity relationship curve is established under the PSCD.The results revealed that the linear fitting R^(2)for Pb,Cr,and Cd increased by 0.011,0.001,and 0.054,respectively.Additionally,the limit of detection(LOD)decreased by 0.361 ppm,0.901 ppm,and 0.602 ppm,respectively.These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration.Hence,the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.展开更多
This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies.It is found that compared to non-blue-core mode,for blue-core mode,the wave can propagat...This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies.It is found that compared to non-blue-core mode,for blue-core mode,the wave can propagate in the core region,and it decays sharply outside the core.The power absorption is lower and steeper in radius for blue-core mode.Regarding the effects of antenna geometry for blue-core mode,it shows that half helix antenna yields the strongest wave field and power absorption,while loop antenna yields the lowest.Moreover,near axis,for antennas with m=+1,the wave field increases with axial distance.In the core region,the wave number approaches to a saturation value at much lower frequency for non-blue-core mode compared to blue-core mode.The total loading resistance is much lower for blue-core mode.These findings are valuable to understanding the physics of blue-core helicon discharge and optimizing the experimental performance of blue-core helicon plasma sources for applications such as space propulsion and material treatment.展开更多
Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial m...Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing.This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP.The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density.Furthermore,optimizing the coil within the ICP reactor,using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity,elevating it from 56%to 96%within the range of the model sizes.Additionally,when the chamber aspect ratio k changes from 2.8 to 4.7,the plasma distribution changes from a center-high to a saddleshaped distribution.Moreover,the plasma uniformity becomes worse.Finally,adjusting process parameters,such as increasing source power and gas pressure,can enhance plasma uniformity.These findings contribute to optimizing the etching process by improving plasma radial uniformity.展开更多
基金Projects(2010-0001-226, 2010-0008-277) supported by NCRC(National Core Research Center) Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology
文摘The optical embedded diffraction gratings with the internal refractive index modification in BK-7 glass plates were demonstrated using low-density plasma formation excited by a high-intensity femtosecond (130 fs) Ti: sapphire laser (λp=790 rim). The refractive index modifications with diameters ranging from 400 nm to 4 gm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 1 ×10^13 W/cm2. The graded refractive index profile was fabricated to be a symmetric around the center of the point at which low-density plasma occurred. The maximum refractive index change (An) was estimated to be 1.5x10 2. Several optical embedded gratings in BK-7 glass plate were demonstrated with refractive index modification induced by the scanning of low-density plasma formation.
基金supported by the National Key Research and Development Program of China(No.2023YFB3711702).
文摘In low-density steel,κ-carbides primarily precipitate in the form of nanoscale particles within austenite grains.However,their precipitation within ferrite matrix grains has not been comprehensively explored,and the second-phase evolution mechanism during aging remains unclear.In this study,the crystallographic characteristics and morphological evolution ofκ-carbides in Fe-28Mn-10Al-0.8C(wt%)low-density steel at different aging temperatures and times and the impacts of these changes on the steels’microhardness and properties were comprehensively analyzed.Under different heat treatment conditions,intragranularκ-carbides exhibited various morpho-logical and crystallographic characteristics,such as acicular,spherical,and short rod-like shapes.At the initial stage of aging,acicularκ-carbides primarily precipitated,accompanied by a few spherical carbides.κ-Carbides grew and coarsened with aging time,the spherical carbides were considerably reduced,and rod-like carbides coarsened.Vickers hardness testing demonstrated that the material’s hardness was affected by the volume fraction,morphology,and size ofκ-carbides.Extended aging at higher temperatures led to an increase in carbide size and volume fraction,resulting in a gradual rise in hardness.During deformation,the primary mechanisms for strengthening were dislocation strengthening and second-phase strengthening.Based on these findings,potential strategies for improving material strength are proposed.
基金gratefully acknowledge the financial support from the National Natural Science Foundation of China(No.U20A20270)China Postdoctoral Science Foundation(No.2022M722486).We would like to thank Dr.Wei Yuan at the Analytical&Testing Center of Wuhan University of Science and Technology for the help on EPMA analyses.
文摘The elemental distribution and microstructure near the surface of high-Mn/Al austenitic low-density steel were investigated after isothermal holding at temperatures of 900-1200℃ in different atmospheres,including air,N_(2),and N_(2)+CO_(2).No ferrite was formed near the surface of the experimental steel during isothermal holding at 900 and 1000℃ in air,while ferrite was formed near the steel sur-face at holding temperatures of 1100 and 1200℃.The ferrite fraction was larger at 1200℃ because more C and Mn diffused to the sur-face,exuded from the steel,and then reacted with N and O to form oxidation products.The thickness of the compound scale increased owing to the higher diffusion rate at higher temperatures.In addition,after isothermal holding at 1100℃ in N_(2),the Al content near the surface slightly decreased,while the C and Mn contents did not change.Therefore,no ferrite was formed near the surface.However,the near-surface C and Al contents decreased after holding at 1100℃in the N_(2)+CO_(2)mixed atmosphere,resulting in the formation of a small amount of ferrite.The compound scale was thickest in N_(2),followed by the N_(2)+CO_(2)mixed atmosphere,and thinnest in air.Overall,the element loss and ferrite fraction were largest after holding in air at the same temperature.The differences in element loss and ferrite frac-tion between in N_(2) and N_(2)+CO_(2)atmospheres were small,but the compound scale formed in N_(2) was significantly thicker.According to these results,N_(2)+CO_(2)is the ideal heating atmosphere for the industrial production of high-Mn/Al austenitic low-density steel.
基金supported by the National Key R&D Program of China (2022YFE0196200)the National Natural Science Foundation of China–Deutsche Forschungsgemeinschaft of Germany (31761133021)+3 种基金the National Natural Science Foundation of China (31970469 and 31701794)the earmarked fund for Modern Agro-industry Technology Research System, China (2023CYJSTX01-20)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (2017104)the Fund for Shanxi “1331 Project”, China
文摘Low-density lipoprotein receptor-related protein 2(LRP2)is a multifunctional endocytic receptor expressed in epithelial cells.In mammals,it acts as an endocytic receptor that mediates the cellular uptake of cholesterol-containing apolipoproteins to maintain lipid homeostasis.However,little is known about the role of LRP2 in lipid homeostasis in insects.In the present study,we investigated the function of LRP2 in the migratory locust Locusta migratoria(LmLRP2).The mRNA of LmLRP2 is widely distributed in various tissues,including integument,wing pads,foregut,midgut,hindgut,Malpighian tubules and fat body,and the amounts of LmLRP2 transcripts decreased gradually in the early stages and then increased in the late stages before ecdysis during the nymphal developmental stage.Fluorescence immunohistochemistry revealed that the LmLRP2 protein is mainly located in cellular membranes of the midgut and hindgut.Using RNAi to silence LmLRP2 caused molting defects in nymphs(more than 60%),and the neutral lipid was found to accumulate in the midgut and surface of the integument,but not in the fat body,of dsLmLRP2-treated nymphs.The results of a lipidomics analysis showed that the main components of lipids(diglyceride and triglyceride)were significantly increased in the midgut,but decreased in the fat body and hemolymph.Furthermore,the content of total triglyceride was significantly increased in the midgut,but markedly decreased in the fat body and hemolymph in dsLmLRP2-injected nymphs.Our results indicate that LmLRP2 is located in the cellular membranes of midgut cells,and is required for lipid export from the midgut to the hemolymphand fat body in locusts.
基金supported by the National Natural Science Foundation of China,No.82201460(to YH)Nanjing Medical University Science and Technology Development Fund,No.NMUB20210202(to YH).
文摘Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.
基金supported by the National Natural Science Foundation of China, China (No. 51874047)the Key Science and Technology Project of Changsha City, China (No. kq2102005)+1 种基金the Special Fund for the Construction of Innovative Province in Hunan Province, China (No. 2020RC3038)the Changsha City Fund for Distinguished and Innovative Young Scholars, China (No. kq1802007)。
文摘Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.
基金National Natural Science Foundation of China,Grant/Award Number:52175174China Postdoctoral Science Foundation,Grant/Award Number:2022M721791National Key Research and Development Program of China,Grant/Award Number:2020YFA0711003。
文摘Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2) in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting.
文摘Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing.
基金supported by Bhabha Atomic Research Centre, Department of Atomic Energy, Government of IndiaDepartment of Atomic Energy, Government of India for financial assistance under DAE Doctoral Fellowship Scheme-2018。
文摘Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In this work, a 120° opening angle of CPG nozzle is used as a plasma gun configuration that operates at the energy of 150 J. The ionization of polyethylene insulator between the electrodes of the gun produces a cloud of hydrogen and carbon plasma.The triple Langmuir probe and Faraday cup are used to measure plasma density and plasma temperature. These methods are used to measure the on-axis and off-axis plasma divergence of the coaxial plasma gun. The peak values of ion densities measured at a distance of 25 mm on-axis from the plasma gun are(1.6±0.5)×10^(19)m^(-3)and(2.8±0.6)×10^(19)m^(-3)for hydrogen and carbon plasma respectively and the peak temperature is 3.02±0.5 eV. The mean propagation velocity of plasma is calculated using the transit times of plasma at different distances from the plasma gun and is found to be 4.54±0.25 cm/μs and 1.81±0.18 cm/μs for hydrogen and carbon plasma respectively. The Debye radius is obtained from the measured experimental data that satisfies the thin sheath approximation. The shot-to-shot stability of plasma parameters facilitates the use of plasma guns in laboratory experiments. These types of plasma sources can be used in many applications like plasma opening switches, plasma devices, and as plasma sources.
基金financially supported by National Natural Science Foundation of China(Nos.12075049 and 11935005)。
文摘The dual cylindrical inductively coupled plasma source,compared to the conventional structure of inductively coupled plasma source,can significantly improve the uniformity of plasma.It has an enhanced potential for application in processes,such as etching and ashing.A uniform plasma can be obtained by allowing the remote plasma from the upper chamber modulate the main plasma generated in the lower chamber.In this study,a fluid model was employed to investigate a dual cylindrical inductively coupled Ar/O_(2)discharge.The effects of external parameters on electron density,electron temperature,O atomic density,and plasma uniformity in the main chamber were studied,and the reasons were analyzed.The results of this study show that remote power can control the plasma uniformity and increase the plasma density in the main chamber.As the remote power increased,plasma uniformity improved initially and then deteriorated.The main power affected the plasma density at the edge of the main chamber and can modulate the plasma density in the main chamber.The gas pressure affected both the uniformity and density of the plasma.As the gas pressure increased,the plasma uniformity deteriorated,but the free radical density improved.
文摘During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks in reflection data caused by the inhomogeneous plasma.Simulation results show that the multi-peak points fade away as the characteristic frequency is approached,resembling a series of gradually decreasing peaks.The positions and quantities of these points are positively correlated with electron density,yet they show no relation to collision frequency.This phenomenon is of significant reference value for future studies on the spatial distribution of plasmas,particularly for using microwave reflection signals in diagnosing the plasma sheath.
文摘In astrophysics, the boundary conditions for plasma phenomena are provided by nature and the astronomer faces the problem of understanding them from a variety of observations [Hester J J et al 1996 Astrophys. J. 456 225], on the other hand, in laboratory plasma experiments the electromagnetic boundary conditions become a major problem in the set-up of the machine that produces the plasma, an issue that has to be investigated step by step and to be modified and adapted with great patience, in particular in the case of an innovative plasma confinement experiment. The PROTO-SPHERA machine [Alladio F et al 2006 Nucl. Fusion 46 S613] is a magnetic confinement experiment, that emulates in the laboratory the jet + torus plasma configurations often observed in astrophysics: an inner magnetized jet of plasma centered on the(approximate) axis of symmetry and surrounded by a magnetized plasma torus orthogonal to this jet. The PROTO-SPHERA plasma is simply connected, i.e., no metal current conducting rod is linked to the plasma torus, while instead it is the inner magnetized plasma jet(in the following always called the plasma centerpost) that is linked to the torus. It is mandatory that no spurious plasma current path modifies the optimal shape of the plasma centerpost. Moreover, as the plasma torus is produced and sustained, in absence of any applied inductive electric field, by the inner plasma centerpost through magnetic reconnections [Taylor J B and Turner M F 1989 Nucl.Fusion 29 219], it is required as well that spurious current paths do not surround the torus on its outboard, in order not to lower the efficiency of the magnetic reconnections that maintain the plasma torus at the expense of the plasma centerpost. Boundary conditions have been corrected,up to the point that the first sustainment in steady state has been achieved for the combined plasma.
文摘A three-fluid equilibrium plasma with bulk plasma and energetic electrons has been observed on the Xuanlong-50(EXL-50) spherical torus, where the energetic electrons play a crucial role in sustaining the plasma current and pressure. In this study, the equilibrium of a multi-fluid plasma was investigated by analyzing the relationship between the external vertical magnetic field(B_(V)),plasma current(I_(p)), the poloidal ratio(β_(p)) and the Shafranov formula. Remarkably, our research demonstrates some validity of the Shafranov formula in the presence of multi-fluid plasma in EXL-50 spherical torus. This finding holds significant importance for future reactors as it allows for differentiation between alpha particles and background plasma. The study of multi-fluid plasma provides a significant reference value for the equilibrium reconstruction of burning plasma involving alpha particles.
基金supported by the National Key Research and Development Project(Grant No.2018YFC2001100).
文摘The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals and aluminum alloys to measure plasma temperature and electron density through laser-induced breakdown spectroscopy,in order to investigate the effect of matrix thermal properties on laser-induced plasma.In pure metals,a significant negative linear correlation was observed between the matrix thermal storage coefficient and plasma temperature,while a weak correlation was observed with electron density.The results indicate that metals with low thermal conductivity or specific heat capacity require less laser energy for thermal diffusion or melting and evaporation,resulting in higher ablation rates and higher plasma temperatures.However,considering ionization energy,thermal effects may be a secondary factor affecting electron density.The experiment of aluminum alloy further confirms the influence of thermal conductivity on plasma temperature and its mechanism explanation.
基金financially supported by the National MCF Energy R&D Program of China(No.2022YFE03190100)National Natural Science Foundation of China(Nos.11935005,12105035 and U21A20438)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120018)the Fundamental Research Funds for the Central Universities(No.DUT21TD104)the Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.Lab ASP-2020-01).
文摘A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11921006 and 12175058)the Beijing Distinguished Young Scientist Program and National Grand Instrument Project (Grant No.SQ2019YFF01014400)+1 种基金the Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park (Grant No.Z231100006023003)in part funded by United Kingdom EPSRC (Grant Nos.EP/G054950/1,EP/G056803/1,EP/G055165/1,and EP/M022463/1)。
文摘X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulation.In this paper,we present a scheme for tuning the energy spectrum of a betatron x-ray generated from a relativistic electron bunch oscillating in a plasma wakefield.The center energy of the x-ray source can be tuned from several keV to several hundred keV by changing the plasma density,thereby extending the control range by an order of magnitude.At different central energies,the brightness of the betatron radiation is in the range of 3.7×10^(22)to 5.5×10^(22)photons/(0.1%BW·s·mm^(2)·mrad^(2))and the photon divergence angle is about 2 mrad.This high-brightness,energy-controlled betatron source could pave the way to a wide range of applications requiring photons of specific energy,such as phase-contrast imaging in medicine,non-destructive testing and material analysis in industry,and imaging in nuclear physics.
基金supported by the National Key Research and Development Program(No.2019YFE03100200)the State Key Lab for Advanced Metals and Materials,the Fund of National Key Laboratory of Solid-State Microwave Devices and Circuits,the National Natural Science Foundation of China(No.52102034)the Or-ganized Research Fund of North China University of Tech-nology(No.2023YZZKY12).The authors are very grateful for the financial support of these institutions.
文摘This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress.
基金supported by Department of Science and Technology of Jilin Province of China(Nos.YDZJ202301 ZYTS481,202202901032GX,and 20230402068GH)。
文摘Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this study presents a novel method for acquiring plasma spectral information from various spatial directions.A parabolic-shaped plasma spectral collection device(PSCD)is employed to effectively collect more spectral information into the spectrometer,thereby enhancing the overall spectral intensity.The research objects in this study were soil samples containing different concentrations of heavy metals Pb,Cr,and Cd.The results indicate that the PSCD significantly enhances the spectral signal,with an enhancement rate of up to 45%.Moreover,the signal-to-noise ratio also increases by as much as 36%.Simultaneously,when compared to the absence of a device,it is found that there is no significant variation in plasma temperature when the PSCD is utilized.This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity.Consequently,a concentrationspectral intensity relationship curve is established under the PSCD.The results revealed that the linear fitting R^(2)for Pb,Cr,and Cd increased by 0.011,0.001,and 0.054,respectively.Additionally,the limit of detection(LOD)decreased by 0.361 ppm,0.901 ppm,and 0.602 ppm,respectively.These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration.Hence,the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.
基金Project supported by the National Natural Science Foundation of China(Grant No.92271113)the Fundamental Research Funds for the Central Universities(Grant No.2022CDJQY-003)+1 种基金Chongqing Entrepreneurship and Innovation Support Program for Overseas Returnees(Grant No.CX2022004)the Fund from Shanghai Engineering Research Center of Space Engine(Grant No.17DZ2280800).
文摘This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies.It is found that compared to non-blue-core mode,for blue-core mode,the wave can propagate in the core region,and it decays sharply outside the core.The power absorption is lower and steeper in radius for blue-core mode.Regarding the effects of antenna geometry for blue-core mode,it shows that half helix antenna yields the strongest wave field and power absorption,while loop antenna yields the lowest.Moreover,near axis,for antennas with m=+1,the wave field increases with axial distance.In the core region,the wave number approaches to a saturation value at much lower frequency for non-blue-core mode compared to blue-core mode.The total loading resistance is much lower for blue-core mode.These findings are valuable to understanding the physics of blue-core helicon discharge and optimizing the experimental performance of blue-core helicon plasma sources for applications such as space propulsion and material treatment.
基金supported by the Scientific Research Foundation of Xijing University,China(No.XJ19T03)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(No.ZHD201701)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2024JC-YBMS-342).
文摘Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing.This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP.The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density.Furthermore,optimizing the coil within the ICP reactor,using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity,elevating it from 56%to 96%within the range of the model sizes.Additionally,when the chamber aspect ratio k changes from 2.8 to 4.7,the plasma distribution changes from a center-high to a saddleshaped distribution.Moreover,the plasma uniformity becomes worse.Finally,adjusting process parameters,such as increasing source power and gas pressure,can enhance plasma uniformity.These findings contribute to optimizing the etching process by improving plasma radial uniformity.