Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is mu...Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.展开更多
Post-consumer polymeric wastes in form of low-density polyethylene (LDPE) can now be considered suitable as a precursor for the synthesis of low-cost activated carbon (AC). This study produced AC from LDPE using sulph...Post-consumer polymeric wastes in form of low-density polyethylene (LDPE) can now be considered suitable as a precursor for the synthesis of low-cost activated carbon (AC). This study produced AC from LDPE using sulphuric acid (H<sub>2</sub>SO<sub>4</sub>) and potassium hydroxide (KOH) as the activating agent. The reaction conditions for pyrolysis were varied in the range of 0.50 - 2.00 M, 400<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C - 500<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C, and 45 - 60 minutes. Physico-chemical investigations reveal that AC yield is significantly dependent on both carbonization temperatures and time. The obtained optimum values of 446.50<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C and 51.09 mins gave a yield of 24% for the base-activated carbon. The high iodine numbers obtained strongly indicate the presence of large surface area and pore volumes is further confirmed using the Scanning Electron Microscopy (SEM) analysis which reveals the presence of pores on the external surface of the carbons. Fourier Transform Infrared Technique (FTIR) analysis further shows that the synthesized compounds are purely carbon with rich oxy-gen-surface complexes on the surface which is as a result of the introduction of the chemical oxidizing agents. The produced carbons were found to have high adsorption affinity for selected inorganic ions which are: Mn<sup>7+</sup>, Co<sup>2+</sup>, and Cr<sup>6+</sup>. Adsorption isotherm results show the adsorption process to be favourable with the Langmuir isotherm parameter RL having values of <1, while the Freudlich adsorption model was found to perfectly fit the data at selected adsorbent dosages and adsorbate concentrations. The pseu-do-second-order model provides the best correlation for the kinetic analysis. The acid-activated carbon was found to have better adsorption capacities than the base-activated carbon.展开更多
Low density polyethylene(LDPE)/lignin blends were prepared using melt blending.Two kinds of compatibilizers, ethylene-vinylacetate(EVA) which is softer than LDPE and polyethylene grafted with maleic anhydride(PE-g-MA)...Low density polyethylene(LDPE)/lignin blends were prepared using melt blending.Two kinds of compatibilizers, ethylene-vinylacetate(EVA) which is softer than LDPE and polyethylene grafted with maleic anhydride(PE-g-MA) which is harder than LDPE were used to improve the interfacial adhesion.Scanning electron microscope(SEM) was used to investigate the dispersion of lignin in LDPE matrix.The results showed that both of the compatibilizers could improve the interaction between the low density polyethylene and l...展开更多
Melt extrusion was used to prepare binary nanocomposites of ethylene copolymers and organoclay and trinary nanocomposites of low-density polyethylene (LDPE), ethylene copolymer and organoclay. X-ray diffraction (XR...Melt extrusion was used to prepare binary nanocomposites of ethylene copolymers and organoclay and trinary nanocomposites of low-density polyethylene (LDPE), ethylene copolymer and organoclay. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to analyze the structure of the clay phase and the morphology of the nanocomposites. Influences of the comonomer in the copolymer and the content of the copolymer on the morphology of the resulting nanocomposites were discussed. The binary and the trinary composites may form intercalated or exfoliated structures depending on the interaction between the copolymer and the clay layers and the content of the copolymer.展开更多
Unsupervised and supervised pattern recognition( PR)techniques are used to classify the acoustic emission( AE) data originating from the quasi-isotropic self-reinforced polyethylene composites,in order to identify the...Unsupervised and supervised pattern recognition( PR)techniques are used to classify the acoustic emission( AE) data originating from the quasi-isotropic self-reinforced polyethylene composites,in order to identify the various mechanisms in the multiangle-ply thermoplastic composites. Ultra-high molecular weight polyethylene / low density polyethylene( UHMWPE / LDPE)composites were made and tested under quasi-static tensile load. The failure process was monitored by the AE technique. The collected AE signals were classified by unsupervised and supervised PR techniques, respectively. AE signals were clustered with unsupervised PR scheme automatically and mathematically. While in the supervised PR scheme,the labeled AE data from simple lay-up UHMWPE / LDPE laminates were utilized as the reference data.Comparison was drawn according to the analytical results. Fracture surfaces of the UHMWPE / LDPE specimens were observed by a scanning electron microscope( SEM) for some physical support. By combining both classification results with the observation results,correlations were established between the AE signal classes and their originating damage modes. The comparison between the two classifying schemes showed a good agreement in the main damage modes and their failure process. It indicates both PR techniques are powerful for the complicated thermoplastic composites. Supervised PR scheme can lead to a more precise classification in that a suitable reference data set is input.展开更多
Three different types of Polyethylene family, High Density Polyethylene, (HDPE), Low Density polyethylene (LDPE) and Linear Low Density polyethylene (LLDPE) polymers having different molecular weight and density;were ...Three different types of Polyethylene family, High Density Polyethylene, (HDPE), Low Density polyethylene (LDPE) and Linear Low Density polyethylene (LLDPE) polymers having different molecular weight and density;were pyrolyzed in the temperature range of 550°C - 1050°C under H2, N2 and Ar gases. Taguchi Optimization technique was applied to find out the best operating conditions to get maximum yield of carbon nano material (CNM). For Taguchi op- timization, experimental set up was done in two different temperature ranges i.e. 550°C - 750°C and 850°C - 1050°C. CNMs synthesized were characterized by SEM, TEM, Micro Raman and XRD analysis. HDPE was found to yield maximum CNM. Its pyrolysis at 750°C under hydrogen atmosphere for 2h gave carbon nano beads and some carbon nano tubes. Whereas under same conditions at 1050°C more multi wall carbon nano tubes (MWCNT) were produced, with some carbon nano beads. XRD data confirmed the graphitic nature of carbon-nanotube. The intensities of G-band and D-band of Raman spectra suggested that CNM has more defect sites and spectra were similar for CNM obtained in both the temperature ranges. The TGA analysis of CNM obtained at 550°C - 750°C, indicated that they are not amor- phous carbon and CNM obtained at 850°C - 1050°C decomposed at 624°C - 668°C;suggesting that CNT synthesized at this temperature range were more crystalline than what was obtained at the 550°C - 750°C.展开更多
Low-density polyethylene(LDPE)has been widely used as a sorbent for passive sampling of hydrophobic organic contaminants(HOCs)in aquatic environments.However,it has seen only limited application in passive sampling fo...Low-density polyethylene(LDPE)has been widely used as a sorbent for passive sampling of hydrophobic organic contaminants(HOCs)in aquatic environments.However,it has seen only limited application in passive sampling for measurement of freely dissolved concentrations of parent and substituted PAHs(SPAHs),which are known to be toxic,mutagenic and carcinogenic.Here,the 16 priority PAHs and some typical PAHs were selected as target compounds and were simultaneously determined by gas chromatography–mass spectrometer(GC–MS).Some batch experiments were conducted in the laboratory to explore the adsorption kinetics of the target compounds in LDPE membranes.The results showed that both PAHs and SPAHs could reach equilibrium status within19–38 days in sorption kinetic experiments.The coefficients of partitioning between LDPE film(50μm thickness)and water(KLDPE)for the 16 priority PAHs were in good agreement with previously reported values,and the values of KLDPEfor the 9 SPAHs are reported in this study for the first time.Significant linear relationships were observed,i.e.,log KLDPE=0.705×log KOW+1.534 for PAHs(R^2=0.8361,p<0.001)and log KLDPE=0.458×log KOW+3.092 for SPAHs(R^2=0.5609,p=0.0077).The selected LDPE film was also proven to meet the condition of"zero sink"for the selected target compounds.These results could provide basic support for the configuration and in situ application of passive samplers.展开更多
基金supported by the National Natural Science Foundation of China, China (No. 51874047)the Key Science and Technology Project of Changsha City, China (No. kq2102005)+1 种基金the Special Fund for the Construction of Innovative Province in Hunan Province, China (No. 2020RC3038)the Changsha City Fund for Distinguished and Innovative Young Scholars, China (No. kq1802007)。
文摘Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.
文摘Post-consumer polymeric wastes in form of low-density polyethylene (LDPE) can now be considered suitable as a precursor for the synthesis of low-cost activated carbon (AC). This study produced AC from LDPE using sulphuric acid (H<sub>2</sub>SO<sub>4</sub>) and potassium hydroxide (KOH) as the activating agent. The reaction conditions for pyrolysis were varied in the range of 0.50 - 2.00 M, 400<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C - 500<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C, and 45 - 60 minutes. Physico-chemical investigations reveal that AC yield is significantly dependent on both carbonization temperatures and time. The obtained optimum values of 446.50<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C and 51.09 mins gave a yield of 24% for the base-activated carbon. The high iodine numbers obtained strongly indicate the presence of large surface area and pore volumes is further confirmed using the Scanning Electron Microscopy (SEM) analysis which reveals the presence of pores on the external surface of the carbons. Fourier Transform Infrared Technique (FTIR) analysis further shows that the synthesized compounds are purely carbon with rich oxy-gen-surface complexes on the surface which is as a result of the introduction of the chemical oxidizing agents. The produced carbons were found to have high adsorption affinity for selected inorganic ions which are: Mn<sup>7+</sup>, Co<sup>2+</sup>, and Cr<sup>6+</sup>. Adsorption isotherm results show the adsorption process to be favourable with the Langmuir isotherm parameter RL having values of <1, while the Freudlich adsorption model was found to perfectly fit the data at selected adsorbent dosages and adsorbate concentrations. The pseu-do-second-order model provides the best correlation for the kinetic analysis. The acid-activated carbon was found to have better adsorption capacities than the base-activated carbon.
基金supported by the National Natural Science Foundation of China(Nos.50533050,20634050)
文摘Low density polyethylene(LDPE)/lignin blends were prepared using melt blending.Two kinds of compatibilizers, ethylene-vinylacetate(EVA) which is softer than LDPE and polyethylene grafted with maleic anhydride(PE-g-MA) which is harder than LDPE were used to improve the interfacial adhesion.Scanning electron microscope(SEM) was used to investigate the dispersion of lignin in LDPE matrix.The results showed that both of the compatibilizers could improve the interaction between the low density polyethylene and l...
基金This work was supported by the National Science Fund for Distinguished Young Scholars (No. 50125312)Key Program of the National Natural Science Foundation of China (No. 50133020)National Natural Science Foundation of China (No.50373037)
文摘Melt extrusion was used to prepare binary nanocomposites of ethylene copolymers and organoclay and trinary nanocomposites of low-density polyethylene (LDPE), ethylene copolymer and organoclay. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to analyze the structure of the clay phase and the morphology of the nanocomposites. Influences of the comonomer in the copolymer and the content of the copolymer on the morphology of the resulting nanocomposites were discussed. The binary and the trinary composites may form intercalated or exfoliated structures depending on the interaction between the copolymer and the clay layers and the content of the copolymer.
基金Scientific Research Foundation of Guangdong Polytechnic,China(No.K2010201)
文摘Unsupervised and supervised pattern recognition( PR)techniques are used to classify the acoustic emission( AE) data originating from the quasi-isotropic self-reinforced polyethylene composites,in order to identify the various mechanisms in the multiangle-ply thermoplastic composites. Ultra-high molecular weight polyethylene / low density polyethylene( UHMWPE / LDPE)composites were made and tested under quasi-static tensile load. The failure process was monitored by the AE technique. The collected AE signals were classified by unsupervised and supervised PR techniques, respectively. AE signals were clustered with unsupervised PR scheme automatically and mathematically. While in the supervised PR scheme,the labeled AE data from simple lay-up UHMWPE / LDPE laminates were utilized as the reference data.Comparison was drawn according to the analytical results. Fracture surfaces of the UHMWPE / LDPE specimens were observed by a scanning electron microscope( SEM) for some physical support. By combining both classification results with the observation results,correlations were established between the AE signal classes and their originating damage modes. The comparison between the two classifying schemes showed a good agreement in the main damage modes and their failure process. It indicates both PR techniques are powerful for the complicated thermoplastic composites. Supervised PR scheme can lead to a more precise classification in that a suitable reference data set is input.
文摘Three different types of Polyethylene family, High Density Polyethylene, (HDPE), Low Density polyethylene (LDPE) and Linear Low Density polyethylene (LLDPE) polymers having different molecular weight and density;were pyrolyzed in the temperature range of 550°C - 1050°C under H2, N2 and Ar gases. Taguchi Optimization technique was applied to find out the best operating conditions to get maximum yield of carbon nano material (CNM). For Taguchi op- timization, experimental set up was done in two different temperature ranges i.e. 550°C - 750°C and 850°C - 1050°C. CNMs synthesized were characterized by SEM, TEM, Micro Raman and XRD analysis. HDPE was found to yield maximum CNM. Its pyrolysis at 750°C under hydrogen atmosphere for 2h gave carbon nano beads and some carbon nano tubes. Whereas under same conditions at 1050°C more multi wall carbon nano tubes (MWCNT) were produced, with some carbon nano beads. XRD data confirmed the graphitic nature of carbon-nanotube. The intensities of G-band and D-band of Raman spectra suggested that CNM has more defect sites and spectra were similar for CNM obtained in both the temperature ranges. The TGA analysis of CNM obtained at 550°C - 750°C, indicated that they are not amor- phous carbon and CNM obtained at 850°C - 1050°C decomposed at 624°C - 668°C;suggesting that CNT synthesized at this temperature range were more crystalline than what was obtained at the 550°C - 750°C.
基金supported by the National Natural Science Foundation of China(Nos.41877471 and 41676095)the China Postdoctoral Science Foundation,China(No.2017M622782)+1 种基金the Open Foundation of Key Laboratory of Tropical Marine Bio-resources and Ecology(LMB),Chinese Academy of Sciences,China(No.LMB20191004)the Science and Technology Innovation Commission of Shenzhen,China(No.JCYJ20180507182227257)
文摘Low-density polyethylene(LDPE)has been widely used as a sorbent for passive sampling of hydrophobic organic contaminants(HOCs)in aquatic environments.However,it has seen only limited application in passive sampling for measurement of freely dissolved concentrations of parent and substituted PAHs(SPAHs),which are known to be toxic,mutagenic and carcinogenic.Here,the 16 priority PAHs and some typical PAHs were selected as target compounds and were simultaneously determined by gas chromatography–mass spectrometer(GC–MS).Some batch experiments were conducted in the laboratory to explore the adsorption kinetics of the target compounds in LDPE membranes.The results showed that both PAHs and SPAHs could reach equilibrium status within19–38 days in sorption kinetic experiments.The coefficients of partitioning between LDPE film(50μm thickness)and water(KLDPE)for the 16 priority PAHs were in good agreement with previously reported values,and the values of KLDPEfor the 9 SPAHs are reported in this study for the first time.Significant linear relationships were observed,i.e.,log KLDPE=0.705×log KOW+1.534 for PAHs(R^2=0.8361,p<0.001)and log KLDPE=0.458×log KOW+3.092 for SPAHs(R^2=0.5609,p=0.0077).The selected LDPE film was also proven to meet the condition of"zero sink"for the selected target compounds.These results could provide basic support for the configuration and in situ application of passive samplers.