The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of...The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of the underlying 3D perovskite films,which inevitably hinders the transport of charge carriers at the interface of PSCs.Here,we designed and fabricated LD perovskite structure that forms net-like morphology on top of the underlying three-dimensional(3D)perovskite bulk film.The net-like LD perovskite not only reduced the surface defects of 3D perovskite film,but also provided channels for the vertical transport of charge carriers,effectively enhancing the interfacial charge transfer at the LD/3D hetero-interface.The net-like morphological design comprising LD perovskite effectively resolves the contradiction between interfacial defect passivation and carrier extraction across the hetero-interfaces.Furthermore,the net-like LD perovskite morphology can enhance the stability of the underlying 3D perovskite film,which is attributed to the hydrophobic nature of LD perovskite.As a result,the net-like LD perovskite film morphology assists PSCs in achieving an excellent power conversion efficiency of up to 24.6%with over 1000 h long-term operational stability.展开更多
A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble...A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble,and the weight of each clock in this ensemble is defined by using the spatial covariance matrix.The superimposition average of covariances in different subspaces reduces the correlations between clocks in the same laboratory to some extent.After optimizing the parameters of this weighting procedure,the frequency stabilities of virtual clock ensembles are significantly improved in most cases.展开更多
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
Deep multi-view subspace clustering (DMVSC) based on self-expression has attracted increasing attention dueto its outstanding performance and nonlinear application. However, most existing methods neglect that viewpriv...Deep multi-view subspace clustering (DMVSC) based on self-expression has attracted increasing attention dueto its outstanding performance and nonlinear application. However, most existing methods neglect that viewprivatemeaningless information or noise may interfere with the learning of self-expression, which may lead to thedegeneration of clustering performance. In this paper, we propose a novel framework of Contrastive Consistencyand Attentive Complementarity (CCAC) for DMVsSC. CCAC aligns all the self-expressions of multiple viewsand fuses them based on their discrimination, so that it can effectively explore consistent and complementaryinformation for achieving precise clustering. Specifically, the view-specific self-expression is learned by a selfexpressionlayer embedded into the auto-encoder network for each view. To guarantee consistency across views andreduce the effect of view-private information or noise, we align all the view-specific self-expressions by contrastivelearning. The aligned self-expressions are assigned adaptive weights by channel attention mechanism according totheir discrimination. Then they are fused by convolution kernel to obtain consensus self-expression withmaximumcomplementarity ofmultiple views. Extensive experimental results on four benchmark datasets and one large-scaledataset of the CCAC method outperformother state-of-the-artmethods, demonstrating its clustering effectiveness.展开更多
Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two line...Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.展开更多
In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world da...In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world data,particularly in the field of medical imaging.Traditional deep subspace clustering algorithms,which are mostly unsupervised,are limited in their ability to effectively utilize the inherent prior knowledge in medical images.Our MAS-DSC algorithm incorporates a semi-supervised learning framework that uses a small amount of labeled data to guide the clustering process,thereby enhancing the discriminative power of the feature representations.Additionally,the multi-scale feature extraction mechanism is designed to adapt to the complexity of medical imaging data,resulting in more accurate clustering performance.To address the difficulty of hyperparameter selection in deep subspace clustering,this paper employs a Bayesian optimization algorithm for adaptive tuning of hyperparameters related to subspace clustering,prior knowledge constraints,and model loss weights.Extensive experiments on standard clustering datasets,including ORL,Coil20,and Coil100,validate the effectiveness of the MAS-DSC algorithm.The results show that with its multi-scale network structure and Bayesian hyperparameter optimization,MAS-DSC achieves excellent clustering results on these datasets.Furthermore,tests on a brain tumor dataset demonstrate the robustness of the algorithm and its ability to leverage prior knowledge for efficient feature extraction and enhanced clustering performance within a semi-supervised learning framework.展开更多
This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian mod...This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.展开更多
With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direc...With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direction of arrival(DOA)estimation due to the computational complexity of algorithms.Traditional subspace algorithms require estimation of the covariance matrix,which has high computational complexity and is prone to producing spurious peaks.In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements,this paper proposes a DOA estimation method based on Krylov subspace and weighted l_(1)-norm.The method uses the multistage Wiener filter(MSWF)iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace,further uses the measurement matrix to reduce the dimensionality of the signal subspace observation,constructs a weighted matrix,and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted l_(1)-norm to solve the target DOA.Simulation results show that the proposed method has high resolution under large array conditions,effectively suppresses spurious peaks,reduces computational complexity,and has good robustness for low signal to noise ratio(SNR)environment.展开更多
Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The signif...Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.展开更多
Let Abe the linear transformation on the linear space V in the field P, Vλibe the root subspace corresponding to the characteristic polynomial of the eigenvalue λi, and Wλibe the root subspace corresponding to the ...Let Abe the linear transformation on the linear space V in the field P, Vλibe the root subspace corresponding to the characteristic polynomial of the eigenvalue λi, and Wλibe the root subspace corresponding to the minimum polynomial of λi. Consider the problem of whether Vλiand Wλiare equal under the condition that the characteristic polynomial of Ahas the same eigenvalue as the minimum polynomial (see Theorem 1, 2). This article uses the method of mutual inclusion to prove that Vλi=Wλi. Compared to previous studies and proofs, the results of this research can be directly cited in related works. For instance, they can be directly cited in Daoji Meng’s book “Introduction to Differential Geometry.”展开更多
Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water.Nevertheless,the conventional"trial and error"method for producing advanced electrocatalysts is not only cost-ineffecti...Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water.Nevertheless,the conventional"trial and error"method for producing advanced electrocatalysts is not only cost-ineffective but also time-consuming and labor-intensive.Fortunately,the advancement of machine learning brings new opportunities for electrocatalysts discovery and design.By analyzing experimental and theoretical data,machine learning can effectively predict their hydrogen evolution reaction(HER)performance.This review summarizes recent developments in machine learning for low-dimensional electrocatalysts,including zero-dimension nanoparticles and nanoclusters,one-dimensional nanotubes and nanowires,two-dimensional nanosheets,as well as other electrocatalysts.In particular,the effects of descriptors and algorithms on screening low-dimensional electrocatalysts and investigating their HER performance are highlighted.Finally,the future directions and perspectives for machine learning in electrocatalysis are discussed,emphasizing the potential for machine learning to accelerate electrocatalyst discovery,optimize their performance,and provide new insights into electrocatalytic mechanisms.Overall,this work offers an in-depth understanding of the current state of machine learning in electrocatalysis and its potential for future research.展开更多
For solution prepared perovskite solar cells,metal halide perovskite materials with low-dimensional(LD)are flexibly employed in 3D perovskite solar cells to promote efficiency and long-term stability.In this review,th...For solution prepared perovskite solar cells,metal halide perovskite materials with low-dimensional(LD)are flexibly employed in 3D perovskite solar cells to promote efficiency and long-term stability.In this review,the various structures,properties,and applications of LD perovskites are firstly summarized and discussed.To take advantage of LD materials,LD perovskites are introduced in the 3D bulk and/or the interface between the perovskite thin film and the carrier transporting layer to passivate the gain boundary defects while providing the stability advantage of LD materials.Therefore,the preparation methods and crystallization control of the LD perovskite layers are discussed in depth.Then,the combined devices using both LD and 3D components are reviewed on the basis of device design,cell structure,interface charge transfer,energy lever alignment,and synergistic improvement of both efficiency and stability.Finally,the challenges and expectations are speculated for further development of perovskite solar cells.展开更多
A brain tumor occurs when abnormal cells grow, sometimes very rapidly, into an abnormal mass of tissue. The tumor can infect normal tissue, so there is an interaction between healthy and infected cell. The aim of this...A brain tumor occurs when abnormal cells grow, sometimes very rapidly, into an abnormal mass of tissue. The tumor can infect normal tissue, so there is an interaction between healthy and infected cell. The aim of this paper is to propose some efficient and accurate numerical methods for the computational solution of one-dimensional continuous basic models for the growth and control of brain tumors. After computing the analytical solution, we construct approximations of the solution to the problem using a standard second order finite difference method for space discretization and the Crank-Nicolson method for time discretization. Then, we investigate the convergence behavior of Conjugate gradient and generalized minimum residual as Krylov subspace methods to solve the tridiagonal toeplitz matrix system derived.展开更多
This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the ...This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the row space that can be used to approximately represent the unknown deterministic disturbances using the trigonometric functions or Bernstein polynomials depending on whether the disturbance frequencies are known.For closed-loop identification,CCF-N4SID is extended to the case with unknown deterministic disturbances using the oblique projection.In addition,a proper Bernstein polynomial order can be determined using the Akaike information criterion(AIC)or the Bayesian information criterion(BIC).Numerical simulation results demonstrate the effectiveness of the proposed identification method for both periodic and aperiodic deterministic disturbances.展开更多
In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dime...In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dimension in various features.The enhanced soft subspace clustering algorithm combines interclass separation and intraclass tightness information,which has strong results for image segmentation,but the clustering algorithm is vulnerable to noisy data and dependence on the initialized clustering center.However,the clustering algorithmis susceptible to the influence of noisydata and reliance on initializedclustering centers andfalls into a local optimum;the clustering effect is poor for brain MR images with unclear boundaries and noise effects.To address these problems,a soft subspace clustering algorithm for brain MR images based on genetic algorithm optimization is proposed,which combines the generalized noise technique,relaxes the equational weight constraint in the objective function as the boundary constraint,and uses a genetic algorithm as a method to optimize the initialized clustering center.The genetic algorithm finds the best clustering center and reduces the algorithm’s dependence on the initial clustering center.The experiment verifies the robustness of the algorithm,as well as the noise immunity in various ways and shows good results on the common dataset and the brain MR images provided by the Changshu First People’s Hospital with specific high accuracy for clinical medicine.展开更多
Clustering high dimensional data is challenging as data dimensionality increases the distance between data points,resulting in sparse regions that degrade clustering performance.Subspace clustering is a common approac...Clustering high dimensional data is challenging as data dimensionality increases the distance between data points,resulting in sparse regions that degrade clustering performance.Subspace clustering is a common approach for processing high-dimensional data by finding relevant features for each cluster in the data space.Subspace clustering methods extend traditional clustering to account for the constraints imposed by data streams.Data streams are not only high-dimensional,but also unbounded and evolving.This necessitates the development of subspace clustering algorithms that can handle high dimensionality and adapt to the unique characteristics of data streams.Although many articles have contributed to the literature review on data stream clustering,there is currently no specific review on subspace clustering algorithms in high-dimensional data streams.Therefore,this article aims to systematically review the existing literature on subspace clustering of data streams in high-dimensional streaming environments.The review follows a systematic methodological approach and includes 18 articles for the final analysis.The analysis focused on two research questions related to the general clustering process and dealing with the unbounded and evolving characteristics of data streams.The main findings relate to six elements:clustering process,cluster search,subspace search,synopsis structure,cluster maintenance,and evaluation measures.Most algorithms use a two-phase clustering approach consisting of an initialization stage,a refinement stage,a cluster maintenance stage,and a final clustering stage.The density-based top-down subspace clustering approach is more widely used than the others because it is able to distinguish true clusters and outliers using projected microclusters.Most algorithms implicitly adapt to the evolving nature of the data stream by using a time fading function that is sensitive to outliers.Future work can focus on the clustering framework,parameter optimization,subspace search techniques,memory-efficient synopsis structures,explicit cluster change detection,and intrinsic performance metrics.This article can serve as a guide for researchers interested in high-dimensional subspace clustering methods for data streams.展开更多
In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonne...In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.展开更多
The problem of pattern-based subspace clustering, a special type of subspace clustering that uses pattern similarity as a measure of similarity, is studied. Unlike most traditional clustering algorithms that group the...The problem of pattern-based subspace clustering, a special type of subspace clustering that uses pattern similarity as a measure of similarity, is studied. Unlike most traditional clustering algorithms that group the close values of objects in all the dimensions or a set of dimensions, clustering by pattern similarity shows an interesting pattern, where objects exhibit a coherent pattern of rise and fall in subspaces. A novel approach, named EMaPle to mine the maximal pattern-based subspace clusters, is designed. The EMaPle searches clusters only in the attribute enumeration spaces which are relatively few compared to the large number of row combinations in the typical datasets, and it exploits novel pruning techniques. EMaPle can find the clusters satisfying coherent constraints, size constraints and sign constraints neglected in MaPle. Both synthetic data sets and real data sets are used to evaluate EMaPle and demonstrate that it is more effective and scalable than MaPle.展开更多
In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because t...In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because the transmission equation of OFDM systems does not exactly have the desired structure to directly derive a subspace algorithm,the algorithm first divides the OFDM signals into three parts,then,by exploiting the redundancy introduced by the cyclic prefix (CP) in OFDM signals,a new equation with Toeplitz channel matrix is derived.Based on the equation,a new blind subspace algorithm is developed.Toeplitz structure eases the derivation of the subspace algorithm and practical computation.Moreover the algorithm does not change the existing OFDM system,is robust to channel order overdetermination,and the channel zero locations.The performances are demonstrated by simulation results.展开更多
基金supported by the National Key Research and Development Program of China(2022YFB4200301)the National Natural Science Foundation of China(52202216)the Natural Science Foundation of Sichuan Province(24NSFSC1601).
文摘The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of the underlying 3D perovskite films,which inevitably hinders the transport of charge carriers at the interface of PSCs.Here,we designed and fabricated LD perovskite structure that forms net-like morphology on top of the underlying three-dimensional(3D)perovskite bulk film.The net-like LD perovskite not only reduced the surface defects of 3D perovskite film,but also provided channels for the vertical transport of charge carriers,effectively enhancing the interfacial charge transfer at the LD/3D hetero-interface.The net-like morphological design comprising LD perovskite effectively resolves the contradiction between interfacial defect passivation and carrier extraction across the hetero-interfaces.Furthermore,the net-like LD perovskite morphology can enhance the stability of the underlying 3D perovskite film,which is attributed to the hydrophobic nature of LD perovskite.As a result,the net-like LD perovskite film morphology assists PSCs in achieving an excellent power conversion efficiency of up to 24.6%with over 1000 h long-term operational stability.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFB3900701)the Science and Technology Plan Project of the State Administration for Market Regulation of China (Grant No.2023MK178)the National Natural Science Foundation of China (Grant No.42227802)。
文摘A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble,and the weight of each clock in this ensemble is defined by using the spatial covariance matrix.The superimposition average of covariances in different subspaces reduces the correlations between clocks in the same laboratory to some extent.After optimizing the parameters of this weighting procedure,the frequency stabilities of virtual clock ensembles are significantly improved in most cases.
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
文摘Deep multi-view subspace clustering (DMVSC) based on self-expression has attracted increasing attention dueto its outstanding performance and nonlinear application. However, most existing methods neglect that viewprivatemeaningless information or noise may interfere with the learning of self-expression, which may lead to thedegeneration of clustering performance. In this paper, we propose a novel framework of Contrastive Consistencyand Attentive Complementarity (CCAC) for DMVsSC. CCAC aligns all the self-expressions of multiple viewsand fuses them based on their discrimination, so that it can effectively explore consistent and complementaryinformation for achieving precise clustering. Specifically, the view-specific self-expression is learned by a selfexpressionlayer embedded into the auto-encoder network for each view. To guarantee consistency across views andreduce the effect of view-private information or noise, we align all the view-specific self-expressions by contrastivelearning. The aligned self-expressions are assigned adaptive weights by channel attention mechanism according totheir discrimination. Then they are fused by convolution kernel to obtain consensus self-expression withmaximumcomplementarity ofmultiple views. Extensive experimental results on four benchmark datasets and one large-scaledataset of the CCAC method outperformother state-of-the-artmethods, demonstrating its clustering effectiveness.
基金supported by the National Natural Science Foundation of China(61971432)Taishan Scholar Project of Shandong Province(tsqn201909156)the Outstanding Youth Innovation Team Program of University in Shandong Province(2019KJN031)。
文摘Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.
基金supported in part by the National Natural Science Foundation of China under Grant 62171203in part by the Jiangsu Province“333 Project”High-Level Talent Cultivation Subsidized Project+2 种基金in part by the SuzhouKey Supporting Subjects for Health Informatics under Grant SZFCXK202147in part by the Changshu Science and Technology Program under Grants CS202015 and CS202246in part by Changshu Key Laboratory of Medical Artificial Intelligence and Big Data under Grants CYZ202301 and CS202314.
文摘In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world data,particularly in the field of medical imaging.Traditional deep subspace clustering algorithms,which are mostly unsupervised,are limited in their ability to effectively utilize the inherent prior knowledge in medical images.Our MAS-DSC algorithm incorporates a semi-supervised learning framework that uses a small amount of labeled data to guide the clustering process,thereby enhancing the discriminative power of the feature representations.Additionally,the multi-scale feature extraction mechanism is designed to adapt to the complexity of medical imaging data,resulting in more accurate clustering performance.To address the difficulty of hyperparameter selection in deep subspace clustering,this paper employs a Bayesian optimization algorithm for adaptive tuning of hyperparameters related to subspace clustering,prior knowledge constraints,and model loss weights.Extensive experiments on standard clustering datasets,including ORL,Coil20,and Coil100,validate the effectiveness of the MAS-DSC algorithm.The results show that with its multi-scale network structure and Bayesian hyperparameter optimization,MAS-DSC achieves excellent clustering results on these datasets.Furthermore,tests on a brain tumor dataset demonstrate the robustness of the algorithm and its ability to leverage prior knowledge for efficient feature extraction and enhanced clustering performance within a semi-supervised learning framework.
基金supported by the National Natural Science Foundation of China(62371382,62071346)the Science,Technology&Innovation Project of Xiong’an New Area(2022XAGG0181)the Special Funds for Creative Research(2022C61540)。
文摘This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.
基金supported by the National Basic Research Program of China。
文摘With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direction of arrival(DOA)estimation due to the computational complexity of algorithms.Traditional subspace algorithms require estimation of the covariance matrix,which has high computational complexity and is prone to producing spurious peaks.In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements,this paper proposes a DOA estimation method based on Krylov subspace and weighted l_(1)-norm.The method uses the multistage Wiener filter(MSWF)iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace,further uses the measurement matrix to reduce the dimensionality of the signal subspace observation,constructs a weighted matrix,and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted l_(1)-norm to solve the target DOA.Simulation results show that the proposed method has high resolution under large array conditions,effectively suppresses spurious peaks,reduces computational complexity,and has good robustness for low signal to noise ratio(SNR)environment.
文摘Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.
文摘Let Abe the linear transformation on the linear space V in the field P, Vλibe the root subspace corresponding to the characteristic polynomial of the eigenvalue λi, and Wλibe the root subspace corresponding to the minimum polynomial of λi. Consider the problem of whether Vλiand Wλiare equal under the condition that the characteristic polynomial of Ahas the same eigenvalue as the minimum polynomial (see Theorem 1, 2). This article uses the method of mutual inclusion to prove that Vλi=Wλi. Compared to previous studies and proofs, the results of this research can be directly cited in related works. For instance, they can be directly cited in Daoji Meng’s book “Introduction to Differential Geometry.”
基金This work was supported by the National Natural Science Foundation of China(Grant No.22008098,52122408)the Program for Science&Technology Innovation Talents in Universities of Henan Province(No.22HASTIT008)+3 种基金the Programs for Science and Technology Development of Henan Province,China(No.222102320065)the Key Specialized Research and Development Breakthrough(Science and Technology)in Henan Province(No.212102210214)the Natural Science Foundations of Henan Province(No.222300420502)the Key Scientific Research Projects of University in Henan Province(No.23B430002).
文摘Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water.Nevertheless,the conventional"trial and error"method for producing advanced electrocatalysts is not only cost-ineffective but also time-consuming and labor-intensive.Fortunately,the advancement of machine learning brings new opportunities for electrocatalysts discovery and design.By analyzing experimental and theoretical data,machine learning can effectively predict their hydrogen evolution reaction(HER)performance.This review summarizes recent developments in machine learning for low-dimensional electrocatalysts,including zero-dimension nanoparticles and nanoclusters,one-dimensional nanotubes and nanowires,two-dimensional nanosheets,as well as other electrocatalysts.In particular,the effects of descriptors and algorithms on screening low-dimensional electrocatalysts and investigating their HER performance are highlighted.Finally,the future directions and perspectives for machine learning in electrocatalysis are discussed,emphasizing the potential for machine learning to accelerate electrocatalyst discovery,optimize their performance,and provide new insights into electrocatalytic mechanisms.Overall,this work offers an in-depth understanding of the current state of machine learning in electrocatalysis and its potential for future research.
基金supported by funds from the National Natural Science Foundation of China (grant nos.62004121 and 62174103)the supports of the Scientific and Technological Innovation Team Project of Shaanxi Innovation Capability Support Plan (2022TD-30)+1 种基金Youth Innovation Team of Shaanxi Universities (2019–2022)Top Young Talents Project of“Special Support Program for High Level Talents”in Shaanxi Province,China (2018–2023)。
文摘For solution prepared perovskite solar cells,metal halide perovskite materials with low-dimensional(LD)are flexibly employed in 3D perovskite solar cells to promote efficiency and long-term stability.In this review,the various structures,properties,and applications of LD perovskites are firstly summarized and discussed.To take advantage of LD materials,LD perovskites are introduced in the 3D bulk and/or the interface between the perovskite thin film and the carrier transporting layer to passivate the gain boundary defects while providing the stability advantage of LD materials.Therefore,the preparation methods and crystallization control of the LD perovskite layers are discussed in depth.Then,the combined devices using both LD and 3D components are reviewed on the basis of device design,cell structure,interface charge transfer,energy lever alignment,and synergistic improvement of both efficiency and stability.Finally,the challenges and expectations are speculated for further development of perovskite solar cells.
文摘A brain tumor occurs when abnormal cells grow, sometimes very rapidly, into an abnormal mass of tissue. The tumor can infect normal tissue, so there is an interaction between healthy and infected cell. The aim of this paper is to propose some efficient and accurate numerical methods for the computational solution of one-dimensional continuous basic models for the growth and control of brain tumors. After computing the analytical solution, we construct approximations of the solution to the problem using a standard second order finite difference method for space discretization and the Crank-Nicolson method for time discretization. Then, we investigate the convergence behavior of Conjugate gradient and generalized minimum residual as Krylov subspace methods to solve the tridiagonal toeplitz matrix system derived.
基金partially supported by National Key Research and Development Program of China(2019YFC1510902)National Natural Science Foundation of China(62073104)+1 种基金Natural Science Foundation of Heilongjiang Province(LH2022F024)China Postdoctoral Science Foundation(2022M710965)。
文摘This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the row space that can be used to approximately represent the unknown deterministic disturbances using the trigonometric functions or Bernstein polynomials depending on whether the disturbance frequencies are known.For closed-loop identification,CCF-N4SID is extended to the case with unknown deterministic disturbances using the oblique projection.In addition,a proper Bernstein polynomial order can be determined using the Akaike information criterion(AIC)or the Bayesian information criterion(BIC).Numerical simulation results demonstrate the effectiveness of the proposed identification method for both periodic and aperiodic deterministic disturbances.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62171203in part by the Suzhou Key Supporting Subjects[Health Informatics(No.SZFCXK202147)]+2 种基金in part by the Changshu Science and Technology Program[No.CS202015,CS202246]in part by the Changshu City Health and Health Committee Science and Technology Program[No.csws201913]in part by the“333 High Level Personnel Training Project of Jiangsu Province”.
文摘In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dimension in various features.The enhanced soft subspace clustering algorithm combines interclass separation and intraclass tightness information,which has strong results for image segmentation,but the clustering algorithm is vulnerable to noisy data and dependence on the initialized clustering center.However,the clustering algorithmis susceptible to the influence of noisydata and reliance on initializedclustering centers andfalls into a local optimum;the clustering effect is poor for brain MR images with unclear boundaries and noise effects.To address these problems,a soft subspace clustering algorithm for brain MR images based on genetic algorithm optimization is proposed,which combines the generalized noise technique,relaxes the equational weight constraint in the objective function as the boundary constraint,and uses a genetic algorithm as a method to optimize the initialized clustering center.The genetic algorithm finds the best clustering center and reduces the algorithm’s dependence on the initial clustering center.The experiment verifies the robustness of the algorithm,as well as the noise immunity in various ways and shows good results on the common dataset and the brain MR images provided by the Changshu First People’s Hospital with specific high accuracy for clinical medicine.
文摘Clustering high dimensional data is challenging as data dimensionality increases the distance between data points,resulting in sparse regions that degrade clustering performance.Subspace clustering is a common approach for processing high-dimensional data by finding relevant features for each cluster in the data space.Subspace clustering methods extend traditional clustering to account for the constraints imposed by data streams.Data streams are not only high-dimensional,but also unbounded and evolving.This necessitates the development of subspace clustering algorithms that can handle high dimensionality and adapt to the unique characteristics of data streams.Although many articles have contributed to the literature review on data stream clustering,there is currently no specific review on subspace clustering algorithms in high-dimensional data streams.Therefore,this article aims to systematically review the existing literature on subspace clustering of data streams in high-dimensional streaming environments.The review follows a systematic methodological approach and includes 18 articles for the final analysis.The analysis focused on two research questions related to the general clustering process and dealing with the unbounded and evolving characteristics of data streams.The main findings relate to six elements:clustering process,cluster search,subspace search,synopsis structure,cluster maintenance,and evaluation measures.Most algorithms use a two-phase clustering approach consisting of an initialization stage,a refinement stage,a cluster maintenance stage,and a final clustering stage.The density-based top-down subspace clustering approach is more widely used than the others because it is able to distinguish true clusters and outliers using projected microclusters.Most algorithms implicitly adapt to the evolving nature of the data stream by using a time fading function that is sensitive to outliers.Future work can focus on the clustering framework,parameter optimization,subspace search techniques,memory-efficient synopsis structures,explicit cluster change detection,and intrinsic performance metrics.This article can serve as a guide for researchers interested in high-dimensional subspace clustering methods for data streams.
基金The Pre-Research Foundation of National Ministries andCommissions (No9140A16050109DZ01)the Scientific Research Program of the Education Department of Shanxi Province (No09JK701)
文摘In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.
基金The National Natural Science Foundation of China(No60273075)
文摘The problem of pattern-based subspace clustering, a special type of subspace clustering that uses pattern similarity as a measure of similarity, is studied. Unlike most traditional clustering algorithms that group the close values of objects in all the dimensions or a set of dimensions, clustering by pattern similarity shows an interesting pattern, where objects exhibit a coherent pattern of rise and fall in subspaces. A novel approach, named EMaPle to mine the maximal pattern-based subspace clusters, is designed. The EMaPle searches clusters only in the attribute enumeration spaces which are relatively few compared to the large number of row combinations in the typical datasets, and it exploits novel pruning techniques. EMaPle can find the clusters satisfying coherent constraints, size constraints and sign constraints neglected in MaPle. Both synthetic data sets and real data sets are used to evaluate EMaPle and demonstrate that it is more effective and scalable than MaPle.
文摘In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because the transmission equation of OFDM systems does not exactly have the desired structure to directly derive a subspace algorithm,the algorithm first divides the OFDM signals into three parts,then,by exploiting the redundancy introduced by the cyclic prefix (CP) in OFDM signals,a new equation with Toeplitz channel matrix is derived.Based on the equation,a new blind subspace algorithm is developed.Toeplitz structure eases the derivation of the subspace algorithm and practical computation.Moreover the algorithm does not change the existing OFDM system,is robust to channel order overdetermination,and the channel zero locations.The performances are demonstrated by simulation results.