Objective: We aimed to study the effect and mechanism of low-dose radiation (LDR) on adaptive response of gastric cancer cell. Methods: SGC7901 cells were cultured in vitro, and divided into 4 groups: control gro...Objective: We aimed to study the effect and mechanism of low-dose radiation (LDR) on adaptive response of gastric cancer cell. Methods: SGC7901 cells were cultured in vitro, and divided into 4 groups: control group (DO group), low-dose radiation group (D1 group, 75 mGy), high-dose radiation group (D2 group, 2 Gy), low-dose plus high-dose radiation group (D1 + D2 group, 75 mGy + 2 Gy, the interval of low and high-close radiation being 8 h). Cell inhibition rate was detected by cytometry and CCK8 method; the proportion of cell cycle at different times after irradiation was determined by using a flow cytometry. The ATM mRNA levels were detected by using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Results: There was no significant different between groups DO and D1, groups D2 and D1 + D2 cell inhibition rate (P 〉 0.05). There was a significant increase G2/M arrest in groups D2 and D1 + D2 than groups DO and D1 after 6 h of radiation and did not recover at 48 h (P 〈 0.05). The ATM mRNA expression of group D2 and D1 + D2 increased highly than that of group DO and D1 (P 〈 0.05). However, differences between group D2 and D1 + D2, group DO and D1 were not statistical significant (P 〉 0.05). Conclusion: LDR cannot induce adaptive response in SGC7901 cells in vitro, which may be associated the regulation of cell cycle, and its ATM mRNA expression cannot be affected by 75 mGy X-ray radiation.展开更多
BACKGROUND: Bone marrow-derived mesenchymal stem cells (BMSCs) are a potentially useful source for cell replacement therapy following spinal cord injury. However, the homing characteristics of BMSCs in vivo remain ...BACKGROUND: Bone marrow-derived mesenchymal stem cells (BMSCs) are a potentially useful source for cell replacement therapy following spinal cord injury. However, the homing characteristics of BMSCs in vivo remain unclear. Low-dose radiation has been shown to promote homing of BMSCs to exposed sites. OBJECTIVE: To investigate the effects of low-dose local radiation to non-injured areas on the ability of human BMSCs to home to the injured mouse spinal cord, as well as recovery of spinal cord injury. DESIGN, TIME AND SE'I-FING: A randomized, controlled, animal experiment was performed at the Central Laboratory, Second Affiliated Hospital of Soochow University between October 2007 and October 2008. MATERIALS: BMSCs were isolated from four adult, human donors. METHODS: Fifty adult, female, Balb/c mice were subjected to adjusted weight-drop impact resulting in complete paraplegia. Three days later, mice were randomly assigned to a radiation + transplantation group (n = 23) and a transplantation group (n = 20). In total, 2 x 106 carboxyfluorescein diacetate succinimidyl ester-labeled BMSCs were injected into each mouse via the caudal vein. Mice in the radiation + transplantation group received 2.5 Gy local X-ray irradiation 2 hours before BMSCs injection. MAIN OUTCOME MEASURES: The homing of BMSCs to injured cord and irradiated skin after transplantation was observed by fluorescence microscope; the structure recovery of injured cord was assessed by magnetic resonance imaging. RESULTS: Compared with the transplantation group, at 24 hours after transplantation, the number of BMSCs was significantly increased in the injured area and the exposed site (P 〈 0.05), and inflammation and edema were significantly alleviated in the injured cord in the radiation + transplantation group. CONCLUSION: Local low-dose radiation has the potential to promote homing of BMSCs and recovery of spinal cord injury, although the radiated region was not injured area.展开更多
Objective: Unresectable hepatocellular carcinoma(uHCC) continues to pose effective treatment options. The objective of this study was to assess the efficacy and safety of combining low-dose cyclophosphamide with lenva...Objective: Unresectable hepatocellular carcinoma(uHCC) continues to pose effective treatment options. The objective of this study was to assess the efficacy and safety of combining low-dose cyclophosphamide with lenvatinib, pembrolizumab and transarterial chemoembolization(TACE) for the treatment of uHCC.Methods: From February 2022 to November 2023, a total of 40 patients diagnosed with uHCC were enrolled in this small-dose, single-center, single-arm, prospective study. They received a combined treatment of low-dose cyclophosphamide with lenvatinib, pembrolizumab, and TACE. Study endpoints included progression-free survival(PFS), objective response rate(ORR), and safety assessment. Tumor response was assessed using the modified Response Evaluation Criteria in Solid Tumors(mRECIST), while survival analysis was conducted through KaplanMeier curve analysis for overall survival(OS) and PFS. Adverse events(AEs) were evaluated according to the National Cancer Institute Common Terminology Criteria for Adverse Events(version 5.0).Results: A total of 34 patients were included in the study. The median follow-up duration was 11.2 [95% confidence interval(95% CI), 5.3-14.6] months, and the median PFS(mPFS) was 15.5(95% CI, 5.4-NA) months.Median OS(mOS) was not attained during the study period. The ORR was 55.9%, and the disease control rate(DCR) was 70.6%. AEs were reported in 27(79.4%) patients. The most frequently reported AEs(with an incidence rate >10%) included abnormal liver function(52.9%), abdominal pain(44.1%), abdominal distension and constipation(29.4%), hypertension(20.6%), leukopenia(17.6%), constipation(17.6%), ascites(14.7%), and insomnia(14.7%). Abnormal liver function(14.7%) had the most common grade 3 or higher AEs.Conclusions: A combination of low-dose cyclophosphamide with lenvatinib, pembrolizumab, and TACE is safe and effective for u HCC, showcasing a promising therapeutic strategy for managing uHCC.展开更多
AIM:To report a one-year clinical outcomes of low-dose laser cycloplasty(LCP)among malignant glaucoma patients.METHODS:In this prospective,multicenter,noncomparative clinical study,participants with malignant glaucoma...AIM:To report a one-year clinical outcomes of low-dose laser cycloplasty(LCP)among malignant glaucoma patients.METHODS:In this prospective,multicenter,noncomparative clinical study,participants with malignant glaucoma were recruited and underwent LCP at eight ophthalmic centers in China.Patients were followed up at 1wk,1,3,6,and 12mo.Intraocular pressure(IOP),number of glaucoma medications,anterior chamber depth(ACD),and complications were recorded.Anatomical success was defined as the reformation of the anterior chamber based on slit-lamp biomicroscopy.Recurrence was defined by the presence of a shallow orflat anterior chamber after initial recovery from treatment.RESULTS:A total of 34 eyes received LCP.Mean IOP and medications decreased from 36.1±11.5 mm Hg with 3.3±1.5 glaucoma medications pre-treatment to 20.9±9.8 mm Hg(P<0.001)with 2.9±1.6 medications(P=0.046)at 1d,and 17.4±6.7 mm Hg(P<0.001)with 1.3±1.7 medications(P<0.001)at 12mo.The ACD increased from 1.1±0.8 mm at baseline to 1.7±1.0 mm and to 2.0±0.5 mm at 1d and 12mo,respectively.A total of 32(94.1%)eyes achieved initial anatomical success.During follow-up,2(5.9%)eyes failed and 8(23.5%)eyes relapsed,yielding a 12-month anatomical success rate of 64.3%.Complications including anterior synechia(8.82%),choroidal/ciliary detachment(5.88%)and hypopyon(2.94%)were observed within 1wk.CONCLUSION:LCP is simple,safe,and effective in reforming the anterior chamber in malignant glaucoma.展开更多
Objective:To explore and analyze the clinical effect of low-dose Betaloc combined with amiodarone in treating ventricular arrhythmia.Methods:70 patients with ventricular arrhythmia who were admitted to the Department ...Objective:To explore and analyze the clinical effect of low-dose Betaloc combined with amiodarone in treating ventricular arrhythmia.Methods:70 patients with ventricular arrhythmia who were admitted to the Department of Cardiology of our hospital between August 2022 and August 2023 were selected as research subjects.They were divided into two groups using the coin-tossing method:the combination group(n=35)and the reference group(n=35).The combination group was treated with low-dose Betaloc and amiodarone,and the control group was treated with low-dose Betaloc alone.The treatment efficacy,cardiac function indicators,and related tested indicators of the two groups were compared.Results:The total efficacy of the treatment received by the combination group was much higher than that of the control group(P<0.05).Besides,after treatment,the cardiac function indicators such as left ventricular ejection fraction(LVEF),left ventricular end-systolic volume(LVESV),and cardiac index(CI)of the patients in the combination group were significantly better than those of the reference group(P<0.05).Furthermore,the high-sensitivity C-reactive protein(Hs-CRP),N-terminal prohormone of brain natriuretic peptide(NT-proBNP),adiponectin(APN),and other related test indicators of the patients in the combination group were significantly better than those of the reference group(P<0.05).Conclusion:Low-dose Betaloc combined with amiodarone has a noticeable effect in treating ventricular arrhythmia and deserves to be widely promoted.展开更多
BACKGROUND The recognition of idiopathic membranous nephropathy(IMN)as an autoimmune disease has paved the way for the use of B-cell-depleting agents,such as Rituximab(RTX),which is now a first-line drug for treating ...BACKGROUND The recognition of idiopathic membranous nephropathy(IMN)as an autoimmune disease has paved the way for the use of B-cell-depleting agents,such as Rituximab(RTX),which is now a first-line drug for treating IMN with proven safety and efficacy.Nevertheless,the usage of RTX for the treatment of refractory IMN remains controversial and challenging.AIM To evaluate the efficacy and safety of a new low-dose RTX regimen for the treatment of patients with refractory IMN.METHODS A retrospective study was performed on refractory IMN patients that accepted a low-dose RTX regimen(RTX,200 mg,once a month for five months)in the Xiyuan Hospital of Chinese Academy of Chinese Medical Sciences’Department of Nephrology from October 2019 to December 2021.To assess the clinical and immune remission data,we performed a 24 h urinary protein quantification(UTP)test and measured the serum albumin(ALB)and serum creatinine(SCr)levels,phospholipase A2 receptor(PLA2R)antibody titer,and CD19+B-cell count every three months.RESULTS A total of nine refractory IMN patients were analyzed.During follow-up conducted twelve months later,the results from the 24 h UTP decreased from baseline[8.14±6.05 g/d to 1.24±1.34 g/d(P<0.05)]and the ALB levels increased from baseline[28.06±8.42 g/L to 40.93±5.85 g/L(P<0.01)].Notably,after administering RTX for six months,the SCr decreased from 78.13±16.49μmol/L to 109.67±40.87μmol/L(P<0.05).All of the nine patients were positive for serum anti-PLA2R at the beginning,and four patients had normal anti-PLA2R titer levels at six months.The level of CD19+B-cells decreased to 0 at three months,and CD19+B-cell count remained at 0 up until six months of follow-up.CONCLUSION Our low-dose RTX regimen appears to be a promising treatment strategy for refractory IMN.展开更多
Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging ...Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.展开更多
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese...The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.展开更多
Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is propo...Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options.展开更多
Variability in the location and shape of the dayside magnetopause is attributed to magnetic reconnection,a fundamental process that enables the transfer of mass,energy,and momentum from the solar wind into the magneto...Variability in the location and shape of the dayside magnetopause is attributed to magnetic reconnection,a fundamental process that enables the transfer of mass,energy,and momentum from the solar wind into the magnetosphere.The spatial and temporal properties of the magnetopause,under varying solar and magnetospheric conditions,remain largely unknown because empirical studies using in-situ observations are challenging to interpret.Global wide field-of-view(FOV)imaging is the only means to simultaneously observe the spatial distribution of the plasma properties over the vast dayside magnetospheric region and,subsequently,quantify the energy transport from the interplanetary medium into the terrestrial magnetosphere.Two upcoming missions,ESA/CAS SMILE and NASA’s LEXI will provide wide-field imagery of the dayside magnetosheath in soft X-rays,an emission generated by charge exchange interactions between high charge-state heavy ions of solar wind origin and exospheric neutral atoms.High-cadence two-dimensional observations of the magnetosheath will allow the estimation of dynamic properties of its inner boundary,the magnetopause,and enable studies of its response to changes in the solar wind dynamic pressure and interplanetary magnetic field orientation.This work introduces a statistically-based estimation approach based on inverse theory to estimate the spatial distribution of magnetosheath soft X-ray emissivities and,with this,identify the location of the magnetopause over the Sun−Earth line.To do so,we simulate the magnetosheath structure using the MHD-based OpenGGCM model and generate synthetic soft X-ray images using LEXI’s orbit and attitude information.Our results show that 3-D estimations using the described statistically-based technique are robust against Poisson-distributed shot noise inherent to soft X-ray images.Also,our proposed methodology shows that the accuracy of both three-dimensional(3-D)estimation and the magnetopause standoff distance calculation highly depends on the observational point.展开更多
The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective l...The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions.This technique will suppo rt the LEXI and SMILE missions in achieving their scientific o bjectives.展开更多
Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the sof...Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.展开更多
In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and trans...In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models for global feature capture.The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT Grand Challenge Dataset.Compared with the former representative state-of-the-art(SOTA)model designs under different architectures,Hformer achieved optimal metrics without requiring a large number of learning parameters,with metrics of33.4405 PSNR,8.6956 RMSE,and 0.9163 SSIM.The experiments demonstrated designed Hformer is a SOTA model for noise suppression,structure preservation,and lesion detection.展开更多
Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilitie...Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial inte ractions and magnetospheric interfaces.In both cases,accurate modelling of the SWCX emission is key to correctly interpret its signal,and remove it from obse rvations,when needed.In this paper,we compile solar wind abundance measurements from ACE for different solar wind types,and atomic data from literature,including charge exchange cross-sections and emission probabilities,used fo r calculating the compound cross-section a for the SWCX X-ray emission.We calculate a values for charge-exchange with H and He,relevant to soft X-ray energy bands(0.1-2.0 keV)for various solar wind types and solar cycle conditions.展开更多
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph...Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.展开更多
The Soft X-ray Imager(SXI)on board the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)spacecraft will be able to view the Earth’s magnetosheath in soft X-rays.Simulated images of the X-ray emission visible f...The Soft X-ray Imager(SXI)on board the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)spacecraft will be able to view the Earth’s magnetosheath in soft X-rays.Simulated images of the X-ray emission visible from the position of SMILE are created for a range of solar wind densities by using 3 years of the SMILE mission orbit,together with models of the expected X-ray emissivity from the Earth’s magnetosheath.Results from global magnetohydrodynamic simulations and a simple model for exospheric neutral densities are used to compare the locations of the lines of sight along which integrated soft X-ray intensities peak with the lines of sight lying tangent to surfaces(defined here to be the magnetopause)along which local soft X-ray intensities peak or exhibit their strongest gradients,or both,for strongly southward interplanetary magnetic field conditions when no depletion or low-latitude boundary layers are expected.Where,in the parameter space of the various times and seasons,orbital phases,solar wind conditions,and magnetopause models,the alignment of the X-ray emission peak with the magnetopause tangent is good,or is not,is presented.The main results are as follows.The spacecraft needs to be positioned well outside the magnetopause;low-altitude times near perigee are not good.In addition,there are seasonal aspects:dayside-apogee orbits are generally very good because the spacecraft travels out sunward at high altitude,but nightside-apogee orbits,behind the Earth,are bad because the spacecraft only rarely leaves the magnetopause.Dusk-apogee and dawnapogee orbits are intermediate.Dayside-apogee orbits worsen slightly over the first three mission years,whereas nightside-apogee orbits improve slightly.Additionally,many more times of good agreement with the peak-to-tangent hypothesis occur when the solar wind is in a high-density state,as opposed to a low-density state.In a high-density state,the magnetopause is compressed,and the spacecraft is more often a good distance outside the magnetopause.展开更多
Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing tech...Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside.展开更多
文摘Objective: We aimed to study the effect and mechanism of low-dose radiation (LDR) on adaptive response of gastric cancer cell. Methods: SGC7901 cells were cultured in vitro, and divided into 4 groups: control group (DO group), low-dose radiation group (D1 group, 75 mGy), high-dose radiation group (D2 group, 2 Gy), low-dose plus high-dose radiation group (D1 + D2 group, 75 mGy + 2 Gy, the interval of low and high-close radiation being 8 h). Cell inhibition rate was detected by cytometry and CCK8 method; the proportion of cell cycle at different times after irradiation was determined by using a flow cytometry. The ATM mRNA levels were detected by using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Results: There was no significant different between groups DO and D1, groups D2 and D1 + D2 cell inhibition rate (P 〉 0.05). There was a significant increase G2/M arrest in groups D2 and D1 + D2 than groups DO and D1 after 6 h of radiation and did not recover at 48 h (P 〈 0.05). The ATM mRNA expression of group D2 and D1 + D2 increased highly than that of group DO and D1 (P 〈 0.05). However, differences between group D2 and D1 + D2, group DO and D1 were not statistical significant (P 〉 0.05). Conclusion: LDR cannot induce adaptive response in SGC7901 cells in vitro, which may be associated the regulation of cell cycle, and its ATM mRNA expression cannot be affected by 75 mGy X-ray radiation.
基金a Project for Nuclear Military Personal Health Assessment and Radiation Damage Treat-ment, No. 616010305
文摘BACKGROUND: Bone marrow-derived mesenchymal stem cells (BMSCs) are a potentially useful source for cell replacement therapy following spinal cord injury. However, the homing characteristics of BMSCs in vivo remain unclear. Low-dose radiation has been shown to promote homing of BMSCs to exposed sites. OBJECTIVE: To investigate the effects of low-dose local radiation to non-injured areas on the ability of human BMSCs to home to the injured mouse spinal cord, as well as recovery of spinal cord injury. DESIGN, TIME AND SE'I-FING: A randomized, controlled, animal experiment was performed at the Central Laboratory, Second Affiliated Hospital of Soochow University between October 2007 and October 2008. MATERIALS: BMSCs were isolated from four adult, human donors. METHODS: Fifty adult, female, Balb/c mice were subjected to adjusted weight-drop impact resulting in complete paraplegia. Three days later, mice were randomly assigned to a radiation + transplantation group (n = 23) and a transplantation group (n = 20). In total, 2 x 106 carboxyfluorescein diacetate succinimidyl ester-labeled BMSCs were injected into each mouse via the caudal vein. Mice in the radiation + transplantation group received 2.5 Gy local X-ray irradiation 2 hours before BMSCs injection. MAIN OUTCOME MEASURES: The homing of BMSCs to injured cord and irradiated skin after transplantation was observed by fluorescence microscope; the structure recovery of injured cord was assessed by magnetic resonance imaging. RESULTS: Compared with the transplantation group, at 24 hours after transplantation, the number of BMSCs was significantly increased in the injured area and the exposed site (P 〈 0.05), and inflammation and edema were significantly alleviated in the injured cord in the radiation + transplantation group. CONCLUSION: Local low-dose radiation has the potential to promote homing of BMSCs and recovery of spinal cord injury, although the radiated region was not injured area.
基金financially supported by the Science and Technology Plan Project of Guangzhou (No. 202102010171)National Natural Science Foundation Cultivation Project of the Third Affiliated Hospital of Sun Yat-sen University (No. 2020GZRPYMS11)+2 种基金Natural Science Foundation of Guangdong Province (No. 2018A030313641)Natural Science Foundation of Guangdong Province (No. 2016A030313848)Science and Technology Plan Project of Guangzhou (No. 201704020175)。
文摘Objective: Unresectable hepatocellular carcinoma(uHCC) continues to pose effective treatment options. The objective of this study was to assess the efficacy and safety of combining low-dose cyclophosphamide with lenvatinib, pembrolizumab and transarterial chemoembolization(TACE) for the treatment of uHCC.Methods: From February 2022 to November 2023, a total of 40 patients diagnosed with uHCC were enrolled in this small-dose, single-center, single-arm, prospective study. They received a combined treatment of low-dose cyclophosphamide with lenvatinib, pembrolizumab, and TACE. Study endpoints included progression-free survival(PFS), objective response rate(ORR), and safety assessment. Tumor response was assessed using the modified Response Evaluation Criteria in Solid Tumors(mRECIST), while survival analysis was conducted through KaplanMeier curve analysis for overall survival(OS) and PFS. Adverse events(AEs) were evaluated according to the National Cancer Institute Common Terminology Criteria for Adverse Events(version 5.0).Results: A total of 34 patients were included in the study. The median follow-up duration was 11.2 [95% confidence interval(95% CI), 5.3-14.6] months, and the median PFS(mPFS) was 15.5(95% CI, 5.4-NA) months.Median OS(mOS) was not attained during the study period. The ORR was 55.9%, and the disease control rate(DCR) was 70.6%. AEs were reported in 27(79.4%) patients. The most frequently reported AEs(with an incidence rate >10%) included abnormal liver function(52.9%), abdominal pain(44.1%), abdominal distension and constipation(29.4%), hypertension(20.6%), leukopenia(17.6%), constipation(17.6%), ascites(14.7%), and insomnia(14.7%). Abnormal liver function(14.7%) had the most common grade 3 or higher AEs.Conclusions: A combination of low-dose cyclophosphamide with lenvatinib, pembrolizumab, and TACE is safe and effective for u HCC, showcasing a promising therapeutic strategy for managing uHCC.
基金Supported by the Program for Zhejiang Leading Talent of S&T Innovation(No.2021R52012)Development Projects of Zhejiang Province(No.2022C03112)Innovation Team Program of Wenzhou.
文摘AIM:To report a one-year clinical outcomes of low-dose laser cycloplasty(LCP)among malignant glaucoma patients.METHODS:In this prospective,multicenter,noncomparative clinical study,participants with malignant glaucoma were recruited and underwent LCP at eight ophthalmic centers in China.Patients were followed up at 1wk,1,3,6,and 12mo.Intraocular pressure(IOP),number of glaucoma medications,anterior chamber depth(ACD),and complications were recorded.Anatomical success was defined as the reformation of the anterior chamber based on slit-lamp biomicroscopy.Recurrence was defined by the presence of a shallow orflat anterior chamber after initial recovery from treatment.RESULTS:A total of 34 eyes received LCP.Mean IOP and medications decreased from 36.1±11.5 mm Hg with 3.3±1.5 glaucoma medications pre-treatment to 20.9±9.8 mm Hg(P<0.001)with 2.9±1.6 medications(P=0.046)at 1d,and 17.4±6.7 mm Hg(P<0.001)with 1.3±1.7 medications(P<0.001)at 12mo.The ACD increased from 1.1±0.8 mm at baseline to 1.7±1.0 mm and to 2.0±0.5 mm at 1d and 12mo,respectively.A total of 32(94.1%)eyes achieved initial anatomical success.During follow-up,2(5.9%)eyes failed and 8(23.5%)eyes relapsed,yielding a 12-month anatomical success rate of 64.3%.Complications including anterior synechia(8.82%),choroidal/ciliary detachment(5.88%)and hypopyon(2.94%)were observed within 1wk.CONCLUSION:LCP is simple,safe,and effective in reforming the anterior chamber in malignant glaucoma.
文摘Objective:To explore and analyze the clinical effect of low-dose Betaloc combined with amiodarone in treating ventricular arrhythmia.Methods:70 patients with ventricular arrhythmia who were admitted to the Department of Cardiology of our hospital between August 2022 and August 2023 were selected as research subjects.They were divided into two groups using the coin-tossing method:the combination group(n=35)and the reference group(n=35).The combination group was treated with low-dose Betaloc and amiodarone,and the control group was treated with low-dose Betaloc alone.The treatment efficacy,cardiac function indicators,and related tested indicators of the two groups were compared.Results:The total efficacy of the treatment received by the combination group was much higher than that of the control group(P<0.05).Besides,after treatment,the cardiac function indicators such as left ventricular ejection fraction(LVEF),left ventricular end-systolic volume(LVESV),and cardiac index(CI)of the patients in the combination group were significantly better than those of the reference group(P<0.05).Furthermore,the high-sensitivity C-reactive protein(Hs-CRP),N-terminal prohormone of brain natriuretic peptide(NT-proBNP),adiponectin(APN),and other related test indicators of the patients in the combination group were significantly better than those of the reference group(P<0.05).Conclusion:Low-dose Betaloc combined with amiodarone has a noticeable effect in treating ventricular arrhythmia and deserves to be widely promoted.
基金Supported by National Key Research and Development Program of China,No.2019YFC1708503。
文摘BACKGROUND The recognition of idiopathic membranous nephropathy(IMN)as an autoimmune disease has paved the way for the use of B-cell-depleting agents,such as Rituximab(RTX),which is now a first-line drug for treating IMN with proven safety and efficacy.Nevertheless,the usage of RTX for the treatment of refractory IMN remains controversial and challenging.AIM To evaluate the efficacy and safety of a new low-dose RTX regimen for the treatment of patients with refractory IMN.METHODS A retrospective study was performed on refractory IMN patients that accepted a low-dose RTX regimen(RTX,200 mg,once a month for five months)in the Xiyuan Hospital of Chinese Academy of Chinese Medical Sciences’Department of Nephrology from October 2019 to December 2021.To assess the clinical and immune remission data,we performed a 24 h urinary protein quantification(UTP)test and measured the serum albumin(ALB)and serum creatinine(SCr)levels,phospholipase A2 receptor(PLA2R)antibody titer,and CD19+B-cell count every three months.RESULTS A total of nine refractory IMN patients were analyzed.During follow-up conducted twelve months later,the results from the 24 h UTP decreased from baseline[8.14±6.05 g/d to 1.24±1.34 g/d(P<0.05)]and the ALB levels increased from baseline[28.06±8.42 g/L to 40.93±5.85 g/L(P<0.01)].Notably,after administering RTX for six months,the SCr decreased from 78.13±16.49μmol/L to 109.67±40.87μmol/L(P<0.05).All of the nine patients were positive for serum anti-PLA2R at the beginning,and four patients had normal anti-PLA2R titer levels at six months.The level of CD19+B-cells decreased to 0 at three months,and CD19+B-cell count remained at 0 up until six months of follow-up.CONCLUSION Our low-dose RTX regimen appears to be a promising treatment strategy for refractory IMN.
基金supported by the National Natural Science Foundation of China(NNSFC)grants 42074202,42274196Strategic Priority Research Program of Chinese Academy of Sciences grant XDB41000000ISSI-BJ International Team Interaction between magnetic reconnection and turbulence:From the Sun to the Earth。
文摘Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.
基金funding and support from the United Kingdom Space Agency(UKSA)the European Space Agency(ESA)+5 种基金funded and supported through the ESA PRODEX schemefunded through PRODEX PEA 4000123238the Research Council of Norway grant 223252funded by Spanish MCIN/AEI/10.13039/501100011033 grant PID2019-107061GB-C61funding and support from the Chinese Academy of Sciences(CAS)funding and support from the National Aeronautics and Space Administration(NASA)。
文摘The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.
基金supported by NNSFC grants 42322408,42188101 and 42074202the Strategic Pioneer Program on Space Science,CAS Grant nos.XDA15350201+3 种基金in part by the Research Fund from the Chinese Academy of Sciencesthe Specialized Research Fund for State Key Laboratories of China.supported by the Young Elite Scientists Sponsorship Program(CAST-Y202045)supported by Royal Society grant DHFR1211068。
文摘Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options.
基金supported by NASA Goddard Space Flight Center through Cooperative Agreement 80NSSC21M0180 to Catholic UniversityPartnership for Heliophysics and Space Environment Research(PHaSER)+2 种基金the NASA Heliophysics United States Participating Investigator Program under Grant WBS516741.01.24.01.03(DS)support from the NASA grants 80NSSC19K0844,80NSSC20K1670,and 80MSFC20C0019the NASA GSFC internal fundings(HIF,ISFM,and IRAD)。
文摘Variability in the location and shape of the dayside magnetopause is attributed to magnetic reconnection,a fundamental process that enables the transfer of mass,energy,and momentum from the solar wind into the magnetosphere.The spatial and temporal properties of the magnetopause,under varying solar and magnetospheric conditions,remain largely unknown because empirical studies using in-situ observations are challenging to interpret.Global wide field-of-view(FOV)imaging is the only means to simultaneously observe the spatial distribution of the plasma properties over the vast dayside magnetospheric region and,subsequently,quantify the energy transport from the interplanetary medium into the terrestrial magnetosphere.Two upcoming missions,ESA/CAS SMILE and NASA’s LEXI will provide wide-field imagery of the dayside magnetosheath in soft X-rays,an emission generated by charge exchange interactions between high charge-state heavy ions of solar wind origin and exospheric neutral atoms.High-cadence two-dimensional observations of the magnetosheath will allow the estimation of dynamic properties of its inner boundary,the magnetopause,and enable studies of its response to changes in the solar wind dynamic pressure and interplanetary magnetic field orientation.This work introduces a statistically-based estimation approach based on inverse theory to estimate the spatial distribution of magnetosheath soft X-ray emissivities and,with this,identify the location of the magnetopause over the Sun−Earth line.To do so,we simulate the magnetosheath structure using the MHD-based OpenGGCM model and generate synthetic soft X-ray images using LEXI’s orbit and attitude information.Our results show that 3-D estimations using the described statistically-based technique are robust against Poisson-distributed shot noise inherent to soft X-ray images.Also,our proposed methodology shows that the accuracy of both three-dimensional(3-D)estimation and the magnetopause standoff distance calculation highly depends on the observational point.
基金supported by NASA(Grant Nos.80NSSC19K0844,80NSSC20K1670,80MSFC20C0019,and 80GSFC21M0002)support from NASA Goddard Space Flight Center internal funding programs(HIF,Internal Scientist Funding Model,and Internal Research and Development)。
文摘The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions.This technique will suppo rt the LEXI and SMILE missions in achieving their scientific o bjectives.
文摘Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.
基金supported by the National Natural Science Foundation of China(Nos.11975292,12222512)the CAS"Light of West Chin"Program+1 种基金the CAS Pioneer Hundred Talent Programthe Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)。
文摘In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models for global feature capture.The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT Grand Challenge Dataset.Compared with the former representative state-of-the-art(SOTA)model designs under different architectures,Hformer achieved optimal metrics without requiring a large number of learning parameters,with metrics of33.4405 PSNR,8.6956 RMSE,and 0.9163 SSIM.The experiments demonstrated designed Hformer is a SOTA model for noise suppression,structure preservation,and lesion detection.
文摘Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial inte ractions and magnetospheric interfaces.In both cases,accurate modelling of the SWCX emission is key to correctly interpret its signal,and remove it from obse rvations,when needed.In this paper,we compile solar wind abundance measurements from ACE for different solar wind types,and atomic data from literature,including charge exchange cross-sections and emission probabilities,used fo r calculating the compound cross-section a for the SWCX X-ray emission.We calculate a values for charge-exchange with H and He,relevant to soft X-ray energy bands(0.1-2.0 keV)for various solar wind types and solar cycle conditions.
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.42322408,42188101,41974211,and 42074202)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC028)+1 种基金the Strategic Priority Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15052500,XDA15350201,and XDA15014800)supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y202045)。
文摘Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.
基金support from the United Kingdom Space Agency(UKSA)the Science and Technology Facilities Council(STFC)under Grant No.ST/T002085/1。
文摘The Soft X-ray Imager(SXI)on board the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)spacecraft will be able to view the Earth’s magnetosheath in soft X-rays.Simulated images of the X-ray emission visible from the position of SMILE are created for a range of solar wind densities by using 3 years of the SMILE mission orbit,together with models of the expected X-ray emissivity from the Earth’s magnetosheath.Results from global magnetohydrodynamic simulations and a simple model for exospheric neutral densities are used to compare the locations of the lines of sight along which integrated soft X-ray intensities peak with the lines of sight lying tangent to surfaces(defined here to be the magnetopause)along which local soft X-ray intensities peak or exhibit their strongest gradients,or both,for strongly southward interplanetary magnetic field conditions when no depletion or low-latitude boundary layers are expected.Where,in the parameter space of the various times and seasons,orbital phases,solar wind conditions,and magnetopause models,the alignment of the X-ray emission peak with the magnetopause tangent is good,or is not,is presented.The main results are as follows.The spacecraft needs to be positioned well outside the magnetopause;low-altitude times near perigee are not good.In addition,there are seasonal aspects:dayside-apogee orbits are generally very good because the spacecraft travels out sunward at high altitude,but nightside-apogee orbits,behind the Earth,are bad because the spacecraft only rarely leaves the magnetopause.Dusk-apogee and dawnapogee orbits are intermediate.Dayside-apogee orbits worsen slightly over the first three mission years,whereas nightside-apogee orbits improve slightly.Additionally,many more times of good agreement with the peak-to-tangent hypothesis occur when the solar wind is in a high-density state,as opposed to a low-density state.In a high-density state,the magnetopause is compressed,and the spacecraft is more often a good distance outside the magnetopause.
基金the European Research Council for starting grant 200141-QuESpace,with which the Vlasiator model was developedconsolidator grant 682068-PRESTISSIMO awarded for further development of Vlasiator and its use in scientific investigations+4 种基金Academy of Finland grant numbers 338629-AERGELC’H,339756-KIMCHI,336805-FORESAIL,and 335554-ICT-SUNVACThe Academy of Finland also supported this work through the PROFI4 grant(grant number 3189131)support from the NASA grants,80NSSC20K1670 and 80MSFC20C0019the NASA GSFC FY23 IRADHIF funds。
文摘Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside.