Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in in...Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in initial deployment(i.e.the Starlink),the communication between satellites is based on ground stations with radio frequency signals.Due to the rapid movement of satellites,this hybrid topology of LEO-SCs and ground stations is time-varying,which imposes a major challenge to uninterrupted service provisioning and network management.In this paper,we focus on solving two notable problems in such a ground station-assisted LEO-SC topology,i.e.,traffic engineering and fast reroute,to guarantee that the packets are forwarded in a balanced and uninterrupted manner.Specifically,we employ segment routing to support the arbitrary path routing in LEO-SCs.To solve the traffic engineering problem,we proposed two source routings with traffic splitting algorithms,Delay-Bounded Traffic Splitting(DBTS)and DBTS+,where DBTS equally splits a flow and DBTS+favors shorter paths.Simu-lation results show that DBTS+can achieve about 30%lower maximum satellite load at the cost of about 10%more delay.To guarantee the fast recovery of failures,two fast reroute mechanisms,Loop-Free Alternate(LFA)and LFA+,are studied,where LFA pre-computes an alternate next-hop as a backup while LFA+finds a 2-segment backup path.We show that LFA+can increase the percentage of protection coverage by about 15%.展开更多
By deploying the ubiquitous and reliable coverage of low Earth orbit(LEO)satellite networks using optical inter satel-lite link(OISL),computation offloading services can be provided for any users without proximal serv...By deploying the ubiquitous and reliable coverage of low Earth orbit(LEO)satellite networks using optical inter satel-lite link(OISL),computation offloading services can be provided for any users without proximal servers,while the resource limita-tion of both computation and storage on satellites is the impor-tant factor affecting the maximum task completion time.In this paper,we study a delay-optimal multi-satellite collaborative computation offloading scheme that allows satellites to actively migrate tasks among themselves by employing the high-speed OISLs,such that tasks with long queuing delay will be served as quickly as possible by utilizing idle computation resources in the neighborhood.To satisfy the delay requirement of delay-sensi-tive task,we first propose a deadline-aware task scheduling scheme in which a priority model is constructed to sort the order of tasks being served based on its deadline,and then a delay-optimal collaborative offloading scheme is derived such that the tasks which cannot be completed locally can be migrated to other idle satellites.Simulation results demonstrate the effective-ness of our multi-satellite collaborative computation offloading strategy in reducing task complement time and improving resource utilization of the LEO satellite network.展开更多
Survivability is used to evaluate the ability of the satellite to complete the mission after failure,while the duration of maintaining performance is often ignored.An effective backup strategy can restore the constell...Survivability is used to evaluate the ability of the satellite to complete the mission after failure,while the duration of maintaining performance is often ignored.An effective backup strategy can restore the constellation performance timely,and maintain good network communication performance in case of satellite failure.From the perspective of network utility,the low Earth orbit(LEO)satellite constellation survivable graphical eva-luation and review technology(GERT)network with backup satel-lites is constructed.A network utility transfer function algorithm based on moment generating function and Mason formula is proposed,the network survivability evaluation models of on-orbit backup strategy and ground backup strategy are established.The survivable GERT model can deduce the expected mainte-nance time of LEO satellite constellation under different fault states and the network utility generated during the state mainte-nance period.The case analysis shows that the proposed surviv-able GERT model can consider the satellite failure rate,backup satellite replacement rate,maneuver control replacement ability and life requirement,and effectively determine the optimal sur-vivable backup strategy for LEO satellite constellation with limi-ted resources according to the expected network utility.展开更多
As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orb...As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orbit-Links (IOLs) between layers is an essential factor, which affects the performances of the DLSN systems. Considering certain constellation parameters, the geometric characteristics of IOLs are described and the connectivity of MEO satellites and LEO satellites in the DLSN is analyzed. By computer simulation, the results show that IOLs should be selectively established according to certain parameters rather than the simple in-sight principle.展开更多
Focusing on carrying out GPS occultation observat io ns with a receiver set on LEO satellite, this paper develops the LEO orbit simul ation system based on which the occultation events can be simulated taking into acc...Focusing on carrying out GPS occultation observat io ns with a receiver set on LEO satellite, this paper develops the LEO orbit simul ation system based on which the occultation events can be simulated taking into account the geometric relationship of the satellites and the field of view of th e receiver antenna. In this paper, the impacts of 4 types of LEO orbit parameter s including argument of latitude (AOL), right ascension of ascending node (RAAN) , orbit height and orbit inclination on the distribution and number of occultati on events observed with a single LEO satellite are discussed through simulat ion and some conclusions are drawn.展开更多
Low earth orbit satellites,with unique advantages,are prosperous types of navigation augmentation satellites for the GNSS satellites constellations.The broadcast ephemeris element needs to be designed as an important ...Low earth orbit satellites,with unique advantages,are prosperous types of navigation augmentation satellites for the GNSS satellites constellations.The broadcast ephemeris element needs to be designed as an important index of the augmented LEOs.The GPS ephemerides of 16/18 elements cannot be directly applied to the LEOs because of the poor fitting accuracies in along-track positional component.Besides,the ill-conditioned problem of the normal-matrix exists in fitting algorithm due to the small eccentricity of the LEO orbits.Based on the nonsingular orbital elements,5 sets of ephemerides with element numbers from 16 to 19 were designed respectively by adding or modifying orbital elements magnifying the along-track and radial positional components.The fitting experiments based on the LEO of 300 to 1500 km altitudes show that the fitting UREs of the proposed 16/17/18/18*/19-element ephemerides are better than 10/6/4/5/2.5 cm,respectively.According to the dynamical range of the fitting elements,the interfaces were designed for the 5 sets of ephemerides.The effects of data truncation on fitting UREs are at millimeter level.The total bits are 329/343/376/379/396,respectively.29/15 bits are saved for the 16/17-element ephemerides compared with the GPS16 ephemeris,while 64/61/41 bits can be saved for the 18/18*/19-element ephemerides compared with the GPS18 elements ephemeris.展开更多
In the design problem of low earth orbit(LEO) reconnaissance satellite constellation, optimization of coverage performance is the design goal in most current methods. However,in the using process, the user only concer...In the design problem of low earth orbit(LEO) reconnaissance satellite constellation, optimization of coverage performance is the design goal in most current methods. However,in the using process, the user only concerns with the detection capabilities rather than coverage performance. To establish the relationship between these two aspects, the reconnaissance processes of normal stochastic targets are considered and the mathematic models of detection processes are built. The indicators of coverage performance are used to evaluate the detection probability and expectation of detection time delay, which are important factors in reconnaissance constellation estimation viewed from military intelligence discipline. The conclusions confirmed by the final simulation will be useful in LEO reconnaissance constellation design, optimization and evaluation.展开更多
Low Earth Orbit (LEO) satellites provide short round-trip delays and are becoming in- creasingly important. One of the challenges in LEO satellite networks is the development of specialized and efficient routing algor...Low Earth Orbit (LEO) satellites provide short round-trip delays and are becoming in- creasingly important. One of the challenges in LEO satellite networks is the development of specialized and efficient routing algorithms. To satisfy the QoS requirements of multimedia applications, satellite routing protocols should consider handovers and minimize their effect on the active connections. A distributed QoS routing scheme based on heuristic ant algorithm is proposed for satisfying delay bound and avoiding link congestion. Simulation results show that the call blocking probabilities of this al- gorithm are less than that of Shortest Path First (SPF) with different delay bound.展开更多
The numbers of beam positions(BPs)and time slots for beam hopping(BH)dominate the latency of LEO satellite communications.Aiming at minimizing the number of BPs subject to a predefined requirement on the radius of BP,...The numbers of beam positions(BPs)and time slots for beam hopping(BH)dominate the latency of LEO satellite communications.Aiming at minimizing the number of BPs subject to a predefined requirement on the radius of BP,a low-complexity user density-based BP design scheme is proposed,where the original problem is decomposed into two subproblems,with the first one to find the sparsest user and the second one to determine the corresponding best BP.In particular,for the second subproblem,a user selection and smallest BP radius algorithm is proposed,where the nearby users are sequentially selected until the constraint of the given BP radius is no longer satisfied.These two subproblems are iteratively solved until all the users are selected.To further reduce the BP radius,a duplicated user removal algorithm is proposed to decrease the number of the users covered by two or more BPs.Aiming at minimizing the number of time slots subject to the no co-channel interference(CCI)constraint and the traffic demand constraint,a low-complexity CCI-free BH design scheme is proposed,where the BPs having difficulty in satisfying the constraints are considered to be illuminated in priory.Simulation results verify the effectiveness of the proposed schemes.展开更多
Geography rectangle is used to reduce signaling overhead of the LEO satellite networks.Moreover,a multi-path routing algorithm based on an improved ant colony system(MPRA-AC) is proposed.Matrix indicating the importan...Geography rectangle is used to reduce signaling overhead of the LEO satellite networks.Moreover,a multi-path routing algorithm based on an improved ant colony system(MPRA-AC) is proposed.Matrix indicating the importance of the link between satellites is introduced into MPRA-AC in order to find the optimal path more quickly.Simulation results show that MPRA-AC reduces the number of iterations to achieve a satisfactory solution.At the same time,the packet delivery ratio of LEO satellite networks when running MPRA-AC and DSR-LSN(dynamic source routing algorithm for LEO satellite networks) is compared.The packet delivery ratio is about 7.9%lower when running DSR-LSN.Moreover,because of the mechanism of active load balancing of MPRA-AC,simulation results show that MPRA-AC outperforms DSR-LSN in link utilization when data packets are transmitted in the networks.展开更多
A novel distributed packet routing algorithm for Low Earth Orbit (LEO) satellite networks based on spiderweb topology is presented. The algorithm gives the shortest path with very low computational complexity and with...A novel distributed packet routing algorithm for Low Earth Orbit (LEO) satellite networks based on spiderweb topology is presented. The algorithm gives the shortest path with very low computational complexity and without on-board routing tables, which is suitable and practical for on-board processing. Simulation results show its practicability and feasibility.展开更多
The low earth orbit(LEO) satellite system provides a promising solution for the global coverage of Internet of Things(IoT) services.Confronted with the sporadic uplink transmission from massive IoT terminals, this wor...The low earth orbit(LEO) satellite system provides a promising solution for the global coverage of Internet of Things(IoT) services.Confronted with the sporadic uplink transmission from massive IoT terminals, this work investigates the grant-free access scheme and resource allocation algorithm for the beam-hopping(BH) based LEO satellite systems.To improve the packet success rate, the time slots are pre-allocated to each cell according to the number of terrestrial terminals and the probability of packet arrival.When the packets arrive, the terrestrial terminals perform contention-free or contention-based grant-free access with packet repetition in the time slots allocated to their cells.The analytical expression of the packet collision probability for the grant-free access scheme is derived to provide reference for the resource allocation.To reduce the computational complexity, a heuristic resource allocation algorithm is proposed to minimize the maximum cell packet collision probability in the system.Simulation results show that the proposed resource allocation scheme achieves lower packet collision probability and higher resource utilization ratio when compared with the uniform resource allocation scheme.展开更多
A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the ...A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the hops of the end-to-end connection paths and makes good use of theregularity of the constellation network topology,can appropriately combine the handover procedure withrouting and efficiently solve the inter-satellite handover issue.Moreover,MHH strategy can providequality of services(QoS) guarantees to some extent.The system performances of the MHH strategy,suchas time propagation delay and handover frequency,are evaluated and compared with that of otherprevious strategies.The simulation results show that MHH strategy performs better than other previoushandover strategies.展开更多
There are some problems in the dual-layer satellite MPLs metworks to be composed of LEO and MEO. In order to solve the problems, this paper presents a plan by means of unicast LSP to implement multicast in the dual-la...There are some problems in the dual-layer satellite MPLs metworks to be composed of LEO and MEO. In order to solve the problems, this paper presents a plan by means of unicast LSP to implement multicast in the dual-layer satellite MPLs networks. It has advantages of saving space and reducing extra charge.展开更多
文摘Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in initial deployment(i.e.the Starlink),the communication between satellites is based on ground stations with radio frequency signals.Due to the rapid movement of satellites,this hybrid topology of LEO-SCs and ground stations is time-varying,which imposes a major challenge to uninterrupted service provisioning and network management.In this paper,we focus on solving two notable problems in such a ground station-assisted LEO-SC topology,i.e.,traffic engineering and fast reroute,to guarantee that the packets are forwarded in a balanced and uninterrupted manner.Specifically,we employ segment routing to support the arbitrary path routing in LEO-SCs.To solve the traffic engineering problem,we proposed two source routings with traffic splitting algorithms,Delay-Bounded Traffic Splitting(DBTS)and DBTS+,where DBTS equally splits a flow and DBTS+favors shorter paths.Simu-lation results show that DBTS+can achieve about 30%lower maximum satellite load at the cost of about 10%more delay.To guarantee the fast recovery of failures,two fast reroute mechanisms,Loop-Free Alternate(LFA)and LFA+,are studied,where LFA pre-computes an alternate next-hop as a backup while LFA+finds a 2-segment backup path.We show that LFA+can increase the percentage of protection coverage by about 15%.
基金This work was supported by the National Key Research and Development Program of China(2021YFB2900600)the National Natural Science Foundation of China(61971041+2 种基金62001027)the Beijing Natural Science Foundation(M22001)the Technological Innovation Program of Beijing Institute of Technology(2022CX01027).
文摘By deploying the ubiquitous and reliable coverage of low Earth orbit(LEO)satellite networks using optical inter satel-lite link(OISL),computation offloading services can be provided for any users without proximal servers,while the resource limita-tion of both computation and storage on satellites is the impor-tant factor affecting the maximum task completion time.In this paper,we study a delay-optimal multi-satellite collaborative computation offloading scheme that allows satellites to actively migrate tasks among themselves by employing the high-speed OISLs,such that tasks with long queuing delay will be served as quickly as possible by utilizing idle computation resources in the neighborhood.To satisfy the delay requirement of delay-sensi-tive task,we first propose a deadline-aware task scheduling scheme in which a priority model is constructed to sort the order of tasks being served based on its deadline,and then a delay-optimal collaborative offloading scheme is derived such that the tasks which cannot be completed locally can be migrated to other idle satellites.Simulation results demonstrate the effective-ness of our multi-satellite collaborative computation offloading strategy in reducing task complement time and improving resource utilization of the LEO satellite network.
基金This work was supported by the National Natural Science Foundation of China(72271124,52232014,72071111,71801127,71671091).
文摘Survivability is used to evaluate the ability of the satellite to complete the mission after failure,while the duration of maintaining performance is often ignored.An effective backup strategy can restore the constellation performance timely,and maintain good network communication performance in case of satellite failure.From the perspective of network utility,the low Earth orbit(LEO)satellite constellation survivable graphical eva-luation and review technology(GERT)network with backup satel-lites is constructed.A network utility transfer function algorithm based on moment generating function and Mason formula is proposed,the network survivability evaluation models of on-orbit backup strategy and ground backup strategy are established.The survivable GERT model can deduce the expected mainte-nance time of LEO satellite constellation under different fault states and the network utility generated during the state mainte-nance period.The case analysis shows that the proposed surviv-able GERT model can consider the satellite failure rate,backup satellite replacement rate,maneuver control replacement ability and life requirement,and effectively determine the optimal sur-vivable backup strategy for LEO satellite constellation with limi-ted resources according to the expected network utility.
基金National Natural Science Foundation of China(60532030)
文摘As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orbit-Links (IOLs) between layers is an essential factor, which affects the performances of the DLSN systems. Considering certain constellation parameters, the geometric characteristics of IOLs are described and the connectivity of MEO satellites and LEO satellites in the DLSN is analyzed. By computer simulation, the results show that IOLs should be selectively established according to certain parameters rather than the simple in-sight principle.
文摘Focusing on carrying out GPS occultation observat io ns with a receiver set on LEO satellite, this paper develops the LEO orbit simul ation system based on which the occultation events can be simulated taking into account the geometric relationship of the satellites and the field of view of th e receiver antenna. In this paper, the impacts of 4 types of LEO orbit parameter s including argument of latitude (AOL), right ascension of ascending node (RAAN) , orbit height and orbit inclination on the distribution and number of occultati on events observed with a single LEO satellite are discussed through simulat ion and some conclusions are drawn.
文摘Low earth orbit satellites,with unique advantages,are prosperous types of navigation augmentation satellites for the GNSS satellites constellations.The broadcast ephemeris element needs to be designed as an important index of the augmented LEOs.The GPS ephemerides of 16/18 elements cannot be directly applied to the LEOs because of the poor fitting accuracies in along-track positional component.Besides,the ill-conditioned problem of the normal-matrix exists in fitting algorithm due to the small eccentricity of the LEO orbits.Based on the nonsingular orbital elements,5 sets of ephemerides with element numbers from 16 to 19 were designed respectively by adding or modifying orbital elements magnifying the along-track and radial positional components.The fitting experiments based on the LEO of 300 to 1500 km altitudes show that the fitting UREs of the proposed 16/17/18/18*/19-element ephemerides are better than 10/6/4/5/2.5 cm,respectively.According to the dynamical range of the fitting elements,the interfaces were designed for the 5 sets of ephemerides.The effects of data truncation on fitting UREs are at millimeter level.The total bits are 329/343/376/379/396,respectively.29/15 bits are saved for the 16/17-element ephemerides compared with the GPS16 ephemeris,while 64/61/41 bits can be saved for the 18/18*/19-element ephemerides compared with the GPS18 elements ephemeris.
文摘In the design problem of low earth orbit(LEO) reconnaissance satellite constellation, optimization of coverage performance is the design goal in most current methods. However,in the using process, the user only concerns with the detection capabilities rather than coverage performance. To establish the relationship between these two aspects, the reconnaissance processes of normal stochastic targets are considered and the mathematic models of detection processes are built. The indicators of coverage performance are used to evaluate the detection probability and expectation of detection time delay, which are important factors in reconnaissance constellation estimation viewed from military intelligence discipline. The conclusions confirmed by the final simulation will be useful in LEO reconnaissance constellation design, optimization and evaluation.
基金Supported by the National Natural Science Foundation of China (No.60372013).
文摘Low Earth Orbit (LEO) satellites provide short round-trip delays and are becoming in- creasingly important. One of the challenges in LEO satellite networks is the development of specialized and efficient routing algorithms. To satisfy the QoS requirements of multimedia applications, satellite routing protocols should consider handovers and minimize their effect on the active connections. A distributed QoS routing scheme based on heuristic ant algorithm is proposed for satisfying delay bound and avoiding link congestion. Simulation results show that the call blocking probabilities of this al- gorithm are less than that of Shortest Path First (SPF) with different delay bound.
基金supported in part by National Key Research and Development Program of China under Grant 2021YFB2900404。
文摘The numbers of beam positions(BPs)and time slots for beam hopping(BH)dominate the latency of LEO satellite communications.Aiming at minimizing the number of BPs subject to a predefined requirement on the radius of BP,a low-complexity user density-based BP design scheme is proposed,where the original problem is decomposed into two subproblems,with the first one to find the sparsest user and the second one to determine the corresponding best BP.In particular,for the second subproblem,a user selection and smallest BP radius algorithm is proposed,where the nearby users are sequentially selected until the constraint of the given BP radius is no longer satisfied.These two subproblems are iteratively solved until all the users are selected.To further reduce the BP radius,a duplicated user removal algorithm is proposed to decrease the number of the users covered by two or more BPs.Aiming at minimizing the number of time slots subject to the no co-channel interference(CCI)constraint and the traffic demand constraint,a low-complexity CCI-free BH design scheme is proposed,where the BPs having difficulty in satisfying the constraints are considered to be illuminated in priory.Simulation results verify the effectiveness of the proposed schemes.
基金Supported by the National High Technology Research and Development Programme of China(No.SS2013AA010503)the National Natural Science Foundation of China(No.61271281,61201151,61275158)the Fundamental Research Funds for the Central Universities(No.2482012PTB0004)
文摘Geography rectangle is used to reduce signaling overhead of the LEO satellite networks.Moreover,a multi-path routing algorithm based on an improved ant colony system(MPRA-AC) is proposed.Matrix indicating the importance of the link between satellites is introduced into MPRA-AC in order to find the optimal path more quickly.Simulation results show that MPRA-AC reduces the number of iterations to achieve a satisfactory solution.At the same time,the packet delivery ratio of LEO satellite networks when running MPRA-AC and DSR-LSN(dynamic source routing algorithm for LEO satellite networks) is compared.The packet delivery ratio is about 7.9%lower when running DSR-LSN.Moreover,because of the mechanism of active load balancing of MPRA-AC,simulation results show that MPRA-AC outperforms DSR-LSN in link utilization when data packets are transmitted in the networks.
文摘A novel distributed packet routing algorithm for Low Earth Orbit (LEO) satellite networks based on spiderweb topology is presented. The algorithm gives the shortest path with very low computational complexity and without on-board routing tables, which is suitable and practical for on-board processing. Simulation results show its practicability and feasibility.
基金Supported by the Science and Technology Innovation Action Plan of Shanghai (No. 21DZ2200200)the Science and Technology Cooperation Funding of Chengdu and CASthe National Key Research and Development Program of China (No. 2019YFB1803101)。
文摘The low earth orbit(LEO) satellite system provides a promising solution for the global coverage of Internet of Things(IoT) services.Confronted with the sporadic uplink transmission from massive IoT terminals, this work investigates the grant-free access scheme and resource allocation algorithm for the beam-hopping(BH) based LEO satellite systems.To improve the packet success rate, the time slots are pre-allocated to each cell according to the number of terrestrial terminals and the probability of packet arrival.When the packets arrive, the terrestrial terminals perform contention-free or contention-based grant-free access with packet repetition in the time slots allocated to their cells.The analytical expression of the packet collision probability for the grant-free access scheme is derived to provide reference for the resource allocation.To reduce the computational complexity, a heuristic resource allocation algorithm is proposed to minimize the maximum cell packet collision probability in the system.Simulation results show that the proposed resource allocation scheme achieves lower packet collision probability and higher resource utilization ratio when compared with the uniform resource allocation scheme.
文摘A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the hops of the end-to-end connection paths and makes good use of theregularity of the constellation network topology,can appropriately combine the handover procedure withrouting and efficiently solve the inter-satellite handover issue.Moreover,MHH strategy can providequality of services(QoS) guarantees to some extent.The system performances of the MHH strategy,suchas time propagation delay and handover frequency,are evaluated and compared with that of otherprevious strategies.The simulation results show that MHH strategy performs better than other previoushandover strategies.
基金National863 Program for High Technique Research Development Project( 2 0 0 2 AA712 0 3 1)
文摘There are some problems in the dual-layer satellite MPLs metworks to be composed of LEO and MEO. In order to solve the problems, this paper presents a plan by means of unicast LSP to implement multicast in the dual-layer satellite MPLs networks. It has advantages of saving space and reducing extra charge.