Space objects such as spacecraft or missiles may be exposed to intense X-rays in outer space,leading to severe damage.The reinforcement of these objects to reduce the damage caused by X-ray irradiation is a significan...Space objects such as spacecraft or missiles may be exposed to intense X-rays in outer space,leading to severe damage.The reinforcement of these objects to reduce the damage caused by X-ray irradiation is a significant concern.The blow-off impulse(BOI)is a crucial physical quantity for investigating material damage induced by X-ray irradiation.However,the accurate calculation of BOI is challenging,particularly for large deformations of materials with complex configurations.In this study,we develop a novel two-dimensional particle-in-cell code,Xablation2D,to calculate BOIs under far-field X-ray irradiation.This significantly reduces the dependence of the numerical simulation on the grid shape.The reliability of this code is verified by simulation results from open-source codes,and the calculated BOIs are consistent with the experimental and analytical results.展开更多
Objective To observe the effects of signal factors of corticosterone (CS), cAMP, cGMP, Ca^2+ and protein kinase C (PKC) on lymphocyte apoptosis in mouse thymus induced by X-rays of 4 Gy in vitro. Methods The DNA ...Objective To observe the effects of signal factors of corticosterone (CS), cAMP, cGMP, Ca^2+ and protein kinase C (PKC) on lymphocyte apoptosis in mouse thymus induced by X-rays of 4 Gy in vitro. Methods The DNA lyric rate for thymocytes was measured by fluomspectrophotometry. Results The DNA lyric rate for thymocytes 4-8 hours after irradiation with 2-8 Gy was significantly higher than that in the control (P〈0.01). As compared with the control, the DNA lyric rate for thymocytes treated with 0.01 μnol/L CS (P〈0.01), 50 ng/mL cAMP (P〈0.01), 0.05-0.4 μg/mL ionomycin (Iono, P〈0.05 or P〈0.01) or 0.05-0.4 ng/mL phorbol myristate acetate (PMA, P〈0.05 or P〈0.01), respectively, was significantly increased, while the rate for thymocytes treated with 50 ng/mL cGMP was not significantly increased. The DNA lyric rate for thymocytes treated with 0.01 μmol/L CS (P〈0.01), 50 ng/mL cAMP (P〈0.01), 0.2 and 0.4 μg/mL Iono (P〈0.05), and 0.2 and 0.4 ng/mL PMA (P〈0.05) plus 4-Gy irradiation, respectively, was significantly higher than that treated with single 4-Gy irradiation, while the rate for thymocytes treated with 50 ng/mL cGMP plus 4-Gy irradiation was not increased. When both 0.4 I.tg/mL Iono and 0.4 ng/mL PMA acted on the thymocytes, the DNA lyric rate for thymocytes was significantly higher than that in the control (P〈0.01), the DNA lytic rate for thymocytes treated with both 0.4 μg/mL Iono and 0.4 ng/mL PMA plus 4-Gy irradiation was significantly higher than that treated with single 4-Gy irradiation (P〈0.05), but was Iono plus 4-Gy irradiation or 0.4 ng/mL PMA plus 4-Gy irradiation. can promote thymocyte apoptosis induced by larger dose X-rays. not significantly higher than that treated with 0.4 μg/mL Conclusion CS, cAMP, Ca^2+, and PKC signal factors can promote thymocyte apoptosis induced by larger dose X-rays.展开更多
Physical and chemical phenomena of low-energy ion irradiation on solid surfaces have been studied systematically for many years, due to the wide applications in surface modification, ion implantation and thin-film gro...Physical and chemical phenomena of low-energy ion irradiation on solid surfaces have been studied systematically for many years, due to the wide applications in surface modification, ion implantation and thin-film growth. Recently the bombardment of nano-scale materials with low-energy ions gained much attention. Comared to bulk materials, nano-scale materials show different physical and chemical properties. In this article, we employed molecular dynamics simulations to study the damage caused by low-energy ion irradiation on copper nanowires. By simulating the ion bombardment of 5 different incident energies, namely, 1 keV, 2 keV, 3 keV, 4 keV and 5 keV, we found that the sputtering yield of the incident ion is linearly proportional to the energies of incident ions. Low-energy impacts mainly induce surface damage to the nanowires, and only a few bulk defects were observed. Surface vacancies and adatoms accumulated to form defect clusters on the surface, and their distribution are related to the type of crystal plane, e.g. surface vacancies prefer to stay on (100) plane, while adatoms prefer (110) plane. These results reveal that the size effect will influence the interaction between low-energy ion and nanowire.展开更多
Commercially available AlGaN/GaN high-electron-mobility transistors(HEMTs)are beginning to enter the public scene froma range of suppliers.Based on previous studies,commercial GaN-based electronics are expected to be ...Commercially available AlGaN/GaN high-electron-mobility transistors(HEMTs)are beginning to enter the public scene froma range of suppliers.Based on previous studies,commercial GaN-based electronics are expected to be tolerant to different types of irradiation in space.To test this assumption,we compared the characteristic electrical curves obtained at different X-ray irradiation doses for GaN HEMT devices manufactured by Infineon and Transphorm.The p-GaN-based device was found to be more robust with a stable threshold voltage,whereas the threshold voltage of the device with ametal-insulator-semiconductor gatewas found to shift first in the negative and then the positive direction.This dynamic phenomenon is caused by the releasing and trapping effects of radiation-induced charges in the dielectric layer and at the interface of irradiated devices.As such,the p-GaNgate-based GaN HEMT provides a promising solution for use as an electric source in space.展开更多
Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work comb...Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work combines the simulation calculations with the electrical measurements of SWCNT field-effect transistors(FETs),which limits further understanding on the mechanisms of radiation effects.Here,SWCNT film-based FETs were fabricated to explore the total ionizing dose(TID)and displacement damage effect on the electrical performance under low-energy proton irradiation with different fluences up to 1×1015 p/cm2.Large negative shift of the threshold voltage and obvious decrease of the on-state current verified the TID effect caused in the oxide layer.The stability of the subthreshold swing and the off-state current reveals that the displacement damage caused in the CNT layer is not serious,which proves that the CNT film is radiation-hardened.Specially,according to the simulation,we found the displacement damage caused by protons is different in the source/drain contact area and channel area,leading to varying degrees of change for the contact resistance and sheet resistance.Having analyzed the simulation results and electrical measurements,we explained the low-energy proton irradiation mechanism of the CNT FETs,which is essential for the construction of radiation-hardened CNT film-based ICs for aircrafts.展开更多
Based on the two-dimensional model, this paper compares the hydrodynamics of slab x-ray laser plasma produced by different nonuniform line focused irradiations. It finds that the average intensity and the duration of ...Based on the two-dimensional model, this paper compares the hydrodynamics of slab x-ray laser plasma produced by different nonuniform line focused irradiations. It finds that the average intensity and the duration of laser pulse and the overall shape of the intensity distribution in the focal line have different influences on the plasma. Calculations show that the evolution of temperature variation is more sensitive to the pulse duration and the electron density variation is more sensitive to the pulse intensity. Pulses with duration of 200 ps to 500 ps and with intensity of 0.2 TW/cm2 to 1.0 TW/cm2 are proved acceptable in slab x-ray lasers.展开更多
The hematological effects of space radiation contribute to the compromised immune defense in astronauts observed in the space environment as well as upon landing[1]. The complications associated with the hematopoietic...The hematological effects of space radiation contribute to the compromised immune defense in astronauts observed in the space environment as well as upon landing[1]. The complications associated with the hematopoietic syndrome include infection and internal hemorrhage. The decrease in peripheral blood cell counts after radiation serves not only as a marker for the severity of the exposure, but also as a marker for treatment and prognosis[2]. In the present research, we investigated the effects of whole-body heavy-ion (80 MeV/u carbon-ion) radiation and conventional X-ray (6 MV) radiation on peripheral blood cell counts in mice model. Time effects were determined to compare the effects of the different types of radiation.展开更多
AIM: To evaluate αB-crystallin malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx) changes in X-ray irradiated rat lens. METHODS: Eight-week-old Sprague-Dawley male rats received X-ray ...AIM: To evaluate αB-crystallin malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx) changes in X-ray irradiated rat lens. METHODS: Eight-week-old Sprague-Dawley male rats received X-ray irradiation to the head with rest of the body protected. The exposure dose ranged from 2 to 25 Grays (Gy). The cataract status were examined by slit lamp and rated with 'four-grade systems' post-irradiation. The lens MDA level, and the activities of SOD and GPx were measured in a short-term experiment post-irradiation, and αB-crystallin protein levels were quantified. RESULTS: The lenses of normal control and the X-ray irradiated groups with the dose up to 10 Gy remained transparent throughout the experiment. The lens first appeared tiny scatters, and even lamellar opacities in the posterior capsule 45 days post-irradiation with the dose of 15 Gy, and progressed slowly to the advance stage of cataract; while, for the higher dose (25 Gy), the opacity of lens appeared much earlier, and progressed more rapidly to mature stage of cataract within 1 month. At the end of the observation (90 days post-irradiation), almost all lenses became complete opacity with the higher dose (25 Gy). The degree of lens opacity was rated accordingly. The lens MDA level was increased, and SOD and GPx activities were decreased with a dose-dependent manner post-irradiation. The αB-crystallin protein level was decreased dose-dependently at the end point of observation. CONCLUSION: Oxidative events and αB-crystallin may play important roles in the pathogenesis of cataract in X-ray irradiated rat lens.展开更多
We investigate the effect of ion irradiation on MgB_(2) thin films with small grains of approximately 122 nm and 140 nm.The flux pinning by grain boundaries is insignificant in the pristine MgB_(2) films due to good i...We investigate the effect of ion irradiation on MgB_(2) thin films with small grains of approximately 122 nm and 140 nm.The flux pinning by grain boundaries is insignificant in the pristine MgB_(2) films due to good inter-grain connectivity,but is significantly improved after 120-keV Mn-ion irradiation.The scaling behavior of the flux pinning force density for the ion-irradiated MgB_(2) thin films with nanoscale grains demonstrates the predominance of pinning by grain boundaries,in contrast to the single-crystalline MgB_(2) films where normal point pinning was dominant after low-energy ion irradiation.These results suggest that irradiation-induced defects can accumulate near the grain boundaries in metallic MgB_(2) superconductors.展开更多
Between October 1985 and June 1992 Postoperative kelolds of 125 Patients were treated with superficial X-ray (100-140 Kv) and electron beam (6 and 9 MeV ), in an attempt to prevent their recurrence, 100 patients with ...Between October 1985 and June 1992 Postoperative kelolds of 125 Patients were treated with superficial X-ray (100-140 Kv) and electron beam (6 and 9 MeV ), in an attempt to prevent their recurrence, 100 patients with 129 sites received a dose of 1200-4000 cGy at 200-300 cGy per fraction within one to four weeks and at intervals of one to three weeks between excision and irradiation. Rate of success In the prevention of kelold was only 28. 6% (37/ 129). However, 25 patients with 25 sites received a total dose of 1500 cGy at 500 cGy per fraction starting within one week after excision and at Intervals of 96 hours. The success rate was 84% (21/25).展开更多
The problems of agriculture in Senegal result in a low yield per hectare and poor seed quality contributing strongly to the decline in productivity. Mutagenesis by X- or Y-ray irradiation makes it possible to obtain g...The problems of agriculture in Senegal result in a low yield per hectare and poor seed quality contributing strongly to the decline in productivity. Mutagenesis by X- or Y-ray irradiation makes it possible to obtain genetic mutants necessary to improve production. It is in this context that we undertook this study to evaluate the effects induced on the cultivation of peanut seeds irradiated by X-rays at low doses applied in radiotherapy. X-ray irradiation of four (2, 3, 4, 5) lots of peanuts are performed with respectively 0.5, 1.5, 2 and 4 Gray using the cobalt 60 therapy device (Alcyon II). The seeding of the seeds and then the following-up of the crops during 35 days allowed us to study the parameters of germination, growth and yield. The results obtained after monitoring revealed that the irradiation did not have any significant impact on germination and would appear to temporarily inhibit the growth rate compared to the control batch. However, the decrease in weight of the harvested seeds can be explained by the absence of fertilizer during the cultivation.展开更多
A high-efficiency synthesis method for a latent pigment of red pigment diketo-pyrrolo-pyrrole (Pig. Red 272:272DPP), which is important as a functional organic pigment, was investigated, and the investigation results ...A high-efficiency synthesis method for a latent pigment of red pigment diketo-pyrrolo-pyrrole (Pig. Red 272:272DPP), which is important as a functional organic pigment, was investigated, and the investigation results revealed that irradiation of microwaves (MWs) for several seconds to 272 DPP in NMP (N-methyl-2-pyrrolidone) solvent yielded DPP latent pigment (272DPP-BOC) at a high yield of 86.2%. Two kinds of latent-pigment crystals, namely, red and yellow, were obtained by recrystallization, and it was found that the fluorescence-emission properties of the two kinds differ significantly. Single-crystal X-ray structural analysis showed that the difference in the fluorescence-emission properties of the two types is derived from the difference in their crystal structures.展开更多
Removal of X-ray-induced carbon contamination on beamline optics was studied using radio-frequency plasma with an argon/hydrogen(Ar/H_2) mixture. Experiments demonstrated that the carbon removal rate with Ar/H_2 plasm...Removal of X-ray-induced carbon contamination on beamline optics was studied using radio-frequency plasma with an argon/hydrogen(Ar/H_2) mixture. Experiments demonstrated that the carbon removal rate with Ar/H_2 plasma was higher than that with pure hydrogen or argon. The possible mechanism for this enhanced removal was discussed. The key working parameters for Ar/H_2 plasma removal were determined, including the optimal vacuum pressure, gas mixing ratio, and source power. The optimal process was performed on a carbon-coated multilayer, and the reflectivity was recovered.展开更多
AIM: To analyze proteomic and signal transduction alterations in irradiated melanoma cells. METHODS: We combined stable isotope labeling with amino acids in cell culture (SILAC) with highly sensitive shotgun tandem ma...AIM: To analyze proteomic and signal transduction alterations in irradiated melanoma cells. METHODS: We combined stable isotope labeling with amino acids in cell culture (SILAC) with highly sensitive shotgun tandem mass spectrometry (MS) to create an efficient approach for protein quantification. Protein protein interaction was used to analyze relationships among proteins. RESULTS: Energy metabolism protein levels were significantly different in glycolysis and not significantly different in oxidative phosphorylation after irradiation. Conversely, tumor suppressor proteins related to cell growth and development were downregulated, and those related to cell death and cell cycle were upregulated in irradiated cells. CONCLUSION: Our results indicate that irradiation induces differential expression of the 29 identified proteins closely related to cell survival, cell cycle arrest, and growth inhibition. The data may provide new insights into the pathogenesis of uveal melanoma and guide appropriate radiotherapy.展开更多
A study of a nanosecond laser irradiation on the titanium-layer-buried gold planar target is presented. The timeresolved x-ray emission spectra of titanium tracer are measured by a streaked crystal spectrometer. By co...A study of a nanosecond laser irradiation on the titanium-layer-buried gold planar target is presented. The timeresolved x-ray emission spectra of titanium tracer are measured by a streaked crystal spectrometer. By comparing the simulated spectra obtained by using the FLYCHK code with the measured titanium spectra, the temporal plasma states, i.e.,the electron temperatures and densities, are deduced. To evaluate the feasibility of using the method for the characterization of Au plasma states, the deduced plasma states from the measured titanium spectra are compared with the Multi-1D hydrodynamic simulations of laser-produced Au plasmas. By comparing the measured and simulated results, an overall agreement for the electron temperatures is found, whereas there are deviations in the electron densities. The experiment–theory discrepancy may suggest that the plasma state could not be well reproduced by the Multi-1D hydrodynamic simulation, in which the radial gradient is not taken into account. Further investigations on the spectral characterization and hydrodynamic simulations of the plasma states are needed. All the measured and FLYCHK simulated spectra are given in this paper as datasets. The datasets are openly available at http://www.doi.org/10.57760/sciencedb.j00113.00032.展开更多
Background Clinical combination of some traditional Chinese medical herbs, including berberine, with irradiation is demonstrated to improve efficacy of tumor radiotherapy, yet the mechanisms for such effect remain lar...Background Clinical combination of some traditional Chinese medical herbs, including berberine, with irradiation is demonstrated to improve efficacy of tumor radiotherapy, yet the mechanisms for such effect remain largely unknown. The present study investigated the effect of berberine on apoptosis induced by X-rays irradiation and the relation between this effect and gap junction intercellular communication (GJIC).Methods The role of gap junctions in the modulation of X-rays irradiation-induced apoptosis was explored by manipulation of connexin (Cx) expression, and gap junction function, using oleamide, a GJIC inhibitor, and berberine.Results In transfected HeLa cells, Cx32 expression increased apoptosis induced by X-rays irradiation, while inhibition of gap junction by oleamide reduced the irradiation responses, indicating the dependence of X-rays irradiation-induced apoptosis on GJIC. Berberine, at the concentrations without cytotoxicity, enhanced apoptosis induced by irradiation only in the presence of functional gap junctions.Conclusions These results suggest that berberine potentizes cell apoptosis induced by X-rays irradiation, probably through enhancement of gap junction activity.展开更多
The persistent luminescence(PersL)dependence on the dopants and derived mechanism of trapping and de-trapping processes were investigated in Y3Al2Ga3O12(YAGG)based nanophosphor,doped with Ce^3+and/or Cr^3+.It is found...The persistent luminescence(PersL)dependence on the dopants and derived mechanism of trapping and de-trapping processes were investigated in Y3Al2Ga3O12(YAGG)based nanophosphor,doped with Ce^3+and/or Cr^3+.It is found that the presence of Cr^3+ions produce electron and hole traps and capture suitable charge after X-ray irradiation.The effect of irradiation on the carriers trapping and their pathways after excitation was studied by means of thermo luminescence technique.On the other hand,for blue light irradiation the mechanism seems to be different.In the latter case,the Ce^3+ions,having the position of energy levels in the conduction band,become sensitizers for the electrons and main emission centres for the PersL(de-trapping process goes through Ce^3+).展开更多
X-ray excited photodynamic therapy(X-PDT)is the bravo answer of photodynamic therapy(PDT)for deep-seated tumors,as it employs X-ray as the irradiation source to overcome the limitation of light penetration depth.Howev...X-ray excited photodynamic therapy(X-PDT)is the bravo answer of photodynamic therapy(PDT)for deep-seated tumors,as it employs X-ray as the irradiation source to overcome the limitation of light penetration depth.However,high X-ray irradiation dose caused organ lesions and side effects became the major barrier to X-PDT application.To address this issue,this work employed a classic-al co-precipitation reaction to synthesize NaLuF_(4):15%Tb^(3+)(NLF)with an average particle size of(23.48±0.91)nm,which was then coupled with the photosensitizer merocyanine 540(MC540)to form the X-PDT system NLF-MC540 with high production of singlet oxygen.The system could induce antitumor efficacy to about 24%in relative low dose X-ray irradiation range(0.1-0.3 Gy).In vivo,when NLF-MC540 irradiated by 0.1 Gy X-ray,the tumor inhibition percentage reached 89.5%±5.7%.The therapeutic mechanism of low dose X-PDT was found.A significant increase of neutrophils in serum was found on the third day after X-PDT.By immunohistochemical staining of tumor sections,the Ly6G^(+),CD8^(+),and CD11c^(+)cells infiltrated in the tumor microenvironment were studied.Utilizing the bilat-eral tumor model,the NLF-MC540 with 0.1 Gy X-ray irradiation could inhibit both the primary tumor and the distant tumor growth.De-tected by enzyme linked immunosorbent assay(ELISA),two cytokines IFN-γand TNF-αin serum were upregulated 7 and 6 times than negative control,respectively.Detected by enzyme linked immune spot assay(ELISPOT),the number of immune cells attributable to the IFN-γand TNF-αlevels in the group of low dose X-PDT were 14 and 6 times greater than that in the negative control group,respectively.Thus,it conclude that low dose X-PDT system could successfully upregulate the levels of immune cells,stimulate the secretion of cy-tokines(especially IFN-γand TNF-α),activate antitumor immunity,and finally inhibit colon tumor growth.展开更多
Groups of a typical operational amplifier-μA741 were irradiated in a cobalt unit, each group accumulating a different total ionizing dose (TID). The results showed that the TID caused power consumption current and ...Groups of a typical operational amplifier-μA741 were irradiated in a cobalt unit, each group accumulating a different total ionizing dose (TID). The results showed that the TID caused power consumption current and slew rate (SR) to degenerate in ultra-linearity, owing to a severe reduction in the current gain of the internal LPNP transistors. Pulsed X-ray irradiation experiments were carried out on the μA741 groups with different values, and the results revealed that the impact on the response to the pulsed X-ray irradiation was greater when the devices absorbed more TID. The mechanism for this is explained on the basis of the circuit construction of the μA741; the sensitive parameters of the circuit were obtained via simulation on SP1CE. The simulation results additionally showed that if the sensitive parameters were optimized, the duration of interruption caused by the pulsed X-ray irradiation would be reduced significantly. In addition, several proposals are provided for hardening the devices.展开更多
Wettability manipulation of glancing angle deposited Fe/Co/Ni nanorod arrays was realized by X-ray irradiation in ultra-high vacuum chamber. Reversible transition was also purchased by alternating ethanol immersion an...Wettability manipulation of glancing angle deposited Fe/Co/Ni nanorod arrays was realized by X-ray irradiation in ultra-high vacuum chamber. Reversible transition was also purchased by alternating ethanol immersion and X-ray irradiation. Alkyl group adsorption-desorption mechanism and corresponding morphology depen- dence of wettability manipulation were revealed.展开更多
基金supported by the National Science Foundation of China(No.12347103)the Fundamental Research Funds for the Central Universities(No.226-2022-00216)。
文摘Space objects such as spacecraft or missiles may be exposed to intense X-rays in outer space,leading to severe damage.The reinforcement of these objects to reduce the damage caused by X-ray irradiation is a significant concern.The blow-off impulse(BOI)is a crucial physical quantity for investigating material damage induced by X-ray irradiation.However,the accurate calculation of BOI is challenging,particularly for large deformations of materials with complex configurations.In this study,we develop a novel two-dimensional particle-in-cell code,Xablation2D,to calculate BOIs under far-field X-ray irradiation.This significantly reduces the dependence of the numerical simulation on the grid shape.The reliability of this code is verified by simulation results from open-source codes,and the calculated BOIs are consistent with the experimental and analytical results.
基金This study was supported by a grant from the National Natural Science Foundation of China (No. 391702750)
文摘Objective To observe the effects of signal factors of corticosterone (CS), cAMP, cGMP, Ca^2+ and protein kinase C (PKC) on lymphocyte apoptosis in mouse thymus induced by X-rays of 4 Gy in vitro. Methods The DNA lyric rate for thymocytes was measured by fluomspectrophotometry. Results The DNA lyric rate for thymocytes 4-8 hours after irradiation with 2-8 Gy was significantly higher than that in the control (P〈0.01). As compared with the control, the DNA lyric rate for thymocytes treated with 0.01 μnol/L CS (P〈0.01), 50 ng/mL cAMP (P〈0.01), 0.05-0.4 μg/mL ionomycin (Iono, P〈0.05 or P〈0.01) or 0.05-0.4 ng/mL phorbol myristate acetate (PMA, P〈0.05 or P〈0.01), respectively, was significantly increased, while the rate for thymocytes treated with 50 ng/mL cGMP was not significantly increased. The DNA lyric rate for thymocytes treated with 0.01 μmol/L CS (P〈0.01), 50 ng/mL cAMP (P〈0.01), 0.2 and 0.4 μg/mL Iono (P〈0.05), and 0.2 and 0.4 ng/mL PMA (P〈0.05) plus 4-Gy irradiation, respectively, was significantly higher than that treated with single 4-Gy irradiation, while the rate for thymocytes treated with 50 ng/mL cGMP plus 4-Gy irradiation was not increased. When both 0.4 I.tg/mL Iono and 0.4 ng/mL PMA acted on the thymocytes, the DNA lyric rate for thymocytes was significantly higher than that in the control (P〈0.01), the DNA lytic rate for thymocytes treated with both 0.4 μg/mL Iono and 0.4 ng/mL PMA plus 4-Gy irradiation was significantly higher than that treated with single 4-Gy irradiation (P〈0.05), but was Iono plus 4-Gy irradiation or 0.4 ng/mL PMA plus 4-Gy irradiation. can promote thymocyte apoptosis induced by larger dose X-rays. not significantly higher than that treated with 0.4 μg/mL Conclusion CS, cAMP, Ca^2+, and PKC signal factors can promote thymocyte apoptosis induced by larger dose X-rays.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10675009)
文摘Physical and chemical phenomena of low-energy ion irradiation on solid surfaces have been studied systematically for many years, due to the wide applications in surface modification, ion implantation and thin-film growth. Recently the bombardment of nano-scale materials with low-energy ions gained much attention. Comared to bulk materials, nano-scale materials show different physical and chemical properties. In this article, we employed molecular dynamics simulations to study the damage caused by low-energy ion irradiation on copper nanowires. By simulating the ion bombardment of 5 different incident energies, namely, 1 keV, 2 keV, 3 keV, 4 keV and 5 keV, we found that the sputtering yield of the incident ion is linearly proportional to the energies of incident ions. Low-energy impacts mainly induce surface damage to the nanowires, and only a few bulk defects were observed. Surface vacancies and adatoms accumulated to form defect clusters on the surface, and their distribution are related to the type of crystal plane, e.g. surface vacancies prefer to stay on (100) plane, while adatoms prefer (110) plane. These results reveal that the size effect will influence the interaction between low-energy ion and nanowire.
基金Thisworkwas supported by the National Key R&D Programof China(No.2017YFB0402800,2017YFB0402802).
文摘Commercially available AlGaN/GaN high-electron-mobility transistors(HEMTs)are beginning to enter the public scene froma range of suppliers.Based on previous studies,commercial GaN-based electronics are expected to be tolerant to different types of irradiation in space.To test this assumption,we compared the characteristic electrical curves obtained at different X-ray irradiation doses for GaN HEMT devices manufactured by Infineon and Transphorm.The p-GaN-based device was found to be more robust with a stable threshold voltage,whereas the threshold voltage of the device with ametal-insulator-semiconductor gatewas found to shift first in the negative and then the positive direction.This dynamic phenomenon is caused by the releasing and trapping effects of radiation-induced charges in the dielectric layer and at the interface of irradiated devices.As such,the p-GaNgate-based GaN HEMT provides a promising solution for use as an electric source in space.
基金This work was financially supported by the National Natural Science Foundation of China(No.61704189)the Common Information System Equipment Pre-Research Special Technology Project(31513020404-2)Youth Innovation Promotion Association of Chinese Academy of Sciences and the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,and the Key Research Program of Frontier Sciences,CAS(Grant ZDBS-LY-JSC015)。
文摘Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work combines the simulation calculations with the electrical measurements of SWCNT field-effect transistors(FETs),which limits further understanding on the mechanisms of radiation effects.Here,SWCNT film-based FETs were fabricated to explore the total ionizing dose(TID)and displacement damage effect on the electrical performance under low-energy proton irradiation with different fluences up to 1×1015 p/cm2.Large negative shift of the threshold voltage and obvious decrease of the on-state current verified the TID effect caused in the oxide layer.The stability of the subthreshold swing and the off-state current reveals that the displacement damage caused in the CNT layer is not serious,which proves that the CNT film is radiation-hardened.Specially,according to the simulation,we found the displacement damage caused by protons is different in the source/drain contact area and channel area,leading to varying degrees of change for the contact resistance and sheet resistance.Having analyzed the simulation results and electrical measurements,we explained the low-energy proton irradiation mechanism of the CNT FETs,which is essential for the construction of radiation-hardened CNT film-based ICs for aircrafts.
基金suported by the National Natural Science Foundation of China (Grant No. 10874242)the National Basic Research Program of China (973 Program) (Grant No. 2007CB815105)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070290008)
文摘Based on the two-dimensional model, this paper compares the hydrodynamics of slab x-ray laser plasma produced by different nonuniform line focused irradiations. It finds that the average intensity and the duration of laser pulse and the overall shape of the intensity distribution in the focal line have different influences on the plasma. Calculations show that the evolution of temperature variation is more sensitive to the pulse duration and the electron density variation is more sensitive to the pulse intensity. Pulses with duration of 200 ps to 500 ps and with intensity of 0.2 TW/cm2 to 1.0 TW/cm2 are proved acceptable in slab x-ray lasers.
文摘The hematological effects of space radiation contribute to the compromised immune defense in astronauts observed in the space environment as well as upon landing[1]. The complications associated with the hematopoietic syndrome include infection and internal hemorrhage. The decrease in peripheral blood cell counts after radiation serves not only as a marker for the severity of the exposure, but also as a marker for treatment and prognosis[2]. In the present research, we investigated the effects of whole-body heavy-ion (80 MeV/u carbon-ion) radiation and conventional X-ray (6 MV) radiation on peripheral blood cell counts in mice model. Time effects were determined to compare the effects of the different types of radiation.
基金Scientific Research Foundation for Returned Scholars, the Second Hospital Affiliated to Soochow University (No.SDFEY-2007-10)National Natural Science Foundation of China (No.81000383)+2 种基金Research Fund for the Doctoral Program of Higher Education of China (No.20100072120051)Program of Tongji University (No.1500219024 No.2010QH04 and No. 2010YF02)
文摘AIM: To evaluate αB-crystallin malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx) changes in X-ray irradiated rat lens. METHODS: Eight-week-old Sprague-Dawley male rats received X-ray irradiation to the head with rest of the body protected. The exposure dose ranged from 2 to 25 Grays (Gy). The cataract status were examined by slit lamp and rated with 'four-grade systems' post-irradiation. The lens MDA level, and the activities of SOD and GPx were measured in a short-term experiment post-irradiation, and αB-crystallin protein levels were quantified. RESULTS: The lenses of normal control and the X-ray irradiated groups with the dose up to 10 Gy remained transparent throughout the experiment. The lens first appeared tiny scatters, and even lamellar opacities in the posterior capsule 45 days post-irradiation with the dose of 15 Gy, and progressed slowly to the advance stage of cataract; while, for the higher dose (25 Gy), the opacity of lens appeared much earlier, and progressed more rapidly to mature stage of cataract within 1 month. At the end of the observation (90 days post-irradiation), almost all lenses became complete opacity with the higher dose (25 Gy). The degree of lens opacity was rated accordingly. The lens MDA level was increased, and SOD and GPx activities were decreased with a dose-dependent manner post-irradiation. The αB-crystallin protein level was decreased dose-dependently at the end point of observation. CONCLUSION: Oxidative events and αB-crystallin may play important roles in the pathogenesis of cataract in X-ray irradiated rat lens.
基金the support of the accelerator group and operators of KOMAC (KAERI (C.K.,J.S.))Project supported by the National Research Foundation (NRF)of Korea through a grant funded by the Korean Ministry of Science and ICT (Grant No.2021R1A2C2010925 (T.P.,Y.H.,J.S.))+2 种基金the Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (Grant Nos.NRF-2019R1F1A1055284 (J.M.L.,W.N.K.)and NRF2021R1I1A1A01043885 (S.G.J.,Y.H.))the National Natural Science Foundation of China (Grant Nos.12035019 (J.L.))the Chinese Scholarship Council (CSC)for fellowship support。
文摘We investigate the effect of ion irradiation on MgB_(2) thin films with small grains of approximately 122 nm and 140 nm.The flux pinning by grain boundaries is insignificant in the pristine MgB_(2) films due to good inter-grain connectivity,but is significantly improved after 120-keV Mn-ion irradiation.The scaling behavior of the flux pinning force density for the ion-irradiated MgB_(2) thin films with nanoscale grains demonstrates the predominance of pinning by grain boundaries,in contrast to the single-crystalline MgB_(2) films where normal point pinning was dominant after low-energy ion irradiation.These results suggest that irradiation-induced defects can accumulate near the grain boundaries in metallic MgB_(2) superconductors.
文摘Between October 1985 and June 1992 Postoperative kelolds of 125 Patients were treated with superficial X-ray (100-140 Kv) and electron beam (6 and 9 MeV ), in an attempt to prevent their recurrence, 100 patients with 129 sites received a dose of 1200-4000 cGy at 200-300 cGy per fraction within one to four weeks and at intervals of one to three weeks between excision and irradiation. Rate of success In the prevention of kelold was only 28. 6% (37/ 129). However, 25 patients with 25 sites received a total dose of 1500 cGy at 500 cGy per fraction starting within one week after excision and at Intervals of 96 hours. The success rate was 84% (21/25).
文摘The problems of agriculture in Senegal result in a low yield per hectare and poor seed quality contributing strongly to the decline in productivity. Mutagenesis by X- or Y-ray irradiation makes it possible to obtain genetic mutants necessary to improve production. It is in this context that we undertook this study to evaluate the effects induced on the cultivation of peanut seeds irradiated by X-rays at low doses applied in radiotherapy. X-ray irradiation of four (2, 3, 4, 5) lots of peanuts are performed with respectively 0.5, 1.5, 2 and 4 Gray using the cobalt 60 therapy device (Alcyon II). The seeding of the seeds and then the following-up of the crops during 35 days allowed us to study the parameters of germination, growth and yield. The results obtained after monitoring revealed that the irradiation did not have any significant impact on germination and would appear to temporarily inhibit the growth rate compared to the control batch. However, the decrease in weight of the harvested seeds can be explained by the absence of fertilizer during the cultivation.
文摘A high-efficiency synthesis method for a latent pigment of red pigment diketo-pyrrolo-pyrrole (Pig. Red 272:272DPP), which is important as a functional organic pigment, was investigated, and the investigation results revealed that irradiation of microwaves (MWs) for several seconds to 272 DPP in NMP (N-methyl-2-pyrrolidone) solvent yielded DPP latent pigment (272DPP-BOC) at a high yield of 86.2%. Two kinds of latent-pigment crystals, namely, red and yellow, were obtained by recrystallization, and it was found that the fluorescence-emission properties of the two kinds differ significantly. Single-crystal X-ray structural analysis showed that the difference in the fluorescence-emission properties of the two types is derived from the difference in their crystal structures.
基金supported by the National Nature Science Foundation of China(No.61404139)the National Science and Technology Major Project(No.2012ZX0270 2001-005)the State Key Laboratory of Applied Optics
文摘Removal of X-ray-induced carbon contamination on beamline optics was studied using radio-frequency plasma with an argon/hydrogen(Ar/H_2) mixture. Experiments demonstrated that the carbon removal rate with Ar/H_2 plasma was higher than that with pure hydrogen or argon. The possible mechanism for this enhanced removal was discussed. The key working parameters for Ar/H_2 plasma removal were determined, including the optimal vacuum pressure, gas mixing ratio, and source power. The optimal process was performed on a carbon-coated multilayer, and the reflectivity was recovered.
基金The Foundation for Young Talents of Gansu Province, China (No. 1208RJYA013)
文摘AIM: To analyze proteomic and signal transduction alterations in irradiated melanoma cells. METHODS: We combined stable isotope labeling with amino acids in cell culture (SILAC) with highly sensitive shotgun tandem mass spectrometry (MS) to create an efficient approach for protein quantification. Protein protein interaction was used to analyze relationships among proteins. RESULTS: Energy metabolism protein levels were significantly different in glycolysis and not significantly different in oxidative phosphorylation after irradiation. Conversely, tumor suppressor proteins related to cell growth and development were downregulated, and those related to cell death and cell cycle were upregulated in irradiated cells. CONCLUSION: Our results indicate that irradiation induces differential expression of the 29 identified proteins closely related to cell survival, cell cycle arrest, and growth inhibition. The data may provide new insights into the pathogenesis of uveal melanoma and guide appropriate radiotherapy.
基金Project supported by the National Key Research and Development Program of China (Grant No.2017YFA0403300)the National Natural Science Foundation of China (Grant Nos.12074352 and 11675158)Fundamental Research Funds for the Central Universities in China (Grant No.YJ202144)。
文摘A study of a nanosecond laser irradiation on the titanium-layer-buried gold planar target is presented. The timeresolved x-ray emission spectra of titanium tracer are measured by a streaked crystal spectrometer. By comparing the simulated spectra obtained by using the FLYCHK code with the measured titanium spectra, the temporal plasma states, i.e.,the electron temperatures and densities, are deduced. To evaluate the feasibility of using the method for the characterization of Au plasma states, the deduced plasma states from the measured titanium spectra are compared with the Multi-1D hydrodynamic simulations of laser-produced Au plasmas. By comparing the measured and simulated results, an overall agreement for the electron temperatures is found, whereas there are deviations in the electron densities. The experiment–theory discrepancy may suggest that the plasma state could not be well reproduced by the Multi-1D hydrodynamic simulation, in which the radial gradient is not taken into account. Further investigations on the spectral characterization and hydrodynamic simulations of the plasma states are needed. All the measured and FLYCHK simulated spectra are given in this paper as datasets. The datasets are openly available at http://www.doi.org/10.57760/sciencedb.j00113.00032.
基金This work was supported by grants from the National Natural Science Foundation of China (No. 30973434 and No. 30772577), the Grant for Development of Science and Technology from Department of Science and Technology of Guangzhou, China (No. 2008Z1-E241), and the Grant for Development of Important New Drugs from Ministry of Health of China (No. 2009ZX09303-007).
文摘Background Clinical combination of some traditional Chinese medical herbs, including berberine, with irradiation is demonstrated to improve efficacy of tumor radiotherapy, yet the mechanisms for such effect remain largely unknown. The present study investigated the effect of berberine on apoptosis induced by X-rays irradiation and the relation between this effect and gap junction intercellular communication (GJIC).Methods The role of gap junctions in the modulation of X-rays irradiation-induced apoptosis was explored by manipulation of connexin (Cx) expression, and gap junction function, using oleamide, a GJIC inhibitor, and berberine.Results In transfected HeLa cells, Cx32 expression increased apoptosis induced by X-rays irradiation, while inhibition of gap junction by oleamide reduced the irradiation responses, indicating the dependence of X-rays irradiation-induced apoptosis on GJIC. Berberine, at the concentrations without cytotoxicity, enhanced apoptosis induced by irradiation only in the presence of functional gap junctions.Conclusions These results suggest that berberine potentizes cell apoptosis induced by X-rays irradiation, probably through enhancement of gap junction activity.
基金Project supported by the Polish National Science Centre(OPUS 11#2016/21/B/ST5/02385)
文摘The persistent luminescence(PersL)dependence on the dopants and derived mechanism of trapping and de-trapping processes were investigated in Y3Al2Ga3O12(YAGG)based nanophosphor,doped with Ce^3+and/or Cr^3+.It is found that the presence of Cr^3+ions produce electron and hole traps and capture suitable charge after X-ray irradiation.The effect of irradiation on the carriers trapping and their pathways after excitation was studied by means of thermo luminescence technique.On the other hand,for blue light irradiation the mechanism seems to be different.In the latter case,the Ce^3+ions,having the position of energy levels in the conduction band,become sensitizers for the electrons and main emission centres for the PersL(de-trapping process goes through Ce^3+).
基金funded by the National Natural Science Foundation of China (Nos.81771972,52171243,and 52371256)the National Key Research and Development Program of China (No.2017YFC0107405).
文摘X-ray excited photodynamic therapy(X-PDT)is the bravo answer of photodynamic therapy(PDT)for deep-seated tumors,as it employs X-ray as the irradiation source to overcome the limitation of light penetration depth.However,high X-ray irradiation dose caused organ lesions and side effects became the major barrier to X-PDT application.To address this issue,this work employed a classic-al co-precipitation reaction to synthesize NaLuF_(4):15%Tb^(3+)(NLF)with an average particle size of(23.48±0.91)nm,which was then coupled with the photosensitizer merocyanine 540(MC540)to form the X-PDT system NLF-MC540 with high production of singlet oxygen.The system could induce antitumor efficacy to about 24%in relative low dose X-ray irradiation range(0.1-0.3 Gy).In vivo,when NLF-MC540 irradiated by 0.1 Gy X-ray,the tumor inhibition percentage reached 89.5%±5.7%.The therapeutic mechanism of low dose X-PDT was found.A significant increase of neutrophils in serum was found on the third day after X-PDT.By immunohistochemical staining of tumor sections,the Ly6G^(+),CD8^(+),and CD11c^(+)cells infiltrated in the tumor microenvironment were studied.Utilizing the bilat-eral tumor model,the NLF-MC540 with 0.1 Gy X-ray irradiation could inhibit both the primary tumor and the distant tumor growth.De-tected by enzyme linked immunosorbent assay(ELISA),two cytokines IFN-γand TNF-αin serum were upregulated 7 and 6 times than negative control,respectively.Detected by enzyme linked immune spot assay(ELISPOT),the number of immune cells attributable to the IFN-γand TNF-αlevels in the group of low dose X-PDT were 14 and 6 times greater than that in the negative control group,respectively.Thus,it conclude that low dose X-PDT system could successfully upregulate the levels of immune cells,stimulate the secretion of cy-tokines(especially IFN-γand TNF-α),activate antitumor immunity,and finally inhibit colon tumor growth.
基金supported by the State Key Laboratory Foundation(Grant No.SKLIPR1212)
文摘Groups of a typical operational amplifier-μA741 were irradiated in a cobalt unit, each group accumulating a different total ionizing dose (TID). The results showed that the TID caused power consumption current and slew rate (SR) to degenerate in ultra-linearity, owing to a severe reduction in the current gain of the internal LPNP transistors. Pulsed X-ray irradiation experiments were carried out on the μA741 groups with different values, and the results revealed that the impact on the response to the pulsed X-ray irradiation was greater when the devices absorbed more TID. The mechanism for this is explained on the basis of the circuit construction of the μA741; the sensitive parameters of the circuit were obtained via simulation on SP1CE. The simulation results additionally showed that if the sensitive parameters were optimized, the duration of interruption caused by the pulsed X-ray irradiation would be reduced significantly. In addition, several proposals are provided for hardening the devices.
文摘Wettability manipulation of glancing angle deposited Fe/Co/Ni nanorod arrays was realized by X-ray irradiation in ultra-high vacuum chamber. Reversible transition was also purchased by alternating ethanol immersion and X-ray irradiation. Alkyl group adsorption-desorption mechanism and corresponding morphology depen- dence of wettability manipulation were revealed.