期刊文献+
共找到2,958篇文章
< 1 2 148 >
每页显示 20 50 100
Grain boundary engineering for enhancing intergranular damage resistance of ferritic/martensitic steel P92
1
作者 Lei Peng Shang-Ming Chen +6 位作者 Jing-Yi Shi Yong-Jie Sun Yi-Fei Liu Yin-Zhong Shen Hong-Ya He Hui-Juan Wang Jie Tian 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期186-199,共14页
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s... Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance. 展开更多
关键词 grain boundary engineering Ferritic/martensitic steel Prior austenite grain boundary character distribution grain boundary connectivity Intergranular damage resistance
下载PDF
Modeling the Interaction between Vacancies and Grain Boundaries during Ductile Fracture
2
作者 Mingjian Li Ping Yang Pengyang Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期2019-2034,共16页
The experimental results in previous studies have indicated that during the ductile fracture of pure metals,vacancies aggregate and form voids at grain boundaries.However,the physical mechanism underlying this phenome... The experimental results in previous studies have indicated that during the ductile fracture of pure metals,vacancies aggregate and form voids at grain boundaries.However,the physical mechanism underlying this phenomenon remains not fully understood.This study derives the equilibrium distribution of vacancies analytically by following thermodynamics and the micromechanics of crystal defects.This derivation suggests that vacancies cluster in regions under hydrostatic compression to minimize the elastic strain energy.Subsequently,a finite element model is developed for examining more general scenarios of interaction between vacancies and grain boundaries.This model is first verified and validated through comparison with some available analytical solutions,demonstrating consistency between finite element simulation results and analytical solutions within a specified numerical accuracy.A systematic numerical study is then conducted to investigate the mechanism that might govern the micromechanical interaction between grain boundaries and the profuse vacancies typically generated during plastic deformation.The simulation results indicate that the reduction in total elastic strain energy can indeed drive vacancies toward grain boundaries,potentially facilitating void nucleation in ductile fracture. 展开更多
关键词 Ductile fracture VACANCY grain boundary MICROMECHANICAL finite element method
下载PDF
Effects of Fe solid solute on grain boundaries of bi-crystal Cu: A molecular dynamics simulation
3
作者 Shuohan Yang Hongwei Bao +3 位作者 Huizhong Bai Yan Li Haodong Xu Fei Ma 《Nano Materials Science》 EI CAS CSCD 2024年第1期86-95,共10页
Grain boundaries(GBs)play a crucial role on the structural stability and mechanical properties of Cu and its alloys.In this work,molecular dynamics(MD)simulations are employed to study the effects of Fe solutes on the... Grain boundaries(GBs)play a crucial role on the structural stability and mechanical properties of Cu and its alloys.In this work,molecular dynamics(MD)simulations are employed to study the effects of Fe solutes on the formation energy,excess volume,dislocations and melting behaviors of GBs in CuFe alloys.It is illustrated that Fe solute affects the structural stability of Cu GBs substantially,the formation energy of GBs is reduced,but the thickness and melting point of GBs are increased,that is,the structural stability of Cu GBs is significantly improved owing to the Fe solutes.A strong scaling law exists between the formation energy,excess volume,thickness and melting point of GBs.Therefore,Fe solid solute plays an important role in the characteristics of GBs in bi-crystal Cu. 展开更多
关键词 CuFe alloy grain boundary Structural stability MD simulations
下载PDF
Atomistic study on the microscopic mechanism of grain boundary embrittlement induced by small dense helium bubbles in iron
4
作者 Lei Peng Yong-Jie Sun +3 位作者 Jing-Yi Shi Yi-Fei Liu Shang-Ming Chen Liu-Liu Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期84-95,共12页
The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to eluc... The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to elucidate the susceptibility of different grain boundaries(GBs)to helium-induced embrittlement,the tensile fracture processes of 10 types of GBs with and without helium bubbles in body-centered cubic(bcc)iron at the relevant service temperature of 600 K were investigated via molecular dynamics methods.The results indicate that in the absence of helium bubbles,the GBs studied here can be classified into two distinct categories:brittle GBs and ductile GBs.The atomic scale analysis shows that the plastic deformation of ductile GB at high temperatures originates from complex plastic deformation mechanisms,including the Bain/Burgers path phase transition and deformation twinning,in which the Bain path phase transition is the most dominant plastic deformation mechanism.However,the presence of helium bubbles severely inhibits the plastic deformation channels of the GBs,resulting in a significant decrease in elongation at fractures.For bubble-decorated GBs,the ultimate tensile strength increases with the increase in the misorientation angle.Interestingly,the coherent twin boundary∑3{112}was found to maintain relatively high fracture strength and maximum failure strain under the influence of helium bubbles. 展开更多
关键词 Helium bubble grain boundary EMBRITTLEMENT Reduced activation ferritic martensitic steel Molecular dynamics Bain path
下载PDF
Plasma induced grain boundaries to boost electrochemical reduction of CO_(2)to formate
5
作者 Guan Wang Shengtao Zhong +9 位作者 Xiaoqian Xiong Jing Li Fangyuan Wang Li Huo Daoxiong Wu Xingqi Han Zhitong Wang Qi Chen Xinlong Tian Peilin Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期636-643,I0014,共9页
Bismuth-based catalysts are highly promising for the electrochemical carbon dioxide reduction reaction(eCO_(2)RR)to formate product.However,achieving high activity and selectivity towards formate and ensuring long-ter... Bismuth-based catalysts are highly promising for the electrochemical carbon dioxide reduction reaction(eCO_(2)RR)to formate product.However,achieving high activity and selectivity towards formate and ensuring long-term stability remains challenging.This work reports the oxygen plasma inducing strategy to construct the abundant grain boundaries of Bi/BiO_x on ultrathin two-dimensional Bi nanosheets.The oxygen plasma-treated Bi nanosheet(OP-Bi)exhibits over 90%Faradaic efficiency(FE)for formate at a wide potential range from-0.5 to-1.1 V,and maintains a great stability catalytic performance without significant decay over 30 h in flow cell.Moreover,membrane electrode assembly(MEA)device with OPBi as catalyst sustains the robust current density of 100 mA cm^(-2)over 50 h,maintaining a formate FE above 90%.In addition,rechargeable Zn-CO_(2)battery presents the peak power density of1.22 mW cm^(-2)with OP-Bi as bifunctional catalyst.The mechanism experiments demonstrate that the high-density grain boundaries of OP-Bi provide more exposed active sites,faster electron transfer capacity,and the stronger intrinsic activity of Bi atoms.In situ spectroscopy and theo retical calculations further elucidate that the unsaturated Bi coordination atoms between the grain boundaries can effectively activate CO_(2)molecules through elongating the C-O bond,and reducing the formation energy barrier of the key intermediate(^(*)OCOH),thereby enhancing the catalytic performance of eCO_(2)RR to formate product. 展开更多
关键词 CO_(2)electroreduction Bi nanosheet grain boundary Unsaturation Bi atoms MEA device
下载PDF
Coercivity enhancement of sintered Nd–Fe–B magnets by grain boundary diffusion with Pr_(80-x)Al_(x)Cu_(20)alloys
6
作者 金哲欢 金磊 +10 位作者 丁广飞 郭帅 郑波 樊思宁 王志翔 范晓东 朱金豪 陈仁杰 闫阿儒 潘晶 刘新才 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期516-521,共6页
A grain boundary diffusion(GBD)process with Pr_(80-x)Al_(x)Cu_(20)(x=0,10,15,20)low melting point alloys was applied to commercial 42M sintered Nd–Fe–B magnets.The best coercivity enhancement of a diffused magnet wa... A grain boundary diffusion(GBD)process with Pr_(80-x)Al_(x)Cu_(20)(x=0,10,15,20)low melting point alloys was applied to commercial 42M sintered Nd–Fe–B magnets.The best coercivity enhancement of a diffused magnet was for the Pr_(65)Al_(15)Cu_(20)GBD magnet,from 16.38 kOe to 22.38 kOe.Microstructural investigations indicated that increase in the Al content in the diffusion source can form a continuous grain boundary(GB)phase,optimizing the microstructure to enhance the coercivity.The coercivity enhancement is mainly due to the formation of a continuous GB phase to separate the main phase grains.Exchange decoupling between the adjacent main phase grains is enhanced after the GBD process.Meanwhile,the introduction of Al can effectively promote the infiltration of Pr into the magnet,which increases the diffusion rate of rare-earth elements within a certain range.This work provides a feasible method to enhance coercivity and reduce the use of rare-earth resources by partial replacement of rare-earth elements with non-rare-earth elements in the diffusion source. 展开更多
关键词 Nd–Fe–B grain boundary diffusion coercivity enhancement grain boundary phase
下载PDF
The Influence of Crystallographic Orientation and Grain Boundary on Nanoindentation Behavior of Inconel 718 Superalloy Based on Crystal Plasticity Theory
7
作者 Wenbo Zhu Guangjian Yuan +2 位作者 Jianping Tan Shuai Chang Shantung Tu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期385-396,共12页
The crystal plasticity finite element method(CPFEM)is widely used to explore the microscopic mechanical behavior of materials and understand the deformation mechanism at the grain-level.However,few CPFEM simulation st... The crystal plasticity finite element method(CPFEM)is widely used to explore the microscopic mechanical behavior of materials and understand the deformation mechanism at the grain-level.However,few CPFEM simulation studies have been carried out to analyze the nanoindentation deformation mechanism of polycrystalline materials at the microscale level.In this study,a three-dimensional CPFEM-based nanoindentation simulation is performed on an Inconel 718 polycrystalline material to examine the influence of different crystallographic parameters on nanoindentation behavior.A representative volume element model is developed to calibrate the crystal plastic constitutive parameters by comparing the stress-strain data with the experimental results.The indentation force-displacement curves,stress distributions,and pile-up patterns are obtained by CPFEM simulation.The results show that the crystallographic orientation and grain boundary have little influence on the force-displacement curves of the nanoindentation,but significantly influence the local stress distributions and shape of the pile-up patterns.As the difference in crystallographic orientation between grains increases,changes in the pile-up patterns and stress distributions caused by this effect become more significant.In addition,the simulation results reveal that the existence of grain boundaries affects the continuity of the stress distribution.The obstruction on the continuity of stress distribution increases as the grain boundary angle increases.This research demonstrates that the proposed CPFEM model can well describe the microscopic compressive deformation behaviors of Inconel 718 under nanoindentation. 展开更多
关键词 Crystal plasticity grain boundary Crystallographic orientation NANOINDENTATION
下载PDF
Nano-capillary induced assemble of quantum dots on perovskite grain boundaries for efficient and stable perovskite solar cells
8
作者 Miaoyu Lin Jingjing He +10 位作者 Xinyi Liu Qing Li Zhanpeng Wei Yuting Sun Xuesong Leng Mengjiong Chen Zhuhui Xia Yu Peng Qiang Niu Shuang Yang Yu Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期595-601,I0014,共8页
In recent years, perovskite solar cells(PSCs) have propelled into the limelight owing to rapid development of efficiency;however, the abundant defects at the perovskite grain boundaries result in unwanted energy loss ... In recent years, perovskite solar cells(PSCs) have propelled into the limelight owing to rapid development of efficiency;however, the abundant defects at the perovskite grain boundaries result in unwanted energy loss and structural degradation. Here, the grain boundaries of perovskite polycrystalline films have been found to act as nanocapillaries for capturing perovskite quantum dots(PQDs), which enable the conformal assemble of PQDs at the top interspace between perovskite grains. The existence of PQDs passivated the surface defects, optimized the interfacial band alignments, and ultimately improved the power conversion efficiency from 19.27% to 22.47% in inverted PSCs. Our findings open up the possibility of selective assembly and structural modulation of the perovskite nanostructures towards efficient and stable PSCs. 展开更多
关键词 Perovskite solar cells Quantum dots CAPILLARITY grain boundary Passivation
下载PDF
Role of grain boundary networks in vortex motion in superconducting films
9
作者 刘宇 薛峰 苟晓凡 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期528-533,共6页
We study the vortex dynamics of the polycrystalline superconductors in the presence of both random point defects and the generated grain boundary(GB) networks with Voronoi diagram. The synergistic effect of adjacent G... We study the vortex dynamics of the polycrystalline superconductors in the presence of both random point defects and the generated grain boundary(GB) networks with Voronoi diagram. The synergistic effect of adjacent GBs on restricting the vortex motion in intragranular region is proposed and the corresponding intensity factor of the synergistic effect which characterizes the strength of the synergistic restriction of adjacent grain boundaries is also determined in the present work.The interconnected GBs offer easy-flow channels for vortices in addition to pinning effects on the vortices. The combined channels and the vortex flow patterns in the superconducting film are analyzed in detail from molecular dynamics simulations. Furthermore, it is discovered that the critical current increases with the decrease of magnetic field intensity,temperature, and the average grain size. The large number of vortices results in the enhanced repulsive interaction forcing the vortices to move out from the GBs. The thermal depinning from GBs leads to the lower Lorentz force range. The increase of the grain size causes the number of GBs to decrease. In summary, these effects leads the critical current to become a decreasing function of magnetic field, temperature, and grain size. 展开更多
关键词 grain boundary network Voronoi tessellation synergistic effect intensity factor of synergistic effect vortex motion combined channels
下载PDF
Optimization of the grain boundary diffusion process by doping gallium and zirconium in Nd–Fe–B sintered magnets
10
作者 李之藤 徐海波 +5 位作者 刘峰 赖荣舜 武仁杰 李志彬 张洋洋 马强 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期649-655,共7页
As the channel for grain boundary diffusion(GBD)in Nd–Fe–B magnets,grain boundary(GB)phases have a very important effect on GBD.As doping elements that are commonly used to regulate the GB phases in Nd–Fe–B sinter... As the channel for grain boundary diffusion(GBD)in Nd–Fe–B magnets,grain boundary(GB)phases have a very important effect on GBD.As doping elements that are commonly used to regulate the GB phases in Nd–Fe–B sintered magnets,the influences of Ga and Zr on GBD were investigated in this work.The results show that the Zr-doped magnet has the highest coercivity increment(7.97 kOe)by GBD,which is almost twice that of the Ga-doped magnet(4.32 kOe)and the magnet without Ga and Zr(3.24 kOe).Microstructure analysis shows that ZrB_(2)formed in the Zr-doped magnet plays a key role in increasing the diffusion depth.A continuous diffusion channel in the magnet can form because of the presence of ZrB_(2).ZrB_(2)can also increase the defect concentration in GB phases,which can facilitate GBD.Although Ga can also improve the diffusion depth,its effect is not very obvious.The micromagnetic simulation based on the experimental results also proves that the distribution of Tb in the Zr-doped magnet after GBD is beneficial to coercivity.This study reveals that the doping elements Ga and Zr in Nd–Fe–B play an important role in GBD,and could provide a new perspective for researchers to improve the effects of GBD. 展开更多
关键词 Nd–Fe–B sintered magnet ZrB_(2)phase grain boundary diffusion micromagnetic simulation
下载PDF
Behaviors of Lanthanum and Cerium on Grain Boundaries in Carbon Manganese Clean Steel 被引量:19
11
作者 林勤 郭锋 朱兴元 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第4期485-489,共5页
The behaviors of La and Ce on gram boundaries in carbon manganese clean steel were investigated by high-reso- lution transmission elecetron microscope (HRTEM), scanning elecetron microscopy(SEM ), energy dispersiv... The behaviors of La and Ce on gram boundaries in carbon manganese clean steel were investigated by high-reso- lution transmission elecetron microscope (HRTEM), scanning elecetron microscopy(SEM ), energy dispersive spectrometer (EDS) and X-ray diffraction(XRD) analysis. The existing forms of rare earths (RE) in clean steel were as follows: dissolved in sohd solution, forming inclusion or second phase containing RE (RE-Fe-P, La-P, Fe-La eutectic and Fe-Ce phase). The dissolved La or Ce segregated at grain boundaries. The segregation of both S and P at gram boundaries was reduced with suitable RE content. The impact toughness of the steel was improved obviously. La and Ce had effecets on purifying molten steel and modifying inclusions in clean steel, whereas with excessive La or Ce, La-Fe-P, La-P and Fe-La eutecetic phase or Ce-Fe-P and Fe-Ce intermetallic compound would form along grain boundaries, causing the impact energy to decrease significantly. 展开更多
关键词 LANTHANUM CERIUM grain boundaries carbon manganese clean steel rare earths
下载PDF
GRAIN BOUNDARY REORGANIZATION IN INTERMETALLIC COMPOUNDS NiAl AND FeAl 被引量:13
12
作者 M.D. Starostenkov, B. F. Demyanov, E.A. Kuklina and E. G. Sverdlova General Physics Department, Altai State Technical University, Lenin st 46, Barnaul, 656099, Russia 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期546-550,共5页
Computer simulation of grain boundaries(GB) was carried out in Fe and ordered alloys NiAl and FeAl with B2 superlattice. In this work symmetrical tilt grain boundaries =5[100](012) and = 5[100](013) are studied. The... Computer simulation of grain boundaries(GB) was carried out in Fe and ordered alloys NiAl and FeAl with B2 superlattice. In this work symmetrical tilt grain boundaries =5[100](012) and = 5[100](013) are studied. The atomic interaction has been described by Morse empirical central- force potentials.The atomic structure and energy of GB were investigated by means of construction of -surface using full atomic relaxation by method of molecular statics. It is shown that = 5 tilt GBs in Fe, Ni3Al and NiAl have several steady states. Comparison of our results with geometrical model of coincidence site lattice (CSL) was carried out. GBs in model CSL are unstable, the stabilization is achieved by additional displacement at some vector along the plane of defect. 展开更多
关键词 grain boundary computer simulation γ-surface stable state metastable state
下载PDF
CALCULATION OF SECOND PHASE PARTICLE-GRAIN BOUNDARY INTERACTION RANGE 被引量:6
13
作者 X.L. Wang Y.H. Wei +1 位作者 W. Wang L.F. Hou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第1期8-14,共7页
On the basis of the grain boundary equation by HeUman and corresponding analysis of Worner, this article deals with the interaction range between the second-phase particle (SPP) and grain boundary (GB) as viewed f... On the basis of the grain boundary equation by HeUman and corresponding analysis of Worner, this article deals with the interaction range between the second-phase particle (SPP) and grain boundary (GB) as viewed from the applicability of grain boundary equation. Also, a new expression describing the interaction range has been derived, which solves the problem in theory that the interaction range between SPP and GB can only be qualitatively analyzed previously. It is shown that given the interaction position between SPP and GB, the interaction range can be quantitatively determined by use of this expression. 展开更多
关键词 Second-phase particle grain boundary Pinning force Surface free energy
下载PDF
Effect of the frequency of high-angle grain boundaries on the corrosion performance of 5wt%Cr steel in a CO2 aqueous environment 被引量:3
14
作者 Hui-bin Wu Tao Wu +3 位作者 Gang Niu Tao Li Rui-yan Sun Yang Gu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第3期315-324,共10页
The corrosion behavior of 5 wt%Cr steel tempered at different temperatures was investigated by immersion testing and electrochemical testing in a CO_2 aqueous environment. When the tempering temperature exceeded 500℃... The corrosion behavior of 5 wt%Cr steel tempered at different temperatures was investigated by immersion testing and electrochemical testing in a CO_2 aqueous environment. When the tempering temperature exceeded 500℃, the corrosion rate increased. The corrosion layers consisted of Cr-rich compounds, which affected the corrosion behaviors of the steels immersed in the corrosive solution. The results of electrochemical experiments demonstrated that 5 wt%Cr steels with different microstructures exhibited pre-passivation characteristics that decreased their corrosion rate. Analysis by electron back-scattered diffraction showed that the frequency of high-angle grain boundaries(HAGBs) and the corrosion rate were well-correlated in specimens tempered at different temperatures. The corrosion rate increased with increasing HAGB frequency. 展开更多
关键词 CHROMIUM steel grain boundaries microstructure corrosion performance TEMPERING temperature
下载PDF
Effects of initial grain size and strain on grain boundary engineering of high-nitrogen CrMn austenitic stainless steel 被引量:2
15
作者 Zhen-hua Wang Jian-jun Qi Wan-tang Fu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第8期922-929,共8页
18 Mn18 Cr0.5 N steel with an initial grain size of 28–177 μm was processed by 2.5%–20% cold rolling and annealing at 1000°C for 24 h,and the grain boundary character distribution was examined via electron bac... 18 Mn18 Cr0.5 N steel with an initial grain size of 28–177 μm was processed by 2.5%–20% cold rolling and annealing at 1000°C for 24 h,and the grain boundary character distribution was examined via electron backscatter diffraction.Low strain(2.5%) favored the formation of low-Σ boundaries.At this strain,the fraction of low-Σ boundaries was insensitive to the initial grain size.However,specimens with fine initial grains showed decreasing grain size after grain boundary engineering processing.The fraction of low-Σ boundaries and the(Σ9 + Σ27)/Σ3 value decreased with increasing strain; furthermore,the specimens with fine initial grain size were sensitive to the strain.Finally,the effects of the initial grain size and strain on the grain boundary engineering were discussed in detail. 展开更多
关键词 grain boundary engineering grain boundary character distribution grain size STRAIN AUSTENITIC STAINLESS steel
下载PDF
Materials Design of Microstructure in Grain Boundary and Second Phase Particles 被引量:4
16
作者 Yaping ZONG and Liang ZUODepartment of Materials Science and Engineering, Northeastern University, Shenyang 110004, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第2期97-101,共5页
A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and. some our new research work on second phase strengthening... A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and. some our new research work on second phase strengthening mechanisms and mechanical property modeling of a particulate reinforced metal matrix composite. Due to development of computer technology, it is possible now for us to establish the relationship between microstructures and properties systematically and quantitatively by analytical and numerical modeling in the research scope of computerization materials. Discussions and examples on intellectual optimization of microstructure are presented on two aspects: grain boundary engineering and optimal geometry of particulate reinforcements in two-phase materials. 展开更多
关键词 Microstructure design Particulate reinforcement grain boundary engineering Strengthening mechanism Eshelby approach Numerical modelling
下载PDF
Effects of Interface and Grain Boundary on the Electrical Resistivity of Cu/Ta Multilayers 被引量:3
17
作者 M. Wang B. Zhang +2 位作者 G.P. Zhang Q.Y. Yu C.S. Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第5期699-702,共4页
The electrical resistivity of Cu/Ta multilayers deposited by radio-frequency magnetron sputtering on a polyimide substrate was investigated as a function of monolayer thickness. It is found that the resistivity of the... The electrical resistivity of Cu/Ta multilayers deposited by radio-frequency magnetron sputtering on a polyimide substrate was investigated as a function of monolayer thickness. It is found that the resistivity of the multilayer increases with decreasing monolayer thickness from 500 nm to 10 nm. Two significant effects of layer interface scattering and grain boundary scattering were identified to dominate electronic transportation behavior in the Cu/Ta multilayers at different length scales. The electrical resistivity of the multilayer with monolayer thickness ranging from nanometer to submicron scales can be well described by a newly-proposed Fuchs-Sandheimair (F-S) and Mayadas-Shatzkes (M-S) combined model. 展开更多
关键词 Electrical resistivity MULTILAYER INTERFACE grain boundary scattering Length scale
下载PDF
Electronic Theoretical Study of the Interaction between Rare Earth Elements and Impurities at Grain Boundaries in Steel 被引量:4
18
作者 刘贵立 张国英 李荣德 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第3期372-374,共3页
The model of dislocations was used to construct the model of grain boundary (GB) with pure rare earths, and rare earth elements and impurities. The influence of the interaction between rare earth elements and impuriti... The model of dislocations was used to construct the model of grain boundary (GB) with pure rare earths, and rare earth elements and impurities. The influence of the interaction between rare earth elements and impurities on the cohesive properties of 5.3° low angle GB of Fe was investigated by the recursion method. The calculated results of environment sensitive embeding energy( E ESE ) show that the preferential segregation of rare earth elements towards GBs exists. Calculations of bond order integrals (BOI) show that rare earth elements increase the cohesive strength of low angle GB, and impurities such as S, P weaken the intergranular cohesion of the GB. So rare earth element of proper quantity added in steel not only cleanses other harmful impurities off the GBs, but also enhances the intergranular cohesion. This elucidates the action mechanism of rare earth elements in steel from electronic level and offers theoretical evidence for applications of rare earth elements in steels. 展开更多
关键词 metal material grain boundary recursion method IMPURITIES the interaction between rare earth elements and impurities rare earths
下载PDF
Grain boundary restructuring and La/Ce/Y application in Nd–Fe–B magnets 被引量:3
19
作者 严密 金佳莹 马天宇 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期25-53,共29页
Since the 1980 s, Nd–Fe–B with largest energy product(BH)max approaching the theoretical limit has become the landmark of permanent magnetic material.The application spectrum for Nd–Fe–B continues to expand over t... Since the 1980 s, Nd–Fe–B with largest energy product(BH)max approaching the theoretical limit has become the landmark of permanent magnetic material.The application spectrum for Nd–Fe–B continues to expand over time both in the industrial and commercial sectors, which leads to growing research interests for solving the long-standing drawbacks of Nd–Fe–B, i.e., poor corrosion resistance, low coercivity, high Dy/Tb and low La/Ce/Y consumption.Concerning the above obstacles, we aim to present the novel grain boundary restructuring(GBR) approach, from GB design, processing, to structure evolution and property evaluation with a focus on the corrosion and coercivity mechanism of the restructured 2:14:1-typed magnets.Starting with an introduction to the fundamental of GBR, two representative examples,high-electrode-potential(Pr, Nd)32.5Fe62.0Cu5.5 and low-melting-point Dy71.5Fe28.5, are given with detailed descriptions of the advantages of GBR to enhance the intrinsic anti-corrosion stability and to strengthen the coercivity at low Dy consumption.Microstructure–property correlations are established to understand the critical importance of regulating the restructured GB phase to maximize the all-round performance of the 2:14:1-typed permanent magnets.Aiming at sustainable and balanced development of rare earth(RE) industry, the proceeding section proposes new prototypes of La–Ce and Y–Ce co-substitutions with dual benefits of stabilizing the 2:14:1 tetragonal phase and strengthening the intrinsic hard magnetism.The findings of additional REFe2 intergranular phase delight that the GBR approach also opens up a new horizon of research and application to develop high-performance La/Ce/Y-rich permanent magnets with deliberately tailored GB phase. 展开更多
关键词 grain boundary RESTRUCTURING COERCIVITY corrosion resistance Dy/Tb La/Ce/Y
下载PDF
Study on Grain Boundary Structure and Corrosion Behavior of Copper Alloys 被引量:3
20
作者 林乐耘 赵月红 《Rare Metals》 SCIE EI CAS CSCD 2000年第4期301-305,共5页
The grain boundary structure of Cu alloy was observed and the characteristic of the boundaries was studied,including 70∶30 cupronickel and 70∶30 brass. The results show that in the case of the 70∶30 cupronickel thi... The grain boundary structure of Cu alloy was observed and the characteristic of the boundaries was studied,including 70∶30 cupronickel and 70∶30 brass. The results show that in the case of the 70∶30 cupronickel thin platelets with nickel and iron enrichment in it precipitate intergranular so that the alloy was sensitive to seawater corrosion. In the case of 70∶30 brass the situation of grain boundary segregation of different inclusions made the corrosion resistance of the alloy even worse. All of those were discovered through the corrosion behavior of the two different copper alloys served in various environments. The experimental methods used here were, scanning electron microscopy(SEM), transmission electron microscopy(TEM) and energy dispersive of X ray(EDX). The intergranular corrosion morphologies of those copper alloys served in engineering or exposed to seawater for a long term were given. 展开更多
关键词 Copper alloys grain boundary intergranular corrosion
下载PDF
上一页 1 2 148 下一页 到第
使用帮助 返回顶部