BaTiO3/polyurethane (BaTiO3/PU) nanocomposite elastomers were prepared from barium titanate nanoparticles, polyester polyol, 2, 4-toluene diisocyanate, 1,4-butanediol and 1, 1, 1-trimethanol propane by the one-step ...BaTiO3/polyurethane (BaTiO3/PU) nanocomposite elastomers were prepared from barium titanate nanoparticles, polyester polyol, 2, 4-toluene diisocyanate, 1,4-butanediol and 1, 1, 1-trimethanol propane by the one-step method. The density, hardness and dielectric constant of BaTiO3/PU nanocomposite elastomers increased with the increase of the content of BaTiO3 nanoparticles in nanocomposites. The electrostrictive properties of BaTiO3/PU nanocomposite elastomers were investigated by the digital speckle correlation method (DSCM). It was found that through the on-and-off of the electric field, the electrostrictive strains of BaTiO3/PU nanocomposite elastomers revealed corresponding shrinkage and recovery. The electrostrictive coefficient of BaTiO3/PU nanocomposite elastomers was greater than that of the corresponding polyurethane elastomers, and the electrostrictive coefficient of composites decreased with the increase of the content of barium titanate nanoparticles.展开更多
A new method for measuring the characteristic of electrostriction by a digital speckle correlation method (DSCM) is presented. The in-plane displacement is obtained by using the DSCM, and the out-plane displacement ...A new method for measuring the characteristic of electrostriction by a digital speckle correlation method (DSCM) is presented. The in-plane displacement is obtained by using the DSCM, and the out-plane displacement is obtained by the geometrical relation of the triangle theory. In this application, high field electrostrictive strains of barium titanate/polyurethane elastomer composite materials are measured. The electrostrictive strain is evaluated when the application of an electric field is repeated, and then the electrostrictive coefficient of the sample is obtained. To improve the measuring accuracy, the bilinear interpolation of gray value is used to obtain the sub-pixel gray value. The results are compared with those obtained from the surface fitting algorithm. The experimental results demonstrate that the electrostrictive response of polyurethane increases with the introduction of barium titanate into polyurethane. And by using the DSCM, the measurement of the characteristic of electrostriction can be done quickly and accurately. The DSCM provides an effective tool for the evaluation of electrostrictive response.展开更多
CaSO 4 whisker reinforcing and toughening mechanisms for polyurethane elastomer were studied. The effects of dispersity of CaSO 4 whisker and interfacial bonding state on reinforcement and toughness were discussed.T...CaSO 4 whisker reinforcing and toughening mechanisms for polyurethane elastomer were studied. The effects of dispersity of CaSO 4 whisker and interfacial bonding state on reinforcement and toughness were discussed.The microanalyses showed that CaSO 4 whisker reinforcing mechanism for polyurethane elastomer mainly was load transferring and its toughening mechanism involved crack deflection and whisker pullout.The results indicated that composites with 5%-10% CaSO 4 whisker exhibited the best mechanical properties. Good bonding interface was formed between whisker and matrix after the surface of CaSO 4 whisker was treated by silane coupling agent.The fairly improved strength and toughness are attributed to the better interfacial bonding state.展开更多
A series of three cast polyurethane elastomers were prepared from 2,4-toluene diisocyanate (TDI) and 3,5-dimethyl-thioltoluenediamine (D MTDA) chain extender, with polyethylene adi-pate (PEA), polyoxytetramethylene gl...A series of three cast polyurethane elastomers were prepared from 2,4-toluene diisocyanate (TDI) and 3,5-dimethyl-thioltoluenediamine (D MTDA) chain extender, with polyethylene adi-pate (PEA), polyoxytetramethylene glycol (PTMG) and polycaprolactone (PCL) soft seg-ments. The polyol molecular weights em-ployed was 2000g/mol. The polyurethane elastomers were characterized by an elec-tronmechanical universal testing machine, an Akron abrasion loss tester, a LX-A Shore du-rometer, a rebound resilience equipment and a Dynamic- Mechanical analyzer. In addition, fractured surface of the polyurethane elas-tomers was investigated by a field emission scanning electron microscopy (SEM). The test results showed the PCL based elastomer ex-hibits the excellent tear and stress-strain properties that polyester based elastomers offer, while retaining superior compression set and resilience similar to polyether based elas-tomers. The static and dynamic properties of the PCL based elastomer were more suitable for dynamic applications. The SEM micro-graphs of all polyurethane samples indicated the existing of the microphase separation structure. Particles of the dispersed phase formed by the hard phase and crystalline part of the soft phase grows bigger with the in-creasing crystallinity of the soft segments. The hard domains are irregular shapes and with the sizes of a few micrometers.展开更多
A series of polyurethane elastomers (PUEs) were synthesized by using β-cyclodextrin (β-CD) as cross-linker from aliphatic, alicyclic, aromatic diisocyanates, and polyol. The PUEs were characterized by Fourier Transf...A series of polyurethane elastomers (PUEs) were synthesized by using β-cyclodextrin (β-CD) as cross-linker from aliphatic, alicyclic, aromatic diisocyanates, and polyol. The PUEs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), swelling test, hardness test and tensile test. The influence of diisocyanate on microphase separation and properties of PUEs was evaluated.展开更多
Two microcapsules with different paraffin phase changes were prepared using styrene-divinylbenzene copolymer and melamine resin as the capsule wall and paraffin(with a melting point of 50°C)as the capsule core.Th...Two microcapsules with different paraffin phase changes were prepared using styrene-divinylbenzene copolymer and melamine resin as the capsule wall and paraffin(with a melting point of 50°C)as the capsule core.The microcapsules were directly added to the hydroxyl terminated polybutadiene(HTPB)-polyurethane elastomer system to fabricate the polyurethane elastomer composites.The thermodynamic stability and mechanical properties of the material were then studied.The results show that the thermal stability of the polyurethane elastomer does not decrease after adding paraffin phase change microcapsules,and the thermal stability of the polyurethane elastomer with melamine resin as the wall increases.Tensile strength increased from 367 kPa to 797 kPa,and compression strength increased from 245.9 N to 344.7 N.In addition,capsule walls comprised different monomers/paraffin microcapsules of the copolymer of styrene and divinylbenzene.The optimal mechanical property was obtained at a monomer/paraffin ratio of 1:1.The compression strength increased and the tensile strength decreased.The tensile strength of the microcapsule with melamine resin capsule wall and the compression strength of the microcapsule with polystyrene capsule wall were considerably improved.展开更多
In recent years, sugar-derived polymer materials have been actively investigated. In research of polyurethane (PU), sugar has been used as a raw material because it has properties similar to polyol. However, the elast...In recent years, sugar-derived polymer materials have been actively investigated. In research of polyurethane (PU), sugar has been used as a raw material because it has properties similar to polyol. However, the elastic property of the obtained PU is substantially lost. Hence, the introduction of a sugar unit to PU while maintaining the elastic property remains a challenge in polymer chemistry. Here, we report the synthesis of a polyurethane elastomer (PUE) with a trehalose unit using raw materials such as an aromatic diisocyanate (4,4’-diphenylmethane diisocyanate), polyols including a polyether polyol (polytetramethylene glycol), two polyester polyols (polycaprolactone and polycarbonate diol), and trehalose. Novel PUEs with trehalose units are synthesized by a one-shot method. Trehalose, which has non-reducing properties, is used as sugar. The use of trehalose, which has been scarcely applied to PUE, is essential to obtain the desired PUEs with sugar units.展开更多
A series of PUEs which use β-CD as cross-linker were synthesized. Nanoindentation measurements of mechanical properties of these PUEs were made. Load and depth sensing indentation and nano DMA mode were used to evalu...A series of PUEs which use β-CD as cross-linker were synthesized. Nanoindentation measurements of mechanical properties of these PUEs were made. Load and depth sensing indentation and nano DMA mode were used to evaluate mechanical properties of PUEs in nano-scale. The difference between the results from two modes proved the microphase separation in PUEs and to investigate PUE from hard domains and soft domains was of great significance.展开更多
Hydrogen bond effects in thermoplastic polyurethane elastomers (TPU) with different chain extender structures and hard segment contents have been studied quantitatively by dynamic mechanical analysis. It has been foun...Hydrogen bond effects in thermoplastic polyurethane elastomers (TPU) with different chain extender structures and hard segment contents have been studied quantitatively by dynamic mechanical analysis. It has been found that the hydrogen bond effects in TPU decrease with the increase of temperature. The temperature dependence of hydrogen bonding in TPU’s can be described by the Arrhenius equation, and the activation energy of hydrogen bonding as well as the physical cross-link density have been calculated.展开更多
The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were stud...The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were studied by means of IR thermal analysis. The enthalpy and the entropy of the hydrogen bond dissociation were determined by the Van't Hoff plot.展开更多
Novel polyurethane-imide elastomers were prepared from isocyanates (hexamethylene, and 4,4’-dicyclohexyl diisocyanates), polytetramethylene glycol (PTMG1000, Mw = 1000), pyromellitic dianhydride, and 4,4’-diphenylme...Novel polyurethane-imide elastomers were prepared from isocyanates (hexamethylene, and 4,4’-dicyclohexyl diisocyanates), polytetramethylene glycol (PTMG1000, Mw = 1000), pyromellitic dianhydride, and 4,4’-diphenylmethane diamine. The formation of PUIEs was confirmed by Fourier transform infrared spectroscopy. The resultant films were studied through X-ray diffraction analysis, contact angle measurement, atomic force microscopy, solubility and swelling tests, tensile test, differential scanning calorimetry, dynamic mechanical analysis, and thermogravimetric analysis.展开更多
Polyaddition using isocyanate and polyol forms polyurethane elastomer (PUE). However, this method has rarely been applied to the construction of PUEs containing sucrose. Hence, the introduction of sucrose (disaccharid...Polyaddition using isocyanate and polyol forms polyurethane elastomer (PUE). However, this method has rarely been applied to the construction of PUEs containing sucrose. Hence, the introduction of sucrose (disaccharide) as a cross-linker via polyaddition remains a challenging subject in polymer chemistry. Here, we report the synthesis of PUEs using an aromatic isocyanate (4,4’-diphenylmethane diisocyanate), polyols including a polyether polyol (polytetramethylene glycol) and two polyester polyols (polycaprolactone and polycarbonate diols), and sucrose as a crosslinker by a one-shot method. The PUEs containing sucrose were successfully produced. The use of sucrose was essential to obtain the desired PUEs containing sucrose units in the main chain.展开更多
A series of polyurethane elastomers (PUEs) were synthesized from an aromatic diisocyanate (4, 4’-diphenylmethane diisocyanate);a polyether polyol (polytetramethylene glycol, molecular weight: 1000), polyester polyol ...A series of polyurethane elastomers (PUEs) were synthesized from an aromatic diisocyanate (4, 4’-diphenylmethane diisocyanate);a polyether polyol (polytetramethylene glycol, molecular weight: 1000), polyester polyol (poly-caprolactonediol, molecular weight: 1000, or polycarbonate diol, molecular weight: 1000);and β-cyclodextrin (β-CD) as a cross-linker. The effect of the polyol on the morphologies and chemical, thermal, and mechanical properties of the resultant β-CD-based PUEs were investigated in this study. The obtained films were characterized via solubility and swelling tests (chemical properties), differential scanning calorimetry (crystallinity degree), dynamic mechanical analysis (thermal stability), thermogravimetric analysis (thermal stability), tensile testing (mechanical properties), nuclear magnetic resonance spectroscopy, infrared spectroscopy, atomic force microscopy (morphology), contact angle determination (morphology), and scanning electron microscopy (morphology).展开更多
The polyaddition of isocyanate and polyol to form polyurethane elastomers has rarely been applied to the construction of chiral polyurethane elastomers. Hence, the introduction of chiral units via polyaddition remains...The polyaddition of isocyanate and polyol to form polyurethane elastomers has rarely been applied to the construction of chiral polyurethane elastomers. Hence, the introduction of chiral units via polyaddition remains a challenging subject in polymer chemistry. In this study, the synthesis of chiral polyurethane elastomers using an aromatic isocyanate, polyols (polyether and polyester polyols), and L(+)-, D(−)-, or meso-tartaric acid by a one-shot method is investigated. The polymers are characterized using FTIR and NMR spectroscopy, and their thermal properties are investigated by TGA, DMA, and DSC analyses. The optical activities of the polymers are confirmed by rotation. The use of chiral tartaric acids is essential to obtain the desired chiral polyurethane elastomers.展开更多
Polyurethane-imide elastomers (PUIEs) are formed from isocyanates, polyols, diamines, and acid anhydrides through liquid polymerization. However, thermoplastic PUIEs have rarely been reported because the synthesis of ...Polyurethane-imide elastomers (PUIEs) are formed from isocyanates, polyols, diamines, and acid anhydrides through liquid polymerization. However, thermoplastic PUIEs have rarely been reported because the synthesis of thermoplastic PUIEs remains a challenge in polymer chemistry. In this study, PUIEs were prepared from 4,4'-diphenylmethane diisocyanate, polyols (polytetramethylene glycol (Mw = 1000), polycaprolactone diol (Mw = 1000), and polycarbonate diol (Mw = 1000)), 4,4'-oxydianiline, and acid anhydrides (pyromellitic dianhydride and 4,4'-oxydiphtaric anhydride). The thermoplasticities of the resultant PUIEs were investigated, and only PUIEs synthesized using 4,4'-oxydiphtaric anhydride expressed thermoplasticity.展开更多
Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensi...Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity.展开更多
Thermoplastic polyurethane(PU)elastomers have attracted significant attention because of their many important industrial applications.However,the creation of fire-retardant and anti-dripping PU elastomers has remained...Thermoplastic polyurethane(PU)elastomers have attracted significant attention because of their many important industrial applications.However,the creation of fire-retardant and anti-dripping PU elastomers has remained a grant challenge due to the lack of crosslinking and weak interchain interactions.Herein,we report a mechanically robust,biodegradable,fire-retardant,and anti-dripping biobased PU elastomer with excellent biodegradability using an abietic acid-based compound as hard segments and polycaprolactone diol(PCL)as soft segments,followed by physically crosslinking with cellulose nanocrystals(CNC)through dynamic hydrogen-bonding.The resultant elastomer shows the balanced mechanical and fire-retardant properties,e.g.,a tensile strength and break strain of 9.1 MPa and 560%,a self-extinguishing ability(V-0 rating in UL-94 testing),and an anti-dripping behavior.Moreover,the as-developed PU can be completely degraded in 1.0 wt.%lipase solution at 37℃ in 60 days,arising from the catalytic and wicking effect of CNC on PU chains.This work provides an innovative and versatile strategy for constructing robust,fire-retardant,anti-dripping,and biodegradable PU elastomers,which hold great promise for practical applications in electronic and automobile sectors.展开更多
The packaging materials with cushioning performance are used to prevent the internal contents from being damaged by the impact and vibration of external forces.The polyurethane microcellular elastomers(PUMEs)can absor...The packaging materials with cushioning performance are used to prevent the internal contents from being damaged by the impact and vibration of external forces.The polyurethane microcellular elastomers(PUMEs)can absorb energy through cell collapse and molecular chain creep.In this study,PUMEs with different densities were investigated by scanning electron microscopy,dynamic mechanical analysis and dynamic compression tests.PUMEs exhibited significant im pact resistance and the maximum peak stress attenuation ratio reached 73.33%.The protective equipment was made by PUME with the optimal density of 600 kg/m^(3),and then the acceleration sensing device installed with the same protective equipment fell from a height of 3,5 and 10 m to evaluate the energy-absorbing property and reusability of PUMEs.The results showed that PUMEs equipment reduced the peak acceleration of the device by 93.84%,with a maximum deviation of 9%between actual test and simulation,and shortened the impact time of first landing by 57.39%.In addition,the equipment PUMEs equipment could effectively reduce the stress on the protected items.展开更多
Polyurethane coated urea slow/controlled release fertilizer was prepared based on urea granules, isocyanate, polyols and paraffin. Isocyanate reacted with polyols to synthesize the polyurethane skin layer on urea gran...Polyurethane coated urea slow/controlled release fertilizer was prepared based on urea granules, isocyanate, polyols and paraffin. Isocyanate reacted with polyols to synthesize the polyurethane skin layer on urea granules surface. Paraffin serves as a lubricant during syntheses of polyurethane skin layers. The structure and nutrient release characteristics of the polyurethane skin layers were investigated by FTIR, SEM and TG. Urea nitrogen slow-release behavior of the polyurethane coated urea was tested. The experimental results indicated that compact and dense polyurethane skin layers with a thickness of 10-15 lam were formed on urea surface, the urea nitrogen slow-release time can reach 40-50 days. Paraffin proves to play a key role in inhibiting water to penetrate into urea, but excessive addition would decrease the polyurethane crosslinking density.展开更多
Six kinds of polyurethane (PU) elastomers were prepared based on different polyesters, polyethers and chain extenders. The structure, mechanical properties and cold resistant properties of PU were systematically inv...Six kinds of polyurethane (PU) elastomers were prepared based on different polyesters, polyethers and chain extenders. The structure, mechanical properties and cold resistant properties of PU were systematically investigated by FTIR, XRD, DMTA,universal testing machine and flex ductility machine. The results show that Tg of soft segment is the main factor of the cold resistant properties of polyurethane elastomer. Compared with the same relative molecular mass of the polyester and the polyether, the polyether flexibility is better, the glass transition temperature (Tg) is lower and the cold resistant properties is remarkable, for example the cold resistant properties of PU based on poly (tetramethylene glycol), 1, 4-BG and MDI achieves the fifth level. The physics performances of polyurethane elastomers, such as breakdown strength, Young's modulus and the cold resistant properties, are all superior.展开更多
文摘BaTiO3/polyurethane (BaTiO3/PU) nanocomposite elastomers were prepared from barium titanate nanoparticles, polyester polyol, 2, 4-toluene diisocyanate, 1,4-butanediol and 1, 1, 1-trimethanol propane by the one-step method. The density, hardness and dielectric constant of BaTiO3/PU nanocomposite elastomers increased with the increase of the content of BaTiO3 nanoparticles in nanocomposites. The electrostrictive properties of BaTiO3/PU nanocomposite elastomers were investigated by the digital speckle correlation method (DSCM). It was found that through the on-and-off of the electric field, the electrostrictive strains of BaTiO3/PU nanocomposite elastomers revealed corresponding shrinkage and recovery. The electrostrictive coefficient of BaTiO3/PU nanocomposite elastomers was greater than that of the corresponding polyurethane elastomers, and the electrostrictive coefficient of composites decreased with the increase of the content of barium titanate nanoparticles.
基金Foundation items:The National Natural Science Foundation of China(No.10472026)the Natural Science Foundation of Jiangsu Province(No.BK2003063).
文摘A new method for measuring the characteristic of electrostriction by a digital speckle correlation method (DSCM) is presented. The in-plane displacement is obtained by using the DSCM, and the out-plane displacement is obtained by the geometrical relation of the triangle theory. In this application, high field electrostrictive strains of barium titanate/polyurethane elastomer composite materials are measured. The electrostrictive strain is evaluated when the application of an electric field is repeated, and then the electrostrictive coefficient of the sample is obtained. To improve the measuring accuracy, the bilinear interpolation of gray value is used to obtain the sub-pixel gray value. The results are compared with those obtained from the surface fitting algorithm. The experimental results demonstrate that the electrostrictive response of polyurethane increases with the introduction of barium titanate into polyurethane. And by using the DSCM, the measurement of the characteristic of electrostriction can be done quickly and accurately. The DSCM provides an effective tool for the evaluation of electrostrictive response.
基金FundedbytheNaturalScienceFoundationofShanxiProvince (No .9910 2 4 )
文摘CaSO 4 whisker reinforcing and toughening mechanisms for polyurethane elastomer were studied. The effects of dispersity of CaSO 4 whisker and interfacial bonding state on reinforcement and toughness were discussed.The microanalyses showed that CaSO 4 whisker reinforcing mechanism for polyurethane elastomer mainly was load transferring and its toughening mechanism involved crack deflection and whisker pullout.The results indicated that composites with 5%-10% CaSO 4 whisker exhibited the best mechanical properties. Good bonding interface was formed between whisker and matrix after the surface of CaSO 4 whisker was treated by silane coupling agent.The fairly improved strength and toughness are attributed to the better interfacial bonding state.
文摘A series of three cast polyurethane elastomers were prepared from 2,4-toluene diisocyanate (TDI) and 3,5-dimethyl-thioltoluenediamine (D MTDA) chain extender, with polyethylene adi-pate (PEA), polyoxytetramethylene glycol (PTMG) and polycaprolactone (PCL) soft seg-ments. The polyol molecular weights em-ployed was 2000g/mol. The polyurethane elastomers were characterized by an elec-tronmechanical universal testing machine, an Akron abrasion loss tester, a LX-A Shore du-rometer, a rebound resilience equipment and a Dynamic- Mechanical analyzer. In addition, fractured surface of the polyurethane elas-tomers was investigated by a field emission scanning electron microscopy (SEM). The test results showed the PCL based elastomer ex-hibits the excellent tear and stress-strain properties that polyester based elastomers offer, while retaining superior compression set and resilience similar to polyether based elas-tomers. The static and dynamic properties of the PCL based elastomer were more suitable for dynamic applications. The SEM micro-graphs of all polyurethane samples indicated the existing of the microphase separation structure. Particles of the dispersed phase formed by the hard phase and crystalline part of the soft phase grows bigger with the in-creasing crystallinity of the soft segments. The hard domains are irregular shapes and with the sizes of a few micrometers.
文摘A series of polyurethane elastomers (PUEs) were synthesized by using β-cyclodextrin (β-CD) as cross-linker from aliphatic, alicyclic, aromatic diisocyanates, and polyol. The PUEs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), swelling test, hardness test and tensile test. The influence of diisocyanate on microphase separation and properties of PUEs was evaluated.
基金The work is financially supported by the National Natural Science Foundation of China(No.:b030301,a020601)the Foundation project for basic discipline research of Inner Mongolia Agricultural University(jc2017005)the research start project for high level talent of Inner Mongolia Agricultural University(ndgcc2016-17).
文摘Two microcapsules with different paraffin phase changes were prepared using styrene-divinylbenzene copolymer and melamine resin as the capsule wall and paraffin(with a melting point of 50°C)as the capsule core.The microcapsules were directly added to the hydroxyl terminated polybutadiene(HTPB)-polyurethane elastomer system to fabricate the polyurethane elastomer composites.The thermodynamic stability and mechanical properties of the material were then studied.The results show that the thermal stability of the polyurethane elastomer does not decrease after adding paraffin phase change microcapsules,and the thermal stability of the polyurethane elastomer with melamine resin as the wall increases.Tensile strength increased from 367 kPa to 797 kPa,and compression strength increased from 245.9 N to 344.7 N.In addition,capsule walls comprised different monomers/paraffin microcapsules of the copolymer of styrene and divinylbenzene.The optimal mechanical property was obtained at a monomer/paraffin ratio of 1:1.The compression strength increased and the tensile strength decreased.The tensile strength of the microcapsule with melamine resin capsule wall and the compression strength of the microcapsule with polystyrene capsule wall were considerably improved.
文摘In recent years, sugar-derived polymer materials have been actively investigated. In research of polyurethane (PU), sugar has been used as a raw material because it has properties similar to polyol. However, the elastic property of the obtained PU is substantially lost. Hence, the introduction of a sugar unit to PU while maintaining the elastic property remains a challenge in polymer chemistry. Here, we report the synthesis of a polyurethane elastomer (PUE) with a trehalose unit using raw materials such as an aromatic diisocyanate (4,4’-diphenylmethane diisocyanate), polyols including a polyether polyol (polytetramethylene glycol), two polyester polyols (polycaprolactone and polycarbonate diol), and trehalose. Novel PUEs with trehalose units are synthesized by a one-shot method. Trehalose, which has non-reducing properties, is used as sugar. The use of trehalose, which has been scarcely applied to PUE, is essential to obtain the desired PUEs with sugar units.
文摘A series of PUEs which use β-CD as cross-linker were synthesized. Nanoindentation measurements of mechanical properties of these PUEs were made. Load and depth sensing indentation and nano DMA mode were used to evaluate mechanical properties of PUEs in nano-scale. The difference between the results from two modes proved the microphase separation in PUEs and to investigate PUE from hard domains and soft domains was of great significance.
文摘Hydrogen bond effects in thermoplastic polyurethane elastomers (TPU) with different chain extender structures and hard segment contents have been studied quantitatively by dynamic mechanical analysis. It has been found that the hydrogen bond effects in TPU decrease with the increase of temperature. The temperature dependence of hydrogen bonding in TPU’s can be described by the Arrhenius equation, and the activation energy of hydrogen bonding as well as the physical cross-link density have been calculated.
基金Supported by the Key Subject Construction Project of Shanghai Educational Com mittee(No. 13980 70 2 )
文摘The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were studied by means of IR thermal analysis. The enthalpy and the entropy of the hydrogen bond dissociation were determined by the Van't Hoff plot.
文摘Novel polyurethane-imide elastomers were prepared from isocyanates (hexamethylene, and 4,4’-dicyclohexyl diisocyanates), polytetramethylene glycol (PTMG1000, Mw = 1000), pyromellitic dianhydride, and 4,4’-diphenylmethane diamine. The formation of PUIEs was confirmed by Fourier transform infrared spectroscopy. The resultant films were studied through X-ray diffraction analysis, contact angle measurement, atomic force microscopy, solubility and swelling tests, tensile test, differential scanning calorimetry, dynamic mechanical analysis, and thermogravimetric analysis.
文摘Polyaddition using isocyanate and polyol forms polyurethane elastomer (PUE). However, this method has rarely been applied to the construction of PUEs containing sucrose. Hence, the introduction of sucrose (disaccharide) as a cross-linker via polyaddition remains a challenging subject in polymer chemistry. Here, we report the synthesis of PUEs using an aromatic isocyanate (4,4’-diphenylmethane diisocyanate), polyols including a polyether polyol (polytetramethylene glycol) and two polyester polyols (polycaprolactone and polycarbonate diols), and sucrose as a crosslinker by a one-shot method. The PUEs containing sucrose were successfully produced. The use of sucrose was essential to obtain the desired PUEs containing sucrose units in the main chain.
文摘A series of polyurethane elastomers (PUEs) were synthesized from an aromatic diisocyanate (4, 4’-diphenylmethane diisocyanate);a polyether polyol (polytetramethylene glycol, molecular weight: 1000), polyester polyol (poly-caprolactonediol, molecular weight: 1000, or polycarbonate diol, molecular weight: 1000);and β-cyclodextrin (β-CD) as a cross-linker. The effect of the polyol on the morphologies and chemical, thermal, and mechanical properties of the resultant β-CD-based PUEs were investigated in this study. The obtained films were characterized via solubility and swelling tests (chemical properties), differential scanning calorimetry (crystallinity degree), dynamic mechanical analysis (thermal stability), thermogravimetric analysis (thermal stability), tensile testing (mechanical properties), nuclear magnetic resonance spectroscopy, infrared spectroscopy, atomic force microscopy (morphology), contact angle determination (morphology), and scanning electron microscopy (morphology).
文摘The polyaddition of isocyanate and polyol to form polyurethane elastomers has rarely been applied to the construction of chiral polyurethane elastomers. Hence, the introduction of chiral units via polyaddition remains a challenging subject in polymer chemistry. In this study, the synthesis of chiral polyurethane elastomers using an aromatic isocyanate, polyols (polyether and polyester polyols), and L(+)-, D(−)-, or meso-tartaric acid by a one-shot method is investigated. The polymers are characterized using FTIR and NMR spectroscopy, and their thermal properties are investigated by TGA, DMA, and DSC analyses. The optical activities of the polymers are confirmed by rotation. The use of chiral tartaric acids is essential to obtain the desired chiral polyurethane elastomers.
文摘Polyurethane-imide elastomers (PUIEs) are formed from isocyanates, polyols, diamines, and acid anhydrides through liquid polymerization. However, thermoplastic PUIEs have rarely been reported because the synthesis of thermoplastic PUIEs remains a challenge in polymer chemistry. In this study, PUIEs were prepared from 4,4'-diphenylmethane diisocyanate, polyols (polytetramethylene glycol (Mw = 1000), polycaprolactone diol (Mw = 1000), and polycarbonate diol (Mw = 1000)), 4,4'-oxydianiline, and acid anhydrides (pyromellitic dianhydride and 4,4'-oxydiphtaric anhydride). The thermoplasticities of the resultant PUIEs were investigated, and only PUIEs synthesized using 4,4'-oxydiphtaric anhydride expressed thermoplasticity.
基金The authors greatly acknowledge the financial support from the National Natural Science Foundation of China(No.51873126)the Fundamental Research Funds for the Central Universities,as well as the funding from the Science&Technology Department(No.2021YFH0123)of Sichuan Province.
文摘Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity.
基金support of the National Natural Science Foundation of China(Nos.32301545 and 32071712)the Jiangsu Key Laboratory of Biomass Energy and Materials(No.JSBEM-S-202312)the Australian Research Council(Nos.FT190100188 and LP230100278).
文摘Thermoplastic polyurethane(PU)elastomers have attracted significant attention because of their many important industrial applications.However,the creation of fire-retardant and anti-dripping PU elastomers has remained a grant challenge due to the lack of crosslinking and weak interchain interactions.Herein,we report a mechanically robust,biodegradable,fire-retardant,and anti-dripping biobased PU elastomer with excellent biodegradability using an abietic acid-based compound as hard segments and polycaprolactone diol(PCL)as soft segments,followed by physically crosslinking with cellulose nanocrystals(CNC)through dynamic hydrogen-bonding.The resultant elastomer shows the balanced mechanical and fire-retardant properties,e.g.,a tensile strength and break strain of 9.1 MPa and 560%,a self-extinguishing ability(V-0 rating in UL-94 testing),and an anti-dripping behavior.Moreover,the as-developed PU can be completely degraded in 1.0 wt.%lipase solution at 37℃ in 60 days,arising from the catalytic and wicking effect of CNC on PU chains.This work provides an innovative and versatile strategy for constructing robust,fire-retardant,anti-dripping,and biodegradable PU elastomers,which hold great promise for practical applications in electronic and automobile sectors.
基金financially supported by the National Natural Science Foundation of China(No.22270509)。
文摘The packaging materials with cushioning performance are used to prevent the internal contents from being damaged by the impact and vibration of external forces.The polyurethane microcellular elastomers(PUMEs)can absorb energy through cell collapse and molecular chain creep.In this study,PUMEs with different densities were investigated by scanning electron microscopy,dynamic mechanical analysis and dynamic compression tests.PUMEs exhibited significant im pact resistance and the maximum peak stress attenuation ratio reached 73.33%.The protective equipment was made by PUME with the optimal density of 600 kg/m^(3),and then the acceleration sensing device installed with the same protective equipment fell from a height of 3,5 and 10 m to evaluate the energy-absorbing property and reusability of PUMEs.The results showed that PUMEs equipment reduced the peak acceleration of the device by 93.84%,with a maximum deviation of 9%between actual test and simulation,and shortened the impact time of first landing by 57.39%.In addition,the equipment PUMEs equipment could effectively reduce the stress on the protected items.
基金the National Key Technology R&D Program of the 11th Five-Year Period (No.2006BAD10B08)
文摘Polyurethane coated urea slow/controlled release fertilizer was prepared based on urea granules, isocyanate, polyols and paraffin. Isocyanate reacted with polyols to synthesize the polyurethane skin layer on urea granules surface. Paraffin serves as a lubricant during syntheses of polyurethane skin layers. The structure and nutrient release characteristics of the polyurethane skin layers were investigated by FTIR, SEM and TG. Urea nitrogen slow-release behavior of the polyurethane coated urea was tested. The experimental results indicated that compact and dense polyurethane skin layers with a thickness of 10-15 lam were formed on urea surface, the urea nitrogen slow-release time can reach 40-50 days. Paraffin proves to play a key role in inhibiting water to penetrate into urea, but excessive addition would decrease the polyurethane crosslinking density.
基金Funded by the Key Laboratory of Enviroment-friendly Polymer Materials of Anhui ProvinceNational Laboratory for Physical Sciences at the Microscale and Anli Artificial Leather co. ltd, China
文摘Six kinds of polyurethane (PU) elastomers were prepared based on different polyesters, polyethers and chain extenders. The structure, mechanical properties and cold resistant properties of PU were systematically investigated by FTIR, XRD, DMTA,universal testing machine and flex ductility machine. The results show that Tg of soft segment is the main factor of the cold resistant properties of polyurethane elastomer. Compared with the same relative molecular mass of the polyester and the polyether, the polyether flexibility is better, the glass transition temperature (Tg) is lower and the cold resistant properties is remarkable, for example the cold resistant properties of PU based on poly (tetramethylene glycol), 1, 4-BG and MDI achieves the fifth level. The physics performances of polyurethane elastomers, such as breakdown strength, Young's modulus and the cold resistant properties, are all superior.