Heat transfer behaviors of AZ80?1%Y alloy during low frequency electromagnetic casting (LFEC) and direct chilling casting were studied by in-situ temperature measurement. The results demonstrated that the low frequenc...Heat transfer behaviors of AZ80?1%Y alloy during low frequency electromagnetic casting (LFEC) and direct chilling casting were studied by in-situ temperature measurement. The results demonstrated that the low frequency electromagnetic field (EM) caused forced convection in the melt during LFEC. The forced convection led to uniform solidification velocity and temperature field. EM frequency, excitation current intensity and casting temperature could control the heat transfer behavior. The forced convection could improve the microstructure and degrade the difference in microstructure between the edge and center of billet. Appropriate parameters of low frequency EM for casting Mg alloy are 20 Hz of frequency and 60 A of electric current intensity.展开更多
The super high strength aluminum alloy ingots with 100 mm in diameter were cast by the process of low-frequency electromagnetic horizontal continuous casting (LFEHC) and the effect of electromagnetic field on the as-c...The super high strength aluminum alloy ingots with 100 mm in diameter were cast by the process of low-frequency electromagnetic horizontal continuous casting (LFEHC) and the effect of electromagnetic field on the as-cast microstructure was studied. Results show that microstructure of the sample prepared by the LFEHC process was greatly refined. Microstructures at the border and the center of the ingots were fine, uniform and rosette-shaped. Electromagnetic frequency plays a key role in microstructure refining. Fine and uniform microstructures can be obtained with optimal electromagnetic frequency. In this experiment, under a frequency of 30 Hz the microstructure was the finest and the most uniform.展开更多
With the aid of ANSYS software, the effect of different mould external part materials on magnetic flux density in the aluminum melt and magnetic field interaction of four coils applied with same currents were investig...With the aid of ANSYS software, the effect of different mould external part materials on magnetic flux density in the aluminum melt and magnetic field interaction of four coils applied with same currents were investigated. Calculating results showed that magnetic flux density in the aluminum melt was greatly improved and the magnetic field interaction among different coils was decreased when external part of mould is made of soft magnetic material. Based on the finding, a four-strand low-frequency electromagnetic casting 6063 aluminum alloy experiment was carried out in the laboratory . The experiment showed that the surface of the billet was smooth and had no exudations and cold shuts, the as-cast microstructures were fine, uniform, equiaxed, net-globular or globular under low-frequency electromagnetic field. The microstructure becomes finer with increased current value.展开更多
With the aid of ANSYS software, the effect of different mould external part materials on magnetic flux density and electromagnetic body force in the liquid aluminum was investigated. Calculated results showed that mag...With the aid of ANSYS software, the effect of different mould external part materials on magnetic flux density and electromagnetic body force in the liquid aluminum was investigated. Calculated results showed that magnetic flux density and electromagnetic body force in the aluminum melt are greatly increased when the external part of mould is made from A3 steel. A low-frequency electromagnetic casting 6063 aluminum alloy experiment was conducted in the laboratory with the current value of 120 A and frequency value of 15 Hz. The experiment showed that the microstructure and surface quality of ingots with mould outer part made from A3 steel under low-frequency electromagnetic field are better than that of ingots with mould outer part made from austenitic stainless steel. The surface of the ingots with mould outer part made from A3 steel is smooth and free from exudations and cold shut defects. The as-cast microstructure consists of fine, uniformly distributed equiaxed grains.展开更多
In this study,the low frequency electromagnetic casting(LFEC) technology was adopted to fabricate 2195 Al-Li alloy.The microstructure and solid solubility of as-cast 2195 alloys,as well as the second phase precipitati...In this study,the low frequency electromagnetic casting(LFEC) technology was adopted to fabricate 2195 Al-Li alloy.The microstructure and solid solubility of as-cast 2195 alloys,as well as the second phase precipitation and tensile properties after aging,were investiagated and compared with the counterpart direct chill casting 2195 alloy.Our results indicate that LFEC can significantly improve the microstructure and metallurgical quality of as-cast alloy,and increase the number density of θ’(Al2Cu) and T1(Al2CuLi) phases during aging treatment due to the enhanced solubilities of alloying elements.The tensile properties of 2195 aged alloy cast by LFEC were hence improved evidently.展开更多
The effects of a low frequency electromagnetic field and a low frequency electromagnetic vibration field applied during DC casting of AZ80 Mg on microstructures and alloying element distribution in ingots were investi...The effects of a low frequency electromagnetic field and a low frequency electromagnetic vibration field applied during DC casting of AZ80 Mg on microstructures and alloying element distribution in ingots were investigated.The experiments were performed both in absence and in the presence of the magnetic fields.In DC casting,the ingot exhibited coarse microstructure and severe segregation of Al.In the presence of solo low frequency alternating magnetic field,namely LFEC,the grains of the ingot was effectively refined and the segregation of Al was significantly decreased.In LFEVC,namely low frequency electromagnetic vibration casting,the ingot were significantly refined and the segregation was suppressed.With increasing the vibration intensities,the grain refinement and segregation suppression were increased.展开更多
The magnetic field interference was studied by numerical simulation and experimental examination during dual-ingot low-frequency electromagnetic casting process.By using ANSYS software package to mesh and compute,the ...The magnetic field interference was studied by numerical simulation and experimental examination during dual-ingot low-frequency electromagnetic casting process.By using ANSYS software package to mesh and compute,the magnetic field distribution of semi-continuous casting mold region was simulated.The calculated results were verified with the experimental ones and the effects of current direction,shield,silicon sheet and the coil distance on the distribution of magnetic field and ingot were observed.The result indicated that:regardless of current direction,the magnetic field interference among coils appears and the magnetic flux density weakens in the neighbor part of coils. When the current direction of adjacent coils is opposite,the magnetic intensity in ingots is stronger than that of in the same direction.As the distance between coils increases,the magnetic field reduction generated by interference decreases. The magnetic field interference can be alleviated by setting silicon steel sheets or shield.展开更多
The microstructures of the magnesium billets could be improved markedly by low-frequency electro-magnetic casting (LFEC) processing. In fact, the low-frequency electromagnetic field (LFEF) also has favorite effect on ...The microstructures of the magnesium billets could be improved markedly by low-frequency electro-magnetic casting (LFEC) processing. In fact, the low-frequency electromagnetic field (LFEF) also has favorite effect on the surface quality of billet. However, few public reports on the surface quality of LFEC magnesium billets could be found. Therefore, a new crystallizer with a metal internal sleeve to-gether with a kind of lubricant was designed aiming at lowing surface turning quantity, and the effects of casting velocity, electromagnetic condition and lubrication on the surface quality of magnesium billets were investigated. The results indicate that LFEF together with the lubricate condition would be responsible for the surface quality of the billets, and the high surface quality billets could be achieved by optimizing the casting conditions.展开更多
The Al-9Zn-2.8Mg-2.5Cu-xZr-ySc alloys (x=0, 0.15%, 0.15%; y=0, 0.05%, 0.15%), produced by low-frequent electromagnetic casting technology, were subjected to homogenization treatment, hot extrusion, solution and agin...The Al-9Zn-2.8Mg-2.5Cu-xZr-ySc alloys (x=0, 0.15%, 0.15%; y=0, 0.05%, 0.15%), produced by low-frequent electromagnetic casting technology, were subjected to homogenization treatment, hot extrusion, solution and aging treatment. The effects of minor Sc and Zr addition on microstructure, recrystallization and properties of alloys were studied by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Sc and Zr addition can refine grains of the as-cast alloy by precipitation of primary Al3(Sc,Zr) particles formed during solidification as heterogeneous nuclei. Secondary Al3(Sc,Zr) precipitates formed during homogenization treatment strongly pin the movement of dislocation and subgrain boundaries, which can effectively inhibit the alloys recrystallization. Compared with the alloy without Sc and Zr addition, the Al-Zn-Mg-Cu-Zr alloy with 0.05%Sc and 0.15%Zr shows the increase in tensile strength and yield strength by 172 MPa and 218 MPa, respectively. Strengthening comes from the contributions of precipitation, substructure and grain refining.展开更多
A continuum based model is presented which identifies a favorable set of operational conditions whereby an effective and efficient electromagnetically induced vibratory motion can proceed within an induction system.Sp...A continuum based model is presented which identifies a favorable set of operational conditions whereby an effective and efficient electromagnetically induced vibratory motion can proceed within an induction system.Specifically, an analytical assessment is presented for the electromagnetic field and the electromagnetically induced acoustic field, with parametric factors incorporated into the model to permit a normal modes solution for the acoustic field which here is sensitive to the compliance of both the molten metal and the wall,as well as electromagnetic properties of the metal.A parametric analysis is presented which identifies the importance of matching the mechanical impedances of the melt-wall configuration so that the generation of acoustic energy within the melt system can be more effectively utilized.Relatively straight-forward calculations,presented for the acoustic field,may provide a more computationally efficient means for implementing process simulation studies for these systems.展开更多
The motion of an inductively heated fluid volume of cylindrical shape is assessed based on time dependent oscillatory components of the Lorentz force.The applications considered include vibratory motion in a channel i...The motion of an inductively heated fluid volume of cylindrical shape is assessed based on time dependent oscillatory components of the Lorentz force.The applications considered include vibratory motion in a channel induction furnace and vibratory motion in an electromagnetically excited direct chill casting.The governing equations for the resulting magnetoacoustic problem are presented with the acoustic field solutions expressed in terms of normal modes. Closed form expressions are developed for the velocity,pressure and phase relationships between the excitation and the response.Calculations are prescribed for the pressure in both the channel furnace and the direct chill casting,with the calculational results from the casting application suggesting that,roughly,a two-fold increase in the effective peak acoustic pressure can be achieved by superimposing on the AC electromagnetic field a DC magnetic field of strength sufficient to match the peak alternating magnetic field.A procedure is also outlined for developing field descriptions of the velocity and pressure which can be effected in a MATLAB environ.展开更多
基金Project(2013CB632203)supported by the National Basic Research and Development Program of ChinaProject(2014028027)supported by the Liaoning Provincial Natural Science Foundation,China
文摘Heat transfer behaviors of AZ80?1%Y alloy during low frequency electromagnetic casting (LFEC) and direct chilling casting were studied by in-situ temperature measurement. The results demonstrated that the low frequency electromagnetic field (EM) caused forced convection in the melt during LFEC. The forced convection led to uniform solidification velocity and temperature field. EM frequency, excitation current intensity and casting temperature could control the heat transfer behavior. The forced convection could improve the microstructure and degrade the difference in microstructure between the edge and center of billet. Appropriate parameters of low frequency EM for casting Mg alloy are 20 Hz of frequency and 60 A of electric current intensity.
基金National "863" project (NO.2001AA332030) of China
文摘The super high strength aluminum alloy ingots with 100 mm in diameter were cast by the process of low-frequency electromagnetic horizontal continuous casting (LFEHC) and the effect of electromagnetic field on the as-cast microstructure was studied. Results show that microstructure of the sample prepared by the LFEHC process was greatly refined. Microstructures at the border and the center of the ingots were fine, uniform and rosette-shaped. Electromagnetic frequency plays a key role in microstructure refining. Fine and uniform microstructures can be obtained with optimal electromagnetic frequency. In this experiment, under a frequency of 30 Hz the microstructure was the finest and the most uniform.
文摘With the aid of ANSYS software, the effect of different mould external part materials on magnetic flux density in the aluminum melt and magnetic field interaction of four coils applied with same currents were investigated. Calculating results showed that magnetic flux density in the aluminum melt was greatly improved and the magnetic field interaction among different coils was decreased when external part of mould is made of soft magnetic material. Based on the finding, a four-strand low-frequency electromagnetic casting 6063 aluminum alloy experiment was carried out in the laboratory . The experiment showed that the surface of the billet was smooth and had no exudations and cold shuts, the as-cast microstructures were fine, uniform, equiaxed, net-globular or globular under low-frequency electromagnetic field. The microstructure becomes finer with increased current value.
基金The project (G199906490501) was supported by the National Key Fundamental Research and Development Program of China
文摘With the aid of ANSYS software, the effect of different mould external part materials on magnetic flux density and electromagnetic body force in the liquid aluminum was investigated. Calculated results showed that magnetic flux density and electromagnetic body force in the aluminum melt are greatly increased when the external part of mould is made from A3 steel. A low-frequency electromagnetic casting 6063 aluminum alloy experiment was conducted in the laboratory with the current value of 120 A and frequency value of 15 Hz. The experiment showed that the microstructure and surface quality of ingots with mould outer part made from A3 steel under low-frequency electromagnetic field are better than that of ingots with mould outer part made from austenitic stainless steel. The surface of the ingots with mould outer part made from A3 steel is smooth and free from exudations and cold shut defects. The as-cast microstructure consists of fine, uniformly distributed equiaxed grains.
基金supported by the National Key Research and Development Program of China (No. 2016YFB0300901)the National Natural Science Foundation of China (Nos. U1708251, 51574075, U1608252)+1 种基金the Liaoning Revitalization Talents Program (No. XLYC1807027)the Fundamental Research Funds for the Central Universities (No. N180905010).
文摘In this study,the low frequency electromagnetic casting(LFEC) technology was adopted to fabricate 2195 Al-Li alloy.The microstructure and solid solubility of as-cast 2195 alloys,as well as the second phase precipitation and tensile properties after aging,were investiagated and compared with the counterpart direct chill casting 2195 alloy.Our results indicate that LFEC can significantly improve the microstructure and metallurgical quality of as-cast alloy,and increase the number density of θ’(Al2Cu) and T1(Al2CuLi) phases during aging treatment due to the enhanced solubilities of alloying elements.The tensile properties of 2195 aged alloy cast by LFEC were hence improved evidently.
基金This work is financially supported by the Emphasis Project Fund of National Eleven Five-Year Scientific and Technical Support Plans ( No 2006BAE04B02)the National Natural Science Foundation of Chi-na ( No 50574028)+1 种基金the Programme of Introducing Talents of Discipline to Universities(No B07015) the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(No 704015)
文摘The effects of a low frequency electromagnetic field and a low frequency electromagnetic vibration field applied during DC casting of AZ80 Mg on microstructures and alloying element distribution in ingots were investigated.The experiments were performed both in absence and in the presence of the magnetic fields.In DC casting,the ingot exhibited coarse microstructure and severe segregation of Al.In the presence of solo low frequency alternating magnetic field,namely LFEC,the grains of the ingot was effectively refined and the segregation of Al was significantly decreased.In LFEVC,namely low frequency electromagnetic vibration casting,the ingot were significantly refined and the segregation was suppressed.With increasing the vibration intensities,the grain refinement and segregation suppression were increased.
基金Item Sponsored by National Natural Science Foundation of China(youth)[No.51004036]the Fundamental Research Funds[N110408005]
文摘The magnetic field interference was studied by numerical simulation and experimental examination during dual-ingot low-frequency electromagnetic casting process.By using ANSYS software package to mesh and compute,the magnetic field distribution of semi-continuous casting mold region was simulated.The calculated results were verified with the experimental ones and the effects of current direction,shield,silicon sheet and the coil distance on the distribution of magnetic field and ingot were observed.The result indicated that:regardless of current direction,the magnetic field interference among coils appears and the magnetic flux density weakens in the neighbor part of coils. When the current direction of adjacent coils is opposite,the magnetic intensity in ingots is stronger than that of in the same direction.As the distance between coils increases,the magnetic field reduction generated by interference decreases. The magnetic field interference can be alleviated by setting silicon steel sheets or shield.
基金Supported by the 11th Five-Year Plan of China (Grant No. 2006BAE04B01-5)the National Basic Research Program of China ("973") (Grant No. 2007CB613702)
文摘The microstructures of the magnesium billets could be improved markedly by low-frequency electro-magnetic casting (LFEC) processing. In fact, the low-frequency electromagnetic field (LFEF) also has favorite effect on the surface quality of billet. However, few public reports on the surface quality of LFEC magnesium billets could be found. Therefore, a new crystallizer with a metal internal sleeve to-gether with a kind of lubricant was designed aiming at lowing surface turning quantity, and the effects of casting velocity, electromagnetic condition and lubrication on the surface quality of magnesium billets were investigated. The results indicate that LFEF together with the lubricate condition would be responsible for the surface quality of the billets, and the high surface quality billets could be achieved by optimizing the casting conditions.
基金Project(0211002605132)supported by Institute of Multipurpose Utilization of Mineral Resources,Chinese Academy of Geological Sciences,ChinaProject(0211005303101)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2010BB4074)supported by Natural Science Foundation Project of CQ CSTC,ChinaProject(2010ZD-02)supported by State Key Laboratory for Advanced Metals and Materials,China
文摘The Al-9Zn-2.8Mg-2.5Cu-xZr-ySc alloys (x=0, 0.15%, 0.15%; y=0, 0.05%, 0.15%), produced by low-frequent electromagnetic casting technology, were subjected to homogenization treatment, hot extrusion, solution and aging treatment. The effects of minor Sc and Zr addition on microstructure, recrystallization and properties of alloys were studied by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Sc and Zr addition can refine grains of the as-cast alloy by precipitation of primary Al3(Sc,Zr) particles formed during solidification as heterogeneous nuclei. Secondary Al3(Sc,Zr) precipitates formed during homogenization treatment strongly pin the movement of dislocation and subgrain boundaries, which can effectively inhibit the alloys recrystallization. Compared with the alloy without Sc and Zr addition, the Al-Zn-Mg-Cu-Zr alloy with 0.05%Sc and 0.15%Zr shows the increase in tensile strength and yield strength by 172 MPa and 218 MPa, respectively. Strengthening comes from the contributions of precipitation, substructure and grain refining.
文摘A continuum based model is presented which identifies a favorable set of operational conditions whereby an effective and efficient electromagnetically induced vibratory motion can proceed within an induction system.Specifically, an analytical assessment is presented for the electromagnetic field and the electromagnetically induced acoustic field, with parametric factors incorporated into the model to permit a normal modes solution for the acoustic field which here is sensitive to the compliance of both the molten metal and the wall,as well as electromagnetic properties of the metal.A parametric analysis is presented which identifies the importance of matching the mechanical impedances of the melt-wall configuration so that the generation of acoustic energy within the melt system can be more effectively utilized.Relatively straight-forward calculations,presented for the acoustic field,may provide a more computationally efficient means for implementing process simulation studies for these systems.
基金the Center for International Programs at the University of Dayton for support that facilitated collaborative aspects of this study
文摘The motion of an inductively heated fluid volume of cylindrical shape is assessed based on time dependent oscillatory components of the Lorentz force.The applications considered include vibratory motion in a channel induction furnace and vibratory motion in an electromagnetically excited direct chill casting.The governing equations for the resulting magnetoacoustic problem are presented with the acoustic field solutions expressed in terms of normal modes. Closed form expressions are developed for the velocity,pressure and phase relationships between the excitation and the response.Calculations are prescribed for the pressure in both the channel furnace and the direct chill casting,with the calculational results from the casting application suggesting that,roughly,a two-fold increase in the effective peak acoustic pressure can be achieved by superimposing on the AC electromagnetic field a DC magnetic field of strength sufficient to match the peak alternating magnetic field.A procedure is also outlined for developing field descriptions of the velocity and pressure which can be effected in a MATLAB environ.