期刊文献+
共找到614篇文章
< 1 2 31 >
每页显示 20 50 100
Low-frequency pulsed electromagnetic field pretreated bone marrow-derived mesenchymal stem cells promote the regeneration of crush-injured rat mental nerve 被引量:12
1
作者 NaRi Seo Sung-Ho Lee +5 位作者 Kyung Won Ju JaeMan Woo BongJu Kim SoungMin Kim Jeong Won Jahng Jong-Ho Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第1期145-153,共9页
Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to promote the regeneration of injured peripheral nerves. Pulsed electromagnetic field (PEMF) reportedly promotes the proliferation and neuronal d... Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to promote the regeneration of injured peripheral nerves. Pulsed electromagnetic field (PEMF) reportedly promotes the proliferation and neuronal differentiation of BMSCs. Low-frequency PEMF can induce the neuronal differentiation of BMSCs in the absence of nerve growth factors. This study was designed to investigate the effects of low-frequency PEMF pretreatment on the proliferation and function of BMSCs and the effects of low-frequency PEMF pre-treated BMSCs on the regeneration of injured peripheral nerve using in vitro and in vivo experiments.In in vitro experiments, quantitative DNA analysis was performed to determine the proliferation of BMSCs, and reverse transcription-polymerase chain reaction was performed to detect S100 (Schwann cell marker), glial fibrillary acidic protein (astrocyte marker), and brain-derived neurotrophic factor and nerve growth factor (neurotrophic factors) mRNA expression. In the in vivo experiments, rat models of crush-injured mental nerve established using clamp method were randomly injected with low-frequency PEMF pretreated BMSCs, unpretreated BMSCs or PBS at the injury site (1 × 106 cells). DiI-labeled BMSCs injected at the injury site were counted under the fluorescence microscope to determine cell survival. One or two weeks after cell injection, functional recovery of the injured nerve was assessed using the sensory test with von Frey filaments. Two weeks after cell injection, axonal regeneration was evaluated using histomorphometric analysis and retrograde labeling of trigeminal ganglion neurons. In vitro experiment results revealed that low-frequency PEMF pretreated BMSCs proliferated faster and had greater mRNA expression of growth factors than unpretreated BMSCs. In vivo experiment results revealed that compared with injection of unpretreated BMSCs, injection of low-frequency PEMF pretreated BMSCs led to higher myelinated axon count and axon density and more DiI-labeled neurons in the trigeminal ganglia, contributing to rapider functional recovery of injured mental nerve. These findings suggest that low-frequency PEMF pretreatment is a promising approach to enhance the efficacy of cell therapy for peripheral nerve injury repair. 展开更多
关键词 nerve regeneration mesenchymal stem cells low-frequency pulsed electromagnetic field peripheral nerve injury crush-injured mental nerve
下载PDF
Role of pulsed electromagnetic fields after joint replacements
2
作者 Giada Lullini Eugenio Cammisa +3 位作者 Stefania Setti Iacopo Sassoli Stefano Zaffagnini Giulio Maria Marcheggiani Muccioli 《World Journal of Orthopedics》 2020年第6期285-293,共9页
Although the rate of patients reporting satisfaction is generally high after joint replacement surgery, up to 23% after total hip replacement and 34% after total knee arthroplasty of treated subjects report discomfort... Although the rate of patients reporting satisfaction is generally high after joint replacement surgery, up to 23% after total hip replacement and 34% after total knee arthroplasty of treated subjects report discomfort or pain 1 year after surgery. Moreover, chronic or subacute inflammation is reported in some cases even a long time after surgery. Another open and debated issue in prosthetic surgery is implant survivorship, especially when related to good prosthesis bone ingrowth. Pulsed Electro Magnetic Fields(PEMFs) treatment, although initially recommended after total joint replacement to promote bone ingrowth and to reduce inflammation and pain, is not currently part of usual clinical practice. The purpose of this review was to analyze existing literature on PEMFs effects in joint replacement surgery and to report results of clinical studies and current indications. We selected all currently available prospective studies or RCT on the use of PEMFs in total joint replacement with the purpose of investigating effects of PEMFs on recovery, pain relief and patients’ satisfaction following hip, knee or shoulder arthroplasty. All the studies analyzed reported no adverse effects, and good patient compliance to the treatment. The available literature shows that early control of joint inflammation process in the first days after surgery through the use of PEMFs should be considered an effective completion of the surgical procedure to improve the patient’s functional recovery. 展开更多
关键词 pulsed electromagnetic fields Joint replacement OSTEOINTEGRATION Prosthesis outcome PAIN INFLAMMATION
下载PDF
Promotional effects of exogenous stimulation with pulsed electromagnetic fields on skin wound healing in diabetic rats
3
作者 Yan Han Ze-Dong Yan Shu-Hua Ge 《Journal of Hainan Medical University》 2019年第5期1-5,共5页
Objective:The current study aims to identify the effects of exogenous application of pulsed electromagnetic fields on skin wound healing in diabetic rats, and thus provides experimental evidence for its more scientifi... Objective:The current study aims to identify the effects of exogenous application of pulsed electromagnetic fields on skin wound healing in diabetic rats, and thus provides experimental evidence for its more scientific clinical application in the future.Methods: The diabetic animal models were established via intraperitoneal injection of streptozotocin in 4-month-old male rats. Fourth eight rats were randomly assigned into the diabetes group (DM) and diabetes coupled with pulsed electromagnetic fields (DM+PEMF) group. Another 24 normal rats were used as the blank control group (Control). Then, all the rats in the three groups were subjected to dorsal surgery for the establishment of soft tissue wound model (circular wound with the diameter of 2 cm). Then, the rats in the DM+PEMF group were subjected to pulsed electromagnetic fields stimulation. Then, 6 rats in each group were sacrificed at Day 5, 12 and 19 post surgery. The glucose levels, wound closure, wound healing time and tissue tensile strength were examined and analyzed.Results: Pulsed electromagnetic fields significantly increased the wound closure rate in diabetic rats at Day 5, 12 and 19 post surgery, decreased overall wound healing period in diabetic rats, and also enhanced tissue tensile strength in diabetic rats at Day 5, 12 and 19 post surgery.Conclusion: Low-intensity pulsed electromagnetic fields can significantly accelerate diabetic wound healing process, and also improve diabetic tissue repair capacity. This study may be helpful for providing more scientific and reasonable experimental evidence for the treatment of pulsed electromagnetic fields on diabetic wound healing in clinics. 展开更多
关键词 pulsed electromagnetic fields Diabetes Sskin WOUND Tissue TENSILE strength GLUCOSE
下载PDF
Effect of low-frequency electromagnetic field on the as-cast microstructure of a new super high strength aluminum alloy by horizontal continuous casting 被引量:8
4
作者 Yubo ZUO Jianzhong CUI +3 位作者 Yang WANG Xiaotao LIU Zhihao ZHAO Haitao Zhang 《China Foundry》 SCIE CAS 2005年第1期48-51,共4页
The super high strength aluminum alloy ingots with 100 mm in diameter were cast by the process of low-frequency electromagnetic horizontal continuous casting (LFEHC) and the effect of electromagnetic field on the as-c... The super high strength aluminum alloy ingots with 100 mm in diameter were cast by the process of low-frequency electromagnetic horizontal continuous casting (LFEHC) and the effect of electromagnetic field on the as-cast microstructure was studied. Results show that microstructure of the sample prepared by the LFEHC process was greatly refined. Microstructures at the border and the center of the ingots were fine, uniform and rosette-shaped. Electromagnetic frequency plays a key role in microstructure refining. Fine and uniform microstructures can be obtained with optimal electromagnetic frequency. In this experiment, under a frequency of 30 Hz the microstructure was the finest and the most uniform. 展开更多
关键词 low-frequency electromagnetic field HORIZONTAL continuous CASTING microstructure AL-ZN-MG-CU alloy
下载PDF
The Effects of High-intensity Pulsed Electromagnetic Field on Proliferation and Differentiation of Neural Stem Cells of Neonatal Rats in vitro 被引量:8
5
作者 蒙德鹏 许涛 +2 位作者 郭风劲 印卫锋 彭涛 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2009年第6期732-736,共5页
The effects of high-intensity pulsed electromagnetic stimulation (HIPEMS) on proliferation and differentiation of neonatal rat neural stem cells in vitro were investigated. Neural stem cells derived from neonatal ra... The effects of high-intensity pulsed electromagnetic stimulation (HIPEMS) on proliferation and differentiation of neonatal rat neural stem cells in vitro were investigated. Neural stem cells derived from neonatal rats were exposed to 0.1 Hz, 0.5–10 Tesla (T) [8 groups of B–I, respectively], 5 stimuli of HIPEMF. The sham exposure controls were correspondingly established. Inverted phase contrast microscope was used to observe the cultured cells, MTT assay to detect the viability of the cells as expressed by absorbance (A) value, and flow cytometry to measure differentiation of neural stem cells. The results showed that A values of neural stem cells in both 3.0 T and 4.0 T groups were significantly higher than the other groups 24 to 168 h post HPEMS, indicating a strong promotion of the growth of neural stem cells (P〈0.05). The A values of neural stem cells in the 6.0 T, 8.0 T, and 10.0 T groups were lower than the sham exposure control group, indicating a restraint of the growth of neural stem cells. The rate of neuron-specific enolase-positive neurons revealed by flow cytometry in HPEMS groups was the same as that in control group (P〉0.05). It was suggested that 0.1 Hz, 5 pulses stimulation of HPEMS within certain scale of intensity (0.5–10.0 T), significantly promoted the growth of neural stem cells with the rational intensity being 4.0 T. 展开更多
关键词 neural stem cells high-intensity pulsed electromagnetic field cell proliferation RAT
下载PDF
Research on Strong Pulsed Electromagnetic Field Test Method by Time-frequency Combination 被引量:4
6
作者 TANG Shiping CAI Mingjuan LI Jianxuan 《高电压技术》 EI CAS CSCD 北大核心 2013年第10期2471-2476,共6页
Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic ... Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic field's peak both in the time domain and in the frequency domain.With regard to this problem,after analyzing the time-domain and the frequency-domain characteristics of radar pulsed signals,we propose a new time-frequency combination test method based on the correction of the test parameters,as well as its correction method at different bandwidths.The test method is applied in a quick test of a high-power pulsed radar signal,and the corrected results have error less than 1 dB in both the time domain and the frequency domain,which indicates that the proposed time-frequency combined method is effective in testing strong and pulsed electromagnetic fields. 展开更多
关键词 脉冲电磁场 测试方法 时频 频域特性 雷达信号 高功率脉冲 传统方法 脉冲信号
下载PDF
Effect of Occupational Extremely Low-Frequency Electromagnetic Field Exposure on the Thyroid Gland of Workers:A Prospective Study
7
作者 Yuan-yuan FANG Qian TU +5 位作者 Yu-ting ZHANG Jian LIU Hui-guo LIU Zhi-hua ZHAO Hua WU Tie-jun YIN 《Current Medical Science》 SCIE CAS 2022年第4期817-823,共7页
Objective:The aim of this study was to investigate the biological effects of occupational extremely low-frequency electromagnetic field(ELF-EMF)exposure on the thyroid gland.Methods:We conducted a prospective analysis... Objective:The aim of this study was to investigate the biological effects of occupational extremely low-frequency electromagnetic field(ELF-EMF)exposure on the thyroid gland.Methods:We conducted a prospective analysis of 85 workers(exposure group)exposed to an ELF-EMF(100μT,10-100 Hz)produced by the electromagnetic aircraft launch system and followed up on thyroid function indices,immunological indices,and color Doppler images for 3 years.Additionally,116 healthy volunteers were randomly selected as controls(control group),the thyroid function of whom was compared to the exposure group.Results:No significant difference was observed in thyroid function between the exposure and control groups.During the follow-up of the exposure group,the serum free triiodothyronine(FT3)level was found to slowly decrease and free thyroxine(FT4)level slowly increase with increasing exposure time.However,no significant difference was found in thyroid-stimulating hormone(TSH)over the three years,and no significant difference was observed in the FT3,FT4 and TSH levels between different exposure subgroups.Furthermore,no significant changes were observed in thyroid autoantibody levels and ultrasound images between subgroups or over time.Conclusion:Long-term exposure to ELF-EMF may promote thyroid secretion of T4 and inhibit deiodination of T4 to T3.ELF-EMF has no significant effect on thyroid immune function and morphology. 展开更多
关键词 extremely low-frequency electromagnetic field thyroid function thyroid autoantibody thyroid ultrasound thyroid nodule
下载PDF
Protective effects of blueberry anthocyanin extracts on hippocampal neuron damage induced by extremely low-frequency electromagnetic field
8
作者 Xiyun Sun Zihan Xu +1 位作者 Yuehua Wang Ning Liu 《Food Science and Human Wellness》 SCIE 2020年第3期264-271,共8页
The protective effects of blueberry anthocyanin extracts against damage induced by extremely lowfrequency electromagnetic field(ELF-EMF)were investigated in a rat model.Wistar rats were exposed to ELF-EMF with or with... The protective effects of blueberry anthocyanin extracts against damage induced by extremely lowfrequency electromagnetic field(ELF-EMF)were investigated in a rat model.Wistar rats were exposed to ELF-EMF with or without the administration of blueberry anthocyanin extracts(50,100,and 200 mg/kg per day intragastrically once a day)for 30 days.Blueberry anthocyanin extracts supplementation inhibited the decrease in Nissl substance levels,cell membrane integrity,and mitochondrial membrane potential induced by ELF-EMF;prevented the increase in nitric oxide,malondialdehyde,and Ca2+concentrations;suppressed superoxide dismutase and glutathione depletion;and enhanced the cognitive ability of the rats exposed to ELF-EMF.The protective effects of blueberry anthocyanin extracts against hippocampal neuron injury caused by ELF-EMF were dose-dependent.These results demonstrated that blueberry anthocyanin extracts suppress hippocampal neuron injury caused by ELF-EMF by inhibiting cell membrane damage and oxidative stress pathways,and suggested that blueberry anthocyanin treatment potentially prevents hippocampal neuron injury. 展开更多
关键词 Blueberry anthocyanin extracts Protective effects Extremely low-frequency electromagnetic field Hippocampal neuron
下载PDF
Treatment time influences the effects of a low-frequency pulsed electric field on synthesis of tyrosine hydroxylase and dopamine in PC12 cells
9
作者 Hongfeng Zhang Yuanzhang Fang +1 位作者 Ying Liu Hongxing Qi 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第4期291-294,共4页
BACKGROUND: Electromagnetic radiation can influence dopamine (DA) synthesis in brain tissues or ceils, but electromagnetic frequencies, intensities, and radiation time can produce different effects. In addition, th... BACKGROUND: Electromagnetic radiation can influence dopamine (DA) synthesis in brain tissues or ceils, but electromagnetic frequencies, intensities, and radiation time can produce different effects. In addition, the signal pathway by which electromagnetic radiation influences DA synthesis remains controversial. OBJECTIVE: To determine tyrosine hydroxylase (TH) expression in PC12 cells and DA levels in cell culture media after different periods of low-frequency pulsed electric field (LF-PEF) stimulation, and to determine how LF-PEF signaling stimulates TH synthesis using inhibitors. DESIGN, TIME AND SETTING: A parallel, controlled, cell experiment was performed at the Laboratory of Cell Biology, School of Life Science, East China Normal University, between January and October 2006. MATERIALS: PC12 cells were purchased from the Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China. Nerve growth factor was purchased from PeproTech, USA. The protein kinase A inhibitor, H-89, and mitogen-activated protein kinase kinase inhibitor, U0126, were purchased from Sigma, USA. METHODS: (1) Following routine culture in Dulbecco's modified eagle medium, primary PC12 cells were stimulated under LF-PEF (pulse frequency 50.Hz, pulse width 20 μs, peak field strength 1 V/m) for 5, 10, 15, 20, and 30 minutes. (2) Inhibitors (H-89 or U0126, 1 μmol/L) were added 30 minutes before LF-PEF stimulation for 10 minutes. MAIN OUTCOME MEASURES: (1) TH expression was determined by Western blot in PC12 cells at 0.5, 1,2, 3, and 4 days after LF-PEF stimulation. Similarly, DA was measured by high-performance liquid chromatography in media at 2, 3, 4, or 5 days after LF-PEE (2) TH expression was detected 1 day after H-89 or U0126 treatment and LF-PEE RESULTS: (1) Short-term LF-PEF stimulation (5 and 10 minutes) increased TH expression and media DA levels after short-term culture (2 days) (P 〈 0.01), but both parameters decreased with longer culture (3 4 days) (P 〈 0.01). Long-term LF-PEF stimulation (15, 20, or 30 minutes) decreased TH and DA synthesis, followed by a rapid increase (P 〈 0.01). (2) H89 could completely inhibit TH expression in PC12 cells stimulated by LF-PEF for 10 minutes, while the inhibition rate of U0126 was 53.2%. CONCLUSION: Short-term LF-PEF first promotes then inhibits, while long-term LF-PEF first inhibits then promotes, TH and DA synthesis. LF-PEF stimulation regulates TH expression primarily by activating protein kinase A to regulate DA synthesis. 展开更多
关键词 low-frequency pulsed electric field PC12 cells tyrosine hydroxylase DOPAMINE protein kinase A pathway Ras/mitogen-activated protein kinase kinase 1/2 pathway
下载PDF
Cytogenetic Effects of Pulsing Electromagnetic Field on Domestic Pig Lymphocytes in Vitro 被引量:2
10
作者 ZOU Fang-Dong XU Liu +1 位作者 WANG Zi-Shu WANG Xi-Zhong 《Zoological Research》 CAS CSCD 北大核心 2001年第2期89-92,T001,共5页
The effects of pulsing electromagnetic fields(PEMFs)on cells are very important subjects in the field of bioelectromagnetics.In this experiment,the cytogenetic effects of PEMF on domestic pig lymphocytes were tested i... The effects of pulsing electromagnetic fields(PEMFs)on cells are very important subjects in the field of bioelectromagnetics.In this experiment,the cytogenetic effects of PEMF on domestic pig lymphocytes were tested in vitro.Pig lymphocytes in RPMI 1640 medium were exposed to PEMFs of 100 kHz and 200 kHz for 12,24 and 48 hours.Chromosomal aberrations(aneuploidy,breaks,gaps,et al)were significantly increased in exposed cultures,and of these aberrations,56%chromosomal or chromatid breaks and 42%gaps induced by PEMFs were the points of pig chromosomal fragile sites.The baseline frequency of sister chromatid exchange(SCE)increased after exposing lymphocytes continuously to PEMFs of 100 kHz and 200 kHz for 48 hours.These results suggested that the exposure to PEMFs might induce a type of DNA lesion and chromosomal aberrations. 展开更多
关键词 pulsing electromagnetic fields Peripheral blood lymphocyte Chromosomal aberrations Fragile sites
下载PDF
Effect of pulsed electromagnetic frequency on the microstructure, wear and solid erosion resistance of CrAlN coatings deposited by arc ion plating 被引量:1
11
作者 WANG Di LIN Song-sheng +5 位作者 LIU Ling-yun XUE Yu-na YANG Hong-zhi YANG Chao YANG Zhen ZHOU Ke-song 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期3065-3076,共12页
In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magne... In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magnet.The effects of electromagnetic frequency on the morphology,microstructure,nano-hardness and elastic modulus of the coatings were investigated by scanning electron microscope(SEM),X-ray diffraction(XRD)and nano-indenter.This paper has mainly studied the influence of CrAlN coatings which are prepared at various electromagnetic frequencies on the wear and erosion resistance through a series of wear and solid particle erosion experiments.It was found that the deposition rate of CrAlN coatings increases with the increase of electromagnetic frequency.And CrAlN coatings all preferentially grew along the(111)crystal plane.At 16.7 Hz,with the increase of pulsed electromagnetic frequency,the hardness is the highest(23.6 GPa)and the adhesion is the highest(41.5 N).In addition,the coating deposition exhibited the best wear and solid erosion resistance at 16.7 Hz and 33.3 Hz,the friction coefficient is about 0.35,and the erosion rate is about 0.2μm/g at 30°and less than 1μm/g at 90°,respectively.These results indicate that the CrAlN coating formed at an appropriate pulsed electromagnetic frequency can achieve excellent mechanical properties,wear and solid erosion resistance. 展开更多
关键词 CrAlN coating compound magnetic field pulse electromagnetic frequency mechanical property
下载PDF
Experiment on low-frequency electromagnetic waves propagating in shock-tube-generated magnetized cylindrical enveloping plasma
12
作者 Shaoshuai GUO Kai XIE +2 位作者 Bin SUN Ruoyao XI Yan LIU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第7期67-77,共11页
We propose a method of applying a static magnetic field to reduce the attenuation of the magnetic field component(SH) of low-frequency electromagnetic(LF EM) waves in dense plasma. The principle of this method is to a... We propose a method of applying a static magnetic field to reduce the attenuation of the magnetic field component(SH) of low-frequency electromagnetic(LF EM) waves in dense plasma. The principle of this method is to apply a static magnetic field to limit electron movement, thereby increasing the equivalent resistance and thus reducing the induced current and SH. We consider the static magnetic field acting on the plasma of the entire induced current loop rather than on the local plasma, where the induced current is excited by the magnetic field component of LF EM waves. Analytical expressions of SH suitable for magnetized cylindrical enveloping plasma are derived by adopting an equivalent circuit approach, by which SHis calculated with respect to various plasma parameter settings. The results show that SH can be reduced under a static magnetic field and the maximum magnetic field strength that mitigates blackout is less than 0.1 T. Experiments in which LF EM waves propagate in a shock-tubegenerated magnetized cylindrical enveloping plasma are also conducted. SH measured under the magnetic field(the magnetic field strength B0 acting on the magnetic field probe was about0.06 T) reduces at f=10 MHz and f=30 MHz when ne≈1.9×1013 cm-3, which is consistent with theoretical results. The verification of the theory thus suggests that applying a static magnetic field with a weak magnetic field has the potential to improve the transmission capacity of LF EM waves in dense plasma. 展开更多
关键词 static magnetic field shock tube low-frequency electromagnetic waves cylindrical enveloping plasma
下载PDF
A Pulsed Electromagnet for Laser Wakefield Electron Acceleration Experiments
13
作者 Septimiu Balascuta 《Journal of Electromagnetic Analysis and Applications》 2016年第3期33-41,共9页
Laser Wakefield plasma acceleration of electrons to energies above 10 GeV, may be possible in the new high power Laser beam facilities. The design of an Electron Spectrometer with an electro-magnet with adjustable mag... Laser Wakefield plasma acceleration of electrons to energies above 10 GeV, may be possible in the new high power Laser beam facilities. The design of an Electron Spectrometer with an electro-magnet with adjustable magnetic field is proposed for the characterization of electron energy spectrum with a precision better than 10% for the entire energy range from 0.5 GeV to 38 GeV. The expected precision in the measurement of the electron energy is calculated as a function of the magnetic field, of the electron energy and of the magnet length. To outline the advantages offered by a pulsed electromagnet with high magnetic fields, the mass and the electric power lost in the coils of a 4 m long electromagnet with continuous current and Iron yoke are calculated. 展开更多
关键词 Electron Spectrometer electromagnet Electron Beam Magnetic field pulsed Electric Current DC Electric Current
下载PDF
Pulsed electromagnetic field stimulation enhances neurite outgrowth in neural cells and modulates inflammation in macrophages
14
作者 Francesco Fontana Andrea Cafarelli +4 位作者 Francesco Iacoponi Soria Gasparini Tiziano Pratellesi Abigail NKoppes Leonardo Ricotti 《Engineered Regeneration》 EI 2024年第1期80-91,共12页
Nerve regeneration following traumas remains an unmet challenge.The application of pulsed electromagnetic field(PEMF)stimulation has gained traction for a minimally invasive regeneration of nerves.However,a sys-temati... Nerve regeneration following traumas remains an unmet challenge.The application of pulsed electromagnetic field(PEMF)stimulation has gained traction for a minimally invasive regeneration of nerves.However,a sys-tematic exploration of different PEMF parameters influencing neuron function at a cellular level is not available.In this study,we exposed neuroblastoma F11 cells to PEMF to trigger beneficial effects on neurite outgrowth.Different carrier frequencies,pulse repetition frequencies,and duty cycles were screened with a custom ad hoc setup to find the most influential parameters values.A carrier frequency of 13.5 MHz,a pulse repetition frequency of 20 Hz,and a duty cycle of 10%allowed maximal neurite outgrowth,with unaltered viability with respect to non-stimulated controls.Furthermore,in a longer-term analysis,such optimal conditions were also able to in-crease the gene expression of neuronal expression markers NeuN and Tuj-1 and transcription factor Ngn1.Finally,the same optimal stimulation conditions were also applied to THP-1 macrophages,and both pro-inflammatory(TNF-α,IL-1β,IL-6,IL-8)and anti-inflammatory cytokines(IL-10,CD206)were analyzed.The optimal PEMF stimulation parameters did not induce differentiation towards an M1 macrophage phenotype,decreased IL-1β and IL-8 gene expression,decreased TNF-α and IL-8 cytokine release in M1-differentiated cells,increased IL-10 and CD206 gene expression,as well as IL-10 cytokine release in M0 cells.The specific PEMF stimulation regime,which is optimal in vitro,might have a high potential for a future in vivo translation targeting neural regeneration and anti-inflammatory action for treating peripheral nerve injuries. 展开更多
关键词 Nerve regeneration Biophysical stimulation pulsed electromagnetic fields(PEMF) Neurite outgrowth ANTI-INFLAMMATORY Peripheral nerve injuries
原文传递
The pulsed high magnetic field facility and scientific research at Wuhan National High Magnetic Field Center 被引量:5
15
作者 Xiaotao Han Tao Peng +13 位作者 Hongfa Ding Tonghai Ding Zengwei Zhu Zhengcai Xia Junfeng Wang Junbo Han Zhongwen Ouyang Zhenxing Wang Yibo Han Houxiu Xiao Quanliang Cao Yiliang Lv Yuan Pan Liang Li 《Matter and Radiation at Extremes》 SCIE EI CAS 2017年第6期278-286,共9页
Wuhan National High Magnetic Field Center(WHMFC)at Huazhong University of Science and Technology is one of the top-class research centers in the world,which can offer pulsed fields up to 90.6 T with different field wa... Wuhan National High Magnetic Field Center(WHMFC)at Huazhong University of Science and Technology is one of the top-class research centers in the world,which can offer pulsed fields up to 90.6 T with different field waveforms for scientific research and has passed the final evaluation of the Chinese government in 2014.This paper will give a brief introduction of the facility and the development status of pulsed magnetic fields research at WHMFC.In addition,it will describe the application development of pulsed magnetic fields in both scientific and industrial research. 展开更多
关键词 pulsed high magnetic field pulsed magnet Scientific research electromagnetic technology
下载PDF
Inverse problem of pulsed eddy current field of ferromagnetic plates 被引量:2
16
作者 陈兴乐 雷银照 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期40-47,共8页
To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy curre... To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate. 展开更多
关键词 pulsed eddy current electromagnetic field inverse problem ferromagnetic plate wall thickness measurement
下载PDF
Clinical efficacy of electromagnetic field therapy combined with traditional Chinese pain-reducing paste in myofascial pain syndrome
17
作者 Jing Xiao Bing-Yan Cao +6 位作者 Zeng Xie Yu-Xuan Ji Xing-Li Zhao Hong-Jie Yang Wei Zhuang Hai-Hua Sun Wen-Ming Liang 《World Journal of Clinical Cases》 SCIE 2022年第32期11753-11765,共13页
BACKGROUND Pulsed electromagnetic field(PEMF)therapy is widely used to treat myofascial pain syndrome(MPS).Damp-clearing and pain-reducing paste(DPP)comprises medical herbs and has been a traditional method of reducin... BACKGROUND Pulsed electromagnetic field(PEMF)therapy is widely used to treat myofascial pain syndrome(MPS).Damp-clearing and pain-reducing paste(DPP)comprises medical herbs and has been a traditional method of reducing myofascial pain in China for a long time,and it is usually administered with heating.However,the synergistic effect of PEMF therapy on heating-DPP in patients with MPS is unclear.AIM To investigate the synergistic effect of PEMF therapy plus heating-DPP in lumbar MPS.METHODS This double-blind,randomized,placebo-controlled trial was conducted on 120 patients with lumbar MPS who were randomly divided into an experimental group(EG,n=60)and a control group(CG,n=60).Patients in both groups were treated with heating-DPP combined with PEMF therapy;however,the electromagnetic function of the therapeutic apparatus used in the CG was disabled.Each treatment lasted for 20 min and was applied five times a week for two weeks.The short-form McGill Pain Questionnaire was applied at five time points:pretest,end of the first and second weeks of treatment,and end of the first and fourth week after completing treatment.Visual analog scale(VAS),present pain intensity index(PPI),and pain rating index(PRI;total,affective pain,and sensory pain scores)scores were then analyzed.RESULTS Compared with the CG,the VAS,PPI and PRI scores(total,affective pain and sensory pain scores)in the EG were significantly lower after treatment and during follow-up.CONCLUSION PEMF therapy combined with heating-DPP showed better efficacy than heating-DPP alone in reducing the overall intensity of pain and sensory and affective pain. 展开更多
关键词 Traditional Chinese pain-reducing paste Damp-clearing and pain-reducing paste pulsed electromagnetic field Myofascial pain Myofascial pain syndrome
下载PDF
Enhancing cartilage repair with optimized supramolecular hydrogel-based scaffold and pulsed electromagnetic field 被引量:3
18
作者 Yucong Li Linlong Li +13 位作者 Ye Li Lu Feng Bin Wang Ming Wang Haixing Wang Meiling Zhu Yongkang Yang Erik IWaldorff Nianli Zhang Ingmar Viohl Sien Lin Liming Bian Wayne Yuk-Wai Lee Gang Li 《Bioactive Materials》 SCIE CSCD 2023年第4期312-324,共13页
Functional tissue engineering strategies provide innovative approach for the repair and regeneration of damaged cartilage.Hydrogel is widely used because it could provide rapid defect filling and proper structure supp... Functional tissue engineering strategies provide innovative approach for the repair and regeneration of damaged cartilage.Hydrogel is widely used because it could provide rapid defect filling and proper structure support,and is biocompatible for cell aggregation and matrix deposition.Efforts have been made to seek suitable scaffolds for cartilage tissue engineering.Here Alg-DA/Ac-β-CD/gelatin hydrogel was designed with the features of physical and chemical multiple crosslinking and self-healing properties.Gelation time,swelling ratio,biodegradability and biocompatibility of the hydrogels were systematically characterized,and the injectable self-healing adhesive hydrogel were demonstrated to exhibit ideal properties for cartilage repair.Furthermore,the new hydrogel design introduces a pre-gel state before photo-crosslinking,where increased viscosity and decreased fluidity allow the gel to remain in a semi-solid condition.This granted multiple administration routes to the hydrogels,which brings hydrogels the ability to adapt to complex clinical situations.Pulsed electromagnetic fields(PEMF)have been recognized as a promising solution to various health problems owing to their noninvasive properties and therapeutic potentials.PEMF treatment offers a better clinical outcome with fewer,if any,side effects,and wildly used in musculoskeletal tissue repair.Thereby we propose PEMF as an effective biophysical stimulation to be 4th key element in cartilage tissue engineering.In this study,the as-prepared Alg-DA/Ac-β-CD/gelatin hydrogels were utilized in the rat osteochondral defect model,and the potential application of PEMF in cartilage tissue engineering were investigated.PEMF treatment were proven to enhance the quality of engineered chondrogenic constructs in vitro,and facilitate chondrogenesis and cartilage repair in vivo.All of the results suggested that with the injectable self-healing adhesive hydrogel and PEMF treatment,this newly proposed tissue engineering strategy revealed superior clinical potential for cartilage defect treatment. 展开更多
关键词 Supramolecular hydrogels pulsed electromagnetic field Cartilage tissue engineering Mesenchymal stem cells CHONDROGENESIS
原文传递
Clinical update of pulsed electromagnetic fields on osteoporosis 被引量:29
19
作者 HUANG Li-qun HE Hong-chen HE Cheng-qi CHEN Jian YANG Lin 《Chinese Medical Journal》 SCIE CAS CSCD 2008年第20期2095-2099,共5页
Objective To understand the effects of low-frequency pulsed electromagnetic fields (PEMFs) on chronic bony pain, bone mineral density (BMD), bone strength and biochemical markers of bone metabolism in the patients... Objective To understand the effects of low-frequency pulsed electromagnetic fields (PEMFs) on chronic bony pain, bone mineral density (BMD), bone strength and biochemical markers of bone metabolism in the patients of osteoporosis. Data sources Using the key words “pulsed electromagnetic fields” and “osteoporosis”, we searched the PubMed for related studies published in English from January 1996 to December 2007. We also searched the China National Knowledge Infrastructure (CNKI) for studies published in Chinese from January 1996 to December 2007.Study selection Inclusion criteria: (1) all articles which referred to the effects of low-frequency pulsed magnetic fields on osteoporosis either in primary osteoporosis or secondary osteoporosis; (2) either observational studies or randomized controlled studies. Exclusion criteria: (1) articles on experimental studies about osteoporosis; (2) repetitive studies; (3) case reports; (4) meta analysis.Results Totally 111 related articles were collected, 101 of them were published in Chinese, 10 were in English. Thirty-four were included and the remaining 84 were excluded.Conclusions Low-frequency PEMFs relieves the pain of primary osteoporosis quickly and efficiently, enhances bone formation and increases BMD of secondary osteoporosis. But the effects of PEMFs on bone mineral density of primary osteoporosis and bone resorption were controversial. 展开更多
关键词 pulsed electromagnetic fields OSTEOPOROSIS PAIN bone density biochemical markers of bone metabolism
原文传递
Distributions of Electromagnetic Fields and Forced Flow and Their Relevance to the Grain Refinement in Al–Si Alloy Under the Application of Pulsed Magneto-Oscillation 被引量:7
20
作者 Yan-Yi Xu Jing Zhao +4 位作者 Chun-Yang Ye Yan-Ping Shen Xin-Cheng Miao Yun-Hu Zhang Qi-Jie Zhai 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第2期254-274,共21页
Distributions of electromagnetic fields and induced forced flow inside a metal melt are crucial to understand the grain refinement of the metal driven by pulsed magneto-oscillation(PMO).In the present study,PMO-induce... Distributions of electromagnetic fields and induced forced flow inside a metal melt are crucial to understand the grain refinement of the metal driven by pulsed magneto-oscillation(PMO).In the present study,PMO-induced electromagnetic fields and forced flow in Ga-20 wt%In-12 wt%Sn liquid metal have been systematically investigated by performing numerical simulations and corresponding experimental measurements.The numerical simulations have been confirmed by magnetic and melt flow measurements.According to the simulated distribution of electromagnetic fields under the application of PMO,the strongest magnetic field,electric eddy current and Lorentz force with inward radial direction inside the melt are concentrated adjacent the sidewall of cylindrical melt at the cross section of middle height of coil.As a result,a global forced flow throughout the whole cylindrical column filled with Ga-20 wt%In-12 wt%Snmelt is initiated with a flow structure of two pair of symmetric vortexring.The PMO-induced electromagnetic fields and forced flow in Al-7 wt%Si melt have been numerically simulated.The contribution of electromagnetic fields and forced flow to the grain refinement of Al-7 wt%Sialloy under the application of PMO is discussed.It indicates that the forced flow may play a key role in the grain size reduction. 展开更多
关键词 pulsed magneto-oscillation(PMO) electromagnetic field Forced flow Solidification Grain refinement
原文传递
上一页 1 2 31 下一页 到第
使用帮助 返回顶部