期刊文献+
共找到1,283篇文章
< 1 2 65 >
每页显示 20 50 100
A seismic elastic moduli module for the measurements of low-frequency wave dispersion and attenuation of fluid-saturated rocks under different pressures
1
作者 Yan-Xiao He Shang-Xu Wang +9 位作者 Gen-Yang Tang Chao Sun Hong-Bing Li San-Yi Yuan Xian Wei Li-Deng Gan Xiao-Feng Dai Qiang Ge Peng-Peng Wei Hui-Qing Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期162-181,共20页
Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and... Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion. 展开更多
关键词 low-frequency measurements Dispersion and attenuation rock physics Fluid flow
下载PDF
Rock physics modeling of heterogeneous carbonatereservoirs: porosity estimation and hydrocarbon detection 被引量:7
2
作者 于豪 巴晶 +5 位作者 Carcione Jose 李劲松 唐刚 张兴阳 何新贞 欧阳华 《Applied Geophysics》 SCIE CSCD 2014年第1期9-22,115,共15页
In heterogeneous natural gas reservoirs, gas is generally present as small patchlike pockets embedded in the water-saturated host matrix. This type of heterogeneity, also called "patchy saturation", causes s... In heterogeneous natural gas reservoirs, gas is generally present as small patchlike pockets embedded in the water-saturated host matrix. This type of heterogeneity, also called "patchy saturation", causes significant seismic velocity dispersion and attenuation. To establish the relation between seismic response and type of fluids, we designed a rock physics model for carbonates. First, we performed CT scanning and analysis of the fluid distribution in the partially saturated rocks. Then, we predicted the quantitative relation between the wave response at different frequency ranges and the basic lithological properties and pore fluids. A rock physics template was constructed based on thin section analysis of pore structures and seismic inversion. This approach was applied to the limestone gas reservoirs of the right bank block of the Amu Darya River. Based on poststack wave impedance and prestack elastic parameter inversions, the seismic data were used to estimate rock porosity and gas saturation. The model results were in good agreement with the production regime of the wells. 展开更多
关键词 rock physics modeling Biot-Rayleigh theory heterogeneity porosity saturation velocity dispersion gas RESERVOIR detection
下载PDF
Research on anisotropy of shale oil reservoir based on rock physics model 被引量:8
3
作者 郭智奇 刘财 +2 位作者 刘喜武 董宁 刘宇巍 《Applied Geophysics》 SCIE CSCD 2016年第2期382-392,420,421,共13页
Rock physics modeling is implemented for shales in the Luojia area of the Zhanhua topographic depression. In the rock physics model, the clay lamination parameter is introduced into the Backus averaging theory for the... Rock physics modeling is implemented for shales in the Luojia area of the Zhanhua topographic depression. In the rock physics model, the clay lamination parameter is introduced into the Backus averaging theory for the description of anisotropy related to the preferred alignment of clay particles, and the Chapman multi-scale fracture theory is used to calculate anisotropy relating to the fracture system. In accordance with geological features of shales in the study area, horizontal fractures are regarded as the dominant factor in the prediction of fracture density and anisotropy parameters for the inversion scheme. Results indicate that the horizontal fracture density obtained has good agreement with horizontal permeability measured from cores, and thus confirms the applicability of the proposed rock physics model and inversion method. Fracture density can thus be regarded as an indicator of reservoir permeability. In addition, the anisotropy parameter of the P-wave is higher than that of the S-wave due to the presence of horizontal fractures. Fracture density has an obvious positive correlation with P-wave anisotropy, and the clay content shows a positive correlation with S-wave anisotropy, which fully shows that fracture density has a negative correlation with clay and quartz contents and a positive relation with carbonate contents. 展开更多
关键词 SHALE rock physics clay mineral FRACTURE ANISOTROPY
下载PDF
Anisotropy rock physics model for the Longmaxi shale gas reservoir,Sichuan Basin,China 被引量:9
4
作者 刘喜武 郭智奇 +1 位作者 刘财 刘宇巍 《Applied Geophysics》 SCIE CSCD 2017年第1期21-30,188,共11页
The preferred orientation of clay minerals dominates the intrinsic anisotropy of shale. We introduce the clay lamination (CL) parameter to the Backus averaging method to describe the intrinsic shale anisotropy induc... The preferred orientation of clay minerals dominates the intrinsic anisotropy of shale. We introduce the clay lamination (CL) parameter to the Backus averaging method to describe the intrinsic shale anisotropy induced by the alignment of clay minerals. Then, we perform the inversion of CL and the Thomsen anisotropy parameters. The direct measurement of anisotropy is difficult because of the inability to measure the acoustic velocity in the vertical direction in boreholes and instrument limitations. By introducing the parameter CL, the inversion method provides reasonable estimates of the elastic anisotropy in the Longmaxi shale. The clay content is weakly correlated with the CL parameter. Moreover, the parameter CL is abnormally high at the bottom of the Longmaxi and Wufeng Formations, which are the target reservoirs. Finally, we construct rock physics templates to interpret well logging and reservoir properties. 展开更多
关键词 Longmaxi SHALE ANISOTROPY rock physics clay lamination
下载PDF
Analysis of rock physics response of gas-bearing volcanic reservoir based on three-phase poroelastic theory 被引量:3
5
作者 吴清岭 赵海波 +1 位作者 李来林 范兴才 《Applied Geophysics》 SCIE CSCD 2008年第4期277-283,共7页
Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated poro... Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated porous media. Considering reservoir reference pressure and coupling drag of two fluids in pores, the effects of frequency, porosity, and gas saturation on the phase velocities of the P-and S-waves are discussed in detail under field conditions. The effects of porosity and gas saturation on Vp/Vs are also provided. The data for our numerical experiments are from a sample of deep volcanic rock from Daqing. The numerical results show that the frequency dispersion effect can be ignored for deep volcanic rocks with low porosity and low permeability. It is concluded that for deep volcanic rocks the effect of gas content in pores on Vp/Vs is negligible but the effect of porosity is significant when there is a certain amount of water contained in the pores. The accurate estimate of lithology and porosity in this case is relatively more important. 展开更多
关键词 rock physics three-phase porous media seismic response and volcanic rock
下载PDF
Gas sand distribution prediction by prestack elastic inversion based on rock physics modeling and analysis 被引量:5
6
作者 贺芙邦 游俊 陈开远 《Applied Geophysics》 SCIE CSCD 2011年第3期197-205,240,共10页
Seismic inversion is one of the most widely used technologies for reservoir prediction. Many good results have been obtained but sometimes it fails to differentiate the lithologies and identify the fluids. However, se... Seismic inversion is one of the most widely used technologies for reservoir prediction. Many good results have been obtained but sometimes it fails to differentiate the lithologies and identify the fluids. However, seismic prestack elastic inversion based on rock physics modeling and analysis introduced in this paper is a significant method that can help seismic inversion and interpretation reach a new quantitative (or semi-quantitative) level from traditional qualitative interpretation. By doing rock physics modeling and forward perturbation analysis, we can quantitatively analyze the essential relationships between rock properties and seismic responses and try to find the sensitive elastic properties to the lithology, porosity, fluid type, and reservoir saturation. Finally, standard rock physics templates (RPT) can be built for specific reservoirs to guide seismic inversion interpretation results for reservoir characterization and fluids identification purpose. The gas sand distribution results of the case study in this paper proves that this method has unparalleled advantages over traditional post-stack methods, by which we can perform reservoir characterization and seismic data interpretation more quantitatively and efficiently. 展开更多
关键词 rock physics seismic response elastic parameters elastic inversion reservoir characterization MODELING
下载PDF
Anisotropic rock physics models for interpreting pore structures in carbonate reservoirs 被引量:2
7
作者 李生杰 邵雨 陈旭强 《Applied Geophysics》 SCIE CSCD 2016年第1期166-178,222,共14页
We developed an anisotropic effective theoretical model for modeling the elastic behavior of anisotropic carbonate reservoirs by combining the anisotropic self-consistent approximation and differential effective mediu... We developed an anisotropic effective theoretical model for modeling the elastic behavior of anisotropic carbonate reservoirs by combining the anisotropic self-consistent approximation and differential effective medium models.By analyzing the measured data from carbonate samples in the TL area,a carbonate pore-structure model for estimating the elastic parameters of carbonate rocks is proposed,which is a prerequisite in the analysis of carbonate reservoirs.A workflow for determining elastic properties of carbonate reservoirs is established in terms of the anisotropic effective theoretical model and the pore-structure model.We performed numerical experiments and compared the theoretical prediction and measured data.The result of the comparison suggests that the proposed anisotropic effective theoretical model can account for the relation between velocity and porosity in carbonate reservoirs.The model forms the basis for developing new tools for predicting and evaluating the properties of carbonate reservoirs. 展开更多
关键词 ANISOTROPY rock physics pore structure MODULUS CARBONATES
下载PDF
Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs 被引量:3
8
作者 黄欣芮 黄建平 +3 位作者 李振春 杨勤勇 孙启星 崔伟 《Applied Geophysics》 SCIE CSCD 2015年第1期11-22,120,共13页
Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock ph... Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs. 展开更多
关键词 brittleness index tight-oil sandstone reservoirs seismic rock physics model brittleness sensitivity anisotropy
下载PDF
A rock physics model for the characterization of organic-rich shale from elastic properties 被引量:5
9
作者 Ying Li Zhi-Qi Guo +2 位作者 Cai Liu Xiang-Yang Li Gang Wang 《Petroleum Science》 SCIE CAS CSCD 2015年第2期264-272,共9页
Kerogen content and kerogen porosity play a significant role in elastic properties of organic-rich shales. We construct a rock physics model for organic-rich shales to quantify the effect of kerogen content and keroge... Kerogen content and kerogen porosity play a significant role in elastic properties of organic-rich shales. We construct a rock physics model for organic-rich shales to quantify the effect of kerogen content and kerogen porosity using the Kuster and Toks6z theory and the selfconsistent approximation method. Rock physics modeling results show that with the increase of kerogen content and kerogen-related porosity, the velocity and density of shales decrease, and the effect of kerogen porosity becomes more obvious only for higher kerogen content. We also find that the Poisson's ratio of the shale is not sensitive to kerogen porosity for the case of gas saturation. Finally, for the seismic reflection responses of an organic-rich shale layer, forward modeling results indicate the fifth type AVO re- sponses which correspond to a negative intercept and a positive gradient. The absolute values of intercept and gradient increase with kerogen content and kerogen porosity, and present predictable variations associated with velocities and density. 展开更多
关键词 rock physics Organic-rich shale Kerogencontent - Kerogen porosity - AVO
下载PDF
The construction of shale rock physics model and brittleness prediction for high-porosity shale gas-bearing reservoir 被引量:6
10
作者 Xin-Peng Pan Guang-Zhi Zhang Jiao-Jiao Chen 《Petroleum Science》 SCIE CAS CSCD 2020年第3期658-670,共13页
Due to the huge differences between the unconventional shale and conventional sand reservoirs in many aspects such as the types and the characteristics of minerals,matrix pores and fluids,the construction of shale roc... Due to the huge differences between the unconventional shale and conventional sand reservoirs in many aspects such as the types and the characteristics of minerals,matrix pores and fluids,the construction of shale rock physics model is significant for the exploration and development of shale reservoirs.To make a better characterization of shale gas-bearing reservoirs,we first propose a new but more suitable rock physics model to characterize the reservoirs.We then use a well A to demonstrate the feasibility and reliability of the proposed rock physics model of shale gas-bearing reservoirs.Moreover,we propose a new brittleness indicator for the high-porosity and organic-rich shale gas-bearing reservoirs.Based on the parameter analysis using the constructed rock physics model,we finally compare the new brittleness indicator with the commonly used Young’s modulus in the content of quartz and organic matter,the matrix porosity,and the types of filled fluids.We also propose a new shale brittleness index by integrating the proposed new brittleness indicator and the Poisson’s ratio.Tests on real data sets demonstrate that the new brittleness indicator and index are more sensitive than the commonly used Young’s modulus and brittleness index for the high-porosity and high-brittleness shale gas-bearing reservoirs. 展开更多
关键词 Shale gas rock physics model Brittleness prediction
下载PDF
Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale 被引量:4
11
作者 Qian Ke-Ran He Zhi-Liang +2 位作者 Chen Ye-Quan Liu Xi-Wu Li Xiang-Yang 《Applied Geophysics》 SCIE CSCD 2017年第4期463-479,620,共18页
The construction of a shale rock physics model and the selection of an appropriate brittleness index (B/) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existin... The construction of a shale rock physics model and the selection of an appropriate brittleness index (B/) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existing models of kerogen-rich shale are controversial, so a reasonable rock physics model needs to be built. On the other hand, several types of equations already exist for predicting the BI whose feasibility needs to be carefully considered. This study constructed a kerogen-rich rock physics model by performing the self- consistent approximation and the differential effective medium theory to model intercoupled clay and kerogen mixtures. The feasibility of our model was confirmed by comparison with classical models, showing better accuracy. Templates were constructed based on our model to link physical properties and the BL Different equations for the BI had different sensitivities, making them suitable for different types of formations. Equations based on Young's Modulus were sensitive to variations in lithology, while those using Lame's Coefficients were sensitive to porosity and pore fluids. Physical information must be considered to improve brittleness prediction. 展开更多
关键词 rock physics modeling BRITTLENESS SHALE ANISOTROPY
下载PDF
Prediction method of physical parameters based on linearized rock physics inversion 被引量:3
12
作者 ZHANG Jiajia YIN Xingyao +2 位作者 ZHANG Guangzhi GU Yipeng FAN Xianggang 《Petroleum Exploration and Development》 2020年第1期59-67,共9页
A linearized rock physics inversion method is proposed to deal with two important issues, rock physical model and inversion algorithm, which restrict the accuracy of rock physics inversion. In this method, first, the ... A linearized rock physics inversion method is proposed to deal with two important issues, rock physical model and inversion algorithm, which restrict the accuracy of rock physics inversion. In this method, first, the complex rock physics model is expanded into Taylor series to get the first-order approximate expression of the inverse problem of rock physics;then the damped least square method is used to solve the linearized rock physics inverse problem directly to get the analytical solution of the rock physics inverse problem. This method does not need global optimization or random sampling, but directly calculates the inverse operation, with high computational efficiency. The theoretical model analysis shows that the linearized rock physical model can be used to approximate the complex rock physics model. The application of actual logging data and seismic data shows that the linearized rock physics inversion method can obtain accurate physical parameters. This method is suitable for linear or slightly non-linear rock physics model, but may not be suitable for highly non-linear rock physics model. 展开更多
关键词 rock physics INVERSION LINEARIZATION physical parameters rock physics model TAYLOR EXPANSION
下载PDF
High-resolution photogrammetry to measure physical aperture of two separated rock fracture surfaces
13
作者 Masoud Torkan Mateusz Janiszewski +2 位作者 Lauri Uotinen Alireza Baghbanan Mikael Rinne 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2922-2934,共13页
Photogrammetry,reconstructing three-dimensional(3D)models from overlapping two-dimensional(2D)photos,finds application in rock mechanics and rock engineering to extract geometrical details of reconstructed objects,for... Photogrammetry,reconstructing three-dimensional(3D)models from overlapping two-dimensional(2D)photos,finds application in rock mechanics and rock engineering to extract geometrical details of reconstructed objects,for example rock fractures.Fracture properties are important for determining the mechanical stability,permeability,strength,and shear behavior of the rock mass.Photogrammetry can be used to reconstruct detailed 3D models of two separated rock fracture surfaces to characterize fracture roughness and physical aperture,which controls the fluid flow,hydromechanical and shear behavior of the rock mass.This research aimed to determine the optimal number of scale bars required to produce high-precision 3D models of a fracture surface.A workflow has been developed to define the physical aperture of a fracture using photogrammetry.Three blocks of Kuru granite(25 cm×25 cm×10 cm)with an artificially induced fracture,were investigated.For scaling 3D models,321 markers were used as ground control points(GCPs)with predefined distances on each block.When the samples were wellmatched in their original positions,the entire block was photographed.Coordinate data of the GCPs were extracted from the 3D model of the blocks.Each half was surveyed separately and georeferenced by GCPs and merged into the same coordinate system.Two fracture surfaces were extracted from the 3D models and the vertical distance between the two surfaces was digitally calculated as physical aperture.Accuracy assessment of the photogrammetric reconstruction showed a 20-30 mm digital control distance accuracy when compared to known distances defined between markers.To attain this accuracy,the study found that at least 200 scale bars were required.Furthermore,photogrammetry was employed to measure changes in aperture under normal stresses.The results obtained from this approach were found to be in good agreement with those obtained using linear variable displacement transducers(LVDTs),with differences ranging from 1 mm to 8μm. 展开更多
关键词 PHOTOGRAMMETRY physical aperture rock fracture Predefined distances MARKERS
下载PDF
Boundary-refl ected waves and ultrasonic coda waves in rock physics experiments 被引量:3
14
作者 Fu Bo-Ye Fu Li-Yun +1 位作者 Wei Wei Zhang Yan 《Applied Geophysics》 SCIE CSCD 2016年第4期667-682,739,共17页
Ultrasonic coda waves are widely usea to stuay hign-trequency scattering, however, ultrasonic coda waves are strongly affected by interference from by boundary-reflected waves. To understand the effect of boundary-ref... Ultrasonic coda waves are widely usea to stuay hign-trequency scattering, however, ultrasonic coda waves are strongly affected by interference from by boundary-reflected waves. To understand the effect of boundary-reflected waves, we performed ultrasonic experiments using aluminum and shale samples, and the rotating staggered-mesh finite-difference method to simulate the wavefield. We analyzed the wavefield characteristics at the different receiving points and the interference characteristics of the boundary-reflected waves with the ultrasonic coda wave, and the effect of sample geometry on the ultrasonic coda waves. The increase in the aspect ratio of the samples delays the interference effect of the laterally reflected waves and reduces the effect on the ultrasonic coda waves. The main waves interfering with the ultrasonic coda waves are laterally reflected PP-, PS-, PPP-, and PPS-waves. The scattering and attenuation of the high-frequency energy in actual rocks can weaken the interference of laterally reflected waves with the ultrasonic coda waves. 展开更多
关键词 rock physics boundary-reflected waves coda wave INTERFERENCE numerical simulation
下载PDF
Construction of complex digital rock physics based on full convolution network 被引量:3
15
作者 Jia Kang Nian-Yin Li +4 位作者 Li-Qiang Zhao Gang Xiong Dao-Cheng Wang Ying Xiong Zhi-Feng Luo 《Petroleum Science》 SCIE CAS CSCD 2022年第2期651-662,共12页
Digital rock physics(DRP)is a paramount technology to improve the economic benefits of oil and gas fields,devise more scientific oil and gas field development plans,and create digital oil and gas fields.Currently,a si... Digital rock physics(DRP)is a paramount technology to improve the economic benefits of oil and gas fields,devise more scientific oil and gas field development plans,and create digital oil and gas fields.Currently,a significant gap is present between DRP theory and practical applications.Conventional digital-core construction focuses only on simple cores,and the recognition and segmentation effect of fractures and pores of complex cores is poor.The identification of rock minerals is inaccurate,which leads to the difference between the digital and actual cores.To promote the application of DRP in developing oil and gas fields,based on the high-precision X-ray computed tomography scanning technology,the U-Net deep learning model of the full convolution neural network is used to segment the pores,fractures,and matrix from the complex rock core with natural fractures innovatively.Simultaneously,the distribution of rock minerals is divided,and the distribution of rock conditions is corrected by X-ray diffraction.A pore—fracture network model is established based on the equivalent radius,which lays the foundation for fluid seepage simulation.Finally,the accuracy of the established a digital core is verified by the porosity measured via nuclear magnetic resonance technology,which is of great significance to the development and application of DRP in oil and gas fields. 展开更多
关键词 Digital rock physics Depth learning U-Net Complex core Complex fracture
下载PDF
Rock physical characteristics of deep dolomite under complex geological conditions:A case study of 4th Member of Sinian Dengying Formation in the Sichuan Basin,China
16
作者 Chuang Li Shu-Xin Pan +4 位作者 Hong-Bin Wang Ji-Xin Deng Jian-Guo Zhao Zhi Li Yu Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2370-2382,共13页
The deep-ultra deep carbonate reservoir in China,commonly subjected to modification of multi-stage diagenesis,has extremely high heterogeneity.Conventional rock physics analysis cannot accurately identify the elastic ... The deep-ultra deep carbonate reservoir in China,commonly subjected to modification of multi-stage diagenesis,has extremely high heterogeneity.Conventional rock physics analysis cannot accurately identify the elastic responses of reservoir.Here,the rock physics properties of the dolomite from the 4th Member of the Sinian Dengying Formation are experimentally measured,and the change law of rock physics characteristics is investigated within the framework of the diagenetic processes by the analysis of the elastic and petrologic characteristics,pore structure,and sedimentary environments.The results show that the differentiated diagenesis results in different pore structure characteristics and microtexture characteristics of the rock.The microbial dolomite of the algal mound-grain beach facies is subjected to the contemporaneous microbial dolomitization and seepage-reflux dolomitization,penecontemporaneous selective dissolution,burial dolomitization,and hydrothermal dolomitization.The resultant crystalline dolomite is found with one main type of the dolomite crystal contact boundaries,and the dissolution pore is extensive development.The siliceous,muddy,and limy dolomite of the interbeach sea environment mainly experiences the weak capillary concentration dolomitization,intensive mechanical compaction-induced densification,and burial dolomitization.Such crystalline dolomite is observed with four types of contact boundaries,namely the dolomite contact,clay contact,quartz contact,and calcite contact boundaries,and porosity mostly attributed to residual primary inter-granular or crystalline pores.The samples with the same crystal boundary condition have consistent correlations between the compressional-and shear-wave velocities,and between the compressional-wave velocity and the velocity ratio.Additionally,the variation of the acoustic velocity with effective pressure and the intensity of pore-scale fluid-related dispersion are controlled by the differentiation of pore structure types of the samples.The varied effects of soft pores like micro-cracks on the compressional-and shearwave velocity causes considerable changes in the relationships between the compressional-and shearwave velocities,compressional-wave velocity and velocity ratio,and porosity and acoustic velocity.This research is an attempt to demonstrate a novel method for investigating the rock physics variation of rock during the geological process,and the obtained findings can provide the rock physics basis for seismic prediction of the characteristics of deep carbonate reservoirs. 展开更多
关键词 Deep-ultra deep carbonate reservoirs rock physics properties DOLOMITE Seismic elastic properties MICRO-CRACK Pore structure types
下载PDF
Physical model of overlying rock movement law in Yuwang coal mine
17
作者 HUO Shusen TAO Zhigang +2 位作者 LIU Keyuan LI Yong HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第12期4323-4344,共22页
With the increase in mining depth,traditional coal mining methods not only waste coal resources but also seriously impact the stability of the roadway support structure during the collapse of the overburden rock.In co... With the increase in mining depth,traditional coal mining methods not only waste coal resources but also seriously impact the stability of the roadway support structure during the collapse of the overburden rock.In contrast,the top-cutting and depressurization technology utilizes the expansion effect of the rock effectively.This technology allows the rock body to collapse entirely,filling up the mining area through active intervention,which reduces the subsidence height of the overburden rock and significantly improves the coal extraction rate in the mining area.This study utilizes 3D seismic exploration technology to analyze the spatial distribution characteristics of fissure zones and rich zones of the rock strata in the mining area and investigate the movement law of overburdened rock during the coal seam mining process using the 110 mining method.It conducts numerical analysis combined with geomechanical modeling experiments to explore the movement law of the overburden rock under the influence of mining activities at Yuwang Coal Mine.The numerical analysis results indicate that the horizontal and vertical displacements of the rock body on the roof of the roadway are minimal when the angle of the slit is 75°.The overlying rock movement during the test is categorized by modeling the stress and strain fields into the following stages:fracture zone expansion,collapse zone gestation,rapid collapse zone development,and overlying rock stabilization.The rock on the cut side collapses more completely,breaking up and expanding to support the overburden,effectively reducing the depth of crack expansion and the extent of rock settlement and deformation.The integrity of the roadway roof remains intact during the rock collapse under NPR anchors.This study provides a scientific basis for understanding the movement law of overlying rock and for controlling the stability of the roadway perimeter rock in kilometer-deep underground mining. 展开更多
关键词 No coal pillar 3D seismic NPR anchor cable Numerical simulation physical model Overlying rock mass Mechanical model
下载PDF
Rock physics and seismic reflectivity parameterization and amplitude variation with offsets inversion in terms of total organic carbon indicator 被引量:1
18
作者 Song-He Yu Zhao-Yun Zong +2 位作者 Xing-Yao Yin Kun Lang Fu-Bin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2092-2112,共21页
Total organic carbon (TOC) prediction with elastic parameter inversions has been widely used in the identification and evaluation of source rocks. However, the elastic parameters used to predict TOC are not only deter... Total organic carbon (TOC) prediction with elastic parameter inversions has been widely used in the identification and evaluation of source rocks. However, the elastic parameters used to predict TOC are not only determined by TOC but also depend on the other physical properties of source rocks. Besides, the TOC prediction with the elastic parameters inversion is an indirect method based on the statistical relationship obtained from well logs and experiment data. Therefore, we propose a rock physics model and define a TOC indicator mainly affected by TOC to predict TOC directly. The proposed rock physics model makes the equivalent elastic moduli of source rocks parameterized by the TOC indicator. Combining the equivalent elastic moduli of source rocks and Gray’s approximation leads to a novel linearized approximation of the P-wave reflection coefficient incorporating the TOC indicator. Model examples illustrate that the novel reflectivity approximation well agrees with the exact Zoeppritz equation until incident angles reach 40°. Convoluting the novel P-wave reflection approximation with seismic wavelets as the forward solver, an AVO inversion method based on the Bayesian theory is proposed to invert the TOC indicator with seismic data. The synthetic examples and field tests validate the feasibility and stability of the proposed AVO inversion approach. Using the inversion results of the TOC indicator, TOC is directly and accurately estimated in the target area. 展开更多
关键词 TOC rock physics Seismic reflectivity AVO inversion Source rocks
下载PDF
Rock physics inversion based on an optimized MCMC method 被引量:1
19
作者 Zhang Jia-Jia Li Hong-Bing +2 位作者 Zhang Guang-Zhi Gu Yi-Peng Liu Zhuo-Fan 《Applied Geophysics》 SCIE CSCD 2021年第3期288-298,431,共12页
Rock physics inversion is to use seismic elastic properties of underground strata for predicting reservoir petrophysical parameters.The Markov chain Monte Carlo(MCMC)algorithm is commonly used to solve rock physics in... Rock physics inversion is to use seismic elastic properties of underground strata for predicting reservoir petrophysical parameters.The Markov chain Monte Carlo(MCMC)algorithm is commonly used to solve rock physics inverse problems.However,all the parameters to be inverted are iterated simultaneously in the conventional MCMC algorithm.What is obtained is an optimal solution of combining the petrophysical parameters with being inverted.This study introduces the alternating direction(AD)method into the MCMC algorithm(i.e.the optimized MCMC algorithm)to ensure that each petrophysical parameter can get the optimal solution and improve the convergence of the inversion.Firstly,the Gassmann equations and Xu-White model are used to model shaly sandstone,and the theoretical relationship between seismic elastic properties and reservoir petrophysical parameters is established.Then,in the framework of Bayesian theory,the optimized MCMC algorithm is used to generate a Markov chain to obtain the optimal solution of each physical parameter to be inverted and obtain the maximum posterior density of the physical parameter.The proposed method is applied to actual logging and seismic data and the results show that the method can obtain more accurate porosity,saturation,and clay volume. 展开更多
关键词 rock physics inversion petrophysical parameters prediction rock physics model optimized MCMC
下载PDF
Petrophysical parameters inversion for heavy oil reservoir based on a laboratory-calibrated frequency-variant rock-physics model 被引量:1
20
作者 Xu Han Shang-Xu Wang +3 位作者 Zheng-Yu-Cheng Zhang Hao-Jie Liu Guo-Hua Wei Gen-Yang Tang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3400-3410,共11页
Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results ... Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results for seismic inversion of heavy oil reservoir. To describe the viscoelastic behavior of heavy oil, we modeled the elastic properties of heavy oil with varying viscosity and frequency using the Cole-Cole-Maxwell (CCM) model. Then, we used a CCoherent Potential Approximation (CPA) instead of the Gassmann equations to account for the fluid effect, by extending the single-phase fluid condition to two-phase fluid (heavy oil and water) condition, so that partial saturation of heavy oil can be considered. This rock physics model establishes the relationship between the elastic modulus of reservoir rock and viscosity, frequency and saturation. The viscosity of the heavy oil and the elastic moduli and porosity of typical reservoir rock samples were measured in laboratory, which were used for calibration of the rock physics model. The well-calibrated frequency-variant CPA model was applied to the prediction of the P- and S-wave velocities in the seismic frequency range (1–100 Hz) and the inversion of petrophysical parameters for a heavy oil reservoir. The pre-stack inversion results of elastic parameters are improved compared with those results using the CPA model in the sonic logging frequency (∼10 kHz), or conventional rock physics model such as the Xu-Payne model. In addition, the inversion of the porosity of the reservoir was conducted with the simulated annealing method, and the result fits reasonably well with the logging curve and depicts the location of the heavy oil reservoir on the time slice. The application of the laboratory-calibrated CPA model provides better results with the velocity dispersion correction, suggesting the important role of accurate frequency dependent rock physics models in the seismic prediction of heavy oil reservoirs. 展开更多
关键词 Heavy oil rock physics Velocity dispersion Pre-stack inversion Reservoir prediction
下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部