期刊文献+
共找到5,852篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing Low-Frequency Microwave Absorption Through Structural Polarization Modulation of MXenes
1
作者 Bo Shan Yang Wang +1 位作者 Xinyi Ji Yi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期435-452,共18页
Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over pol... Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method. 展开更多
关键词 Hierarchical structure MXene Microwave absorption low-frequency
下载PDF
Low-frequency oscillation of train-network system considering traction power supply mode
2
作者 Yuchen Liu Xiaoqin Lyu +1 位作者 Mingyuan Chang Qiqi Yang 《Railway Engineering Science》 EI 2024年第2期244-256,共13页
The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified ra... The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink. 展开更多
关键词 low-frequency oscillation Train-network system Modal analysis Bilateral power supply Participation factor
下载PDF
A seismic elastic moduli module for the measurements of low-frequency wave dispersion and attenuation of fluid-saturated rocks under different pressures
3
作者 Yan-Xiao He Shang-Xu Wang +9 位作者 Gen-Yang Tang Chao Sun Hong-Bing Li San-Yi Yuan Xian Wei Li-Deng Gan Xiao-Feng Dai Qiang Ge Peng-Peng Wei Hui-Qing Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期162-181,共20页
Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and... Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion. 展开更多
关键词 low-frequency measurements Dispersion and attenuation Rock physics Fluid flow
下载PDF
Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials
4
作者 Rui Zhao Jian Zheng +4 位作者 Jin Guo Yunbo Shi Hengzhen Feng Jun Tang Jun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期217-224,共8页
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr... In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment. 展开更多
关键词 Star-shaped metamaterials BROADBAND Vibration attenuation low-frequency ultrasound vibration Transmission loss
下载PDF
Current optimization-based control of dual three-phase PMSM for low-frequency temperature swing reduction
5
作者 Linlin Lu Xueqing Wang +3 位作者 Luhan Jin Qiong Liu Yun Zhang Yao Mao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期238-246,共9页
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur... In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction. 展开更多
关键词 Dual three-phase PMSM low-frequency temperature swing Copper loss Current optimization Connected neutral points
下载PDF
High-order Bragg forward scattering and frequency shift of low-frequency underwater acoustic field by moving rough sea surface
6
作者 莫亚枭 张朝金 +2 位作者 鹿力成 孙启航 马力 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期459-470,共12页
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi... Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves. 展开更多
关键词 high-order Bragg scattering frequency shift low-frequency acoustic field moving rough sea surface
下载PDF
Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift
7
作者 吴明兴 谢楷 +3 位作者 刘艳 徐晗 张宝 田得阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期519-530,共12页
A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic... A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic field through the plasma to directly measure the ratio of the plasma loop average electron density to collision frequency.An equivalent circuit model is used to analyze the relationship of the phase shift of the magnetic field component of LF electromagnetic waves with the plasma electron density and collision frequency.The applicable range of the LF method on a given plasma scale is analyzed.The upper diagnostic limit for the ratio of the electron density(unit:m^(-3))to collision frequency(unit:Hz)exceeds 1×10^(11),enabling an electron density to exceed 1×10^(20)m^(-3)and a collision frequency to be less than 1 GHz.In this work,the feasibility of using the LF phase shift to implement the plasma diagnosis is also assessed.Diagnosis experiments on shock tube equipment are conducted by using both the electrostatic probe method and LF method.By comparing the diagnostic results of the two methods,the inversion results are relatively consistent with each other,thereby preliminarily verifying the feasibility of the LF method.The ratio of the electron density to the collision frequency has a relatively uniform distribution during the plasma stabilization.The LF diagnostic path is a loop around the model,which is suitable for diagnosing the plasma that surrounds the model.Finally,the causes of diagnostic discrepancy between the two methods are analyzed.The proposed method provides a new avenue for diagnosing high-density enveloping plasma. 展开更多
关键词 low-frequency alternating magnetic field phase shift shock-tube plasma diagnosis electron density collision frequency
下载PDF
MCUS联合CYFRA21-1、TAP及SCCA检测在食管癌术前分期诊断中的应用
8
作者 刘洁 李泽宇 +1 位作者 高倩 贾璐璐 《分子诊断与治疗杂志》 2024年第2期374-378,共5页
目的分析微探头超声内镜(MCUS)联合细胞角蛋白19片段抗原(CYFRA21-1)、肿瘤异常蛋白(TAP)及鳞状细胞癌抗原(SCCA)检测在食管癌术前分期诊断中的应用价值。方法选取2020年8月至2022年11月期间于郑州大学第一附属医院进行治疗的食管癌患者... 目的分析微探头超声内镜(MCUS)联合细胞角蛋白19片段抗原(CYFRA21-1)、肿瘤异常蛋白(TAP)及鳞状细胞癌抗原(SCCA)检测在食管癌术前分期诊断中的应用价值。方法选取2020年8月至2022年11月期间于郑州大学第一附属医院进行治疗的食管癌患者137例为研究对象。以病理分期为金标准,分析MCUS分期与病理学分期的关系;对比血清CYFRA21-1、SCCA水平以及TAP阳性表达与病理特征、MCUS分期的关系;分析血清CYFRA21-1、SCCA水平、TAP阳性表达联合MCUS分期对食管癌病理学分期的诊断价值。结果MCUS诊断食管癌病理学分期的综合准确率为88.89%。血清CYFRA21-1、SCCA水平:T_(3-4)>T_(1-2)、低分化>高、中分化、Ⅲ~Ⅳ期>Ⅰ~Ⅱ期、MCUS分期T_(4)>T_(3)>T_(1)、T_(2),差异具有统计学意义(P<0.05);不同病理学分期、分化程度、TNM分期以及MCUS分期的TAP阳性率比较,差异无统计学意义(P>0.05)。血清CYFRA21-1、SCCA水平、TAP阳性表达联合MCUS检查对食管癌病理学分期判断的准确率提高至95.62%。结论MCUS联合血清CYFRA21-1、SCCA水平及TAP检测可准确诊断食管癌术前分期,可为临床治疗食管癌提供可靠依据。 展开更多
关键词 微探头超声内镜 细胞角蛋白19片段抗原 肿瘤异常蛋白 鳞状细胞癌抗原 食管癌
下载PDF
超声引导下TAP阻滞对妇科腹腔镜手术患者麻醉效果及术后镇痛的影响
9
作者 孟超 赵亚琴 《实用妇科内分泌电子杂志》 2024年第13期24-26,共3页
目的 探讨超声引导下TAP阻滞技术应用于妇科腹腔镜手术的麻醉效果及在术后镇痛方面的优势。方法 选取100例腹腔镜手术患者,根据随机数字表法将患者分为两组,每组50例。对照组应用常规静脉镇痛干预,试验组采用超声引导下TAP阻滞麻醉。比... 目的 探讨超声引导下TAP阻滞技术应用于妇科腹腔镜手术的麻醉效果及在术后镇痛方面的优势。方法 选取100例腹腔镜手术患者,根据随机数字表法将患者分为两组,每组50例。对照组应用常规静脉镇痛干预,试验组采用超声引导下TAP阻滞麻醉。比较两组患者心率、血压水平、手术麻醉效果、术后疼痛评分与镇痛状况。结果 试验组患者心率、血压水平、手术麻醉效果及术后疼痛评分与镇痛状况均明显优于对照组(P<0.05)。结论 超声引导下TAP阻滞可用于腹腔镜手术,对妇科疾病的手术治疗有着较为突出的麻醉作用,值得临床推广与应用。 展开更多
关键词 妇科腹腔镜手术 超声引导 tap阻滞 麻醉效果 术后镇痛
下载PDF
A bio-inspired spider-like structure isolator for low-frequency vibration 被引量:1
10
作者 Guangdong SUI Shuai HOU +5 位作者 Xiaofan ZHANG Xiaobiao SHAN Chengwei HOU Henan SONG Weijie HOU Jianming LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1263-1286,共24页
This paper proposes a quasi-zero stiffness(QZS)isolator composed of a curved beam(as spider foot)and a linear spring(as spider muscle)inspired by the precise capturing ability of spiders in vibrating environments.The ... This paper proposes a quasi-zero stiffness(QZS)isolator composed of a curved beam(as spider foot)and a linear spring(as spider muscle)inspired by the precise capturing ability of spiders in vibrating environments.The curved beam is simplified as an inclined horizontal spring,and a static analysis is carried out to explore the effects of different structural parameters on the stiffness performance of the QZS isolator.The finite element simulation analysis verifies that the QZS isolator can significantly reduce the first-order natural frequency under the load in the QZS region.The harmonic balance method(HBM)is used to explore the effects of the excitation amplitude,damping ratio,and stiffness coefficient on the system’s amplitude-frequency response and transmissibility performance,and the accuracy of the analytical results is verified by the fourth-order Runge-Kutta integral method(RK-4).The experimental data of the QZS isolator prototype are fitted to a ninth-degree polynomial,and the RK-4 can theoretically predict the experimental results.The experimental results show that the QZS isolator has a lower initial isolation frequency and a wider isolation frequency bandwidth than the equivalent linear isolator.The frequency sweep test of prototypes with different harmonic excitation amplitudes shows that the initial isolation frequency of the QZS isolator is 3 Hz,and it can isolate 90%of the excitation signal at 7 Hz.The proposed biomimetic spider-like QZS isolator has high application prospects and can provide a reference for optimizing low-frequency or ultra-low-frequency isolators. 展开更多
关键词 bionic isolation structure curved beam nonlinear stiffness quasi-zero stiffness(QzS) low-frequency vibration isolator
下载PDF
Observation of low-frequency oscillation in argon helicon discharge
11
作者 朱婉莹 崔瑞林 +2 位作者 韩若愚 何锋 欧阳吉庭 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第2期86-94,共9页
We present here a kind of low-frequency oscillation in argon helicon discharge with a half helical antenna.This time-dependent instability shows a global quasi-periodic oscillation of plasma density and electron tempe... We present here a kind of low-frequency oscillation in argon helicon discharge with a half helical antenna.This time-dependent instability shows a global quasi-periodic oscillation of plasma density and electron temperature,with a typical frequency of a few tens of Hz which increases with external magnetic field as well as radiofrequency(RF)power.The relative oscillation amplitude decreases with magnetic field and RF power,but the rising time and pulse width do not change significantly under different discharge conditions.The oscillation can only be observed in some specific conditions of low magnetic fields and low RF power when the gas flows in from one end of the discharge area and out from another end.This global instability is suggested to be attributed to the pressure instability of neutral depletion,which is the result of compound action of gas depletion by heating expansion and gas replenishment from upstream.There are two kinds of oscillations,large and small amplitude oscillations,occurring in different discharge modes.This study could be a good verification of and complement to earlier experiments.This kind of spontaneous pulse phenomenon is also helpful in realizing a pulsing plasma source without a pulsed power supply. 展开更多
关键词 helicon plasma low-frequency oscillation global instability neutral depletion
下载PDF
A drift-kinetic perturbed Lagrangian for low-frequency nonideal MHD applications
12
作者 徐国盛 伍兴权 胡友俊 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第7期35-41,共7页
We find that the perturbed Lagrangian derived from the drift-kinetic equation in[Porcelli F et al 1994 Phys.Plasmas 1470]is inconsistent with the ordering for the low-frequency large-scale magnetohydrodynamic(MHD).Her... We find that the perturbed Lagrangian derived from the drift-kinetic equation in[Porcelli F et al 1994 Phys.Plasmas 1470]is inconsistent with the ordering for the low-frequency large-scale magnetohydrodynamic(MHD).Here,we rederive the expression for the perturbed Lagrangian within the framework of nonideal MHD using the ordering system for the low-frequency largescale MHD in a low-beta plasma.The obtained perturbed Lagrangian is consistent with Chen's gyrokinetic theory[Chen L and Zonca F 2016 Rev.Mod.Phys.88015008],where the terms related to the field curvature and gradient are small quantities of higher order and thus negligible.As the perturbed Lagrangian has been widely used in the literature to calculate the plasma nonadiabatic response in low-frequency MHD applications,this finding may have a significant impact on the understanding of the kinetic driving and dissipative mechanisms of MHD instabilities and the plasma response to electromagnetic perturbations in fusion plasmas. 展开更多
关键词 perturbed Lagrangian drift kinetic low-frequency nonideal MHD fusion plasma
下载PDF
Understanding Lithium-ion Transport in Sulfolane- and Tetraglyme-Based Electrolytes Using Very Low-Frequency Impedance Spectroscopy
13
作者 Janet SHo Oleg A.Borodin +4 位作者 Michael SDing Lin Ma Marshall A.Schroeder Glenn R.Pastel Kang Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期368-376,共9页
With the increasing interest in highly concentrated electrolyte systems,correct determination of the cation transference number is important.Pulsed-field gradient NMR technique,which measures self-diffusion coefficien... With the increasing interest in highly concentrated electrolyte systems,correct determination of the cation transference number is important.Pulsed-field gradient NMR technique,which measures self-diffusion coefficients,is often applied on liquid electrolytes because of the wide accessibility and simple sample preparation.However,since the assumptions of this technique,that is,complete salt dissociation,all ions participating in motion,and all of them moving independently,no longer hold true in concentrated solutions,the transference numbers,thus obtained are often over-estimated.In the present work,impedance spectroscopy at a frequency range of 1 MHz to 0.1 mHz was used to examine the concentration effect on lithium-ion transference number under anion-blocking conditions T abc Liþfor two electrolytes:lithium bis(fluorosulfonyl)imide(LiFSI)in sulfolane(SL)and lithium bis(trifluorosulfonyl)imide(LiTFSI)in tetraglyme(G4).The T abc Liþof the former was almost an order of magnitude higher than that of the latter.It also appeared to increase with increasing concentration while the latter followed an opposite trend.The faster Li^(+)transport in the SL system is attributed to the formation of a liquid structure consisting of extended chains/bridges of SL molecules and the anions,which facilitate a cation-hopping/ligand-exchanged-typed diffusion mechanism by partially decoupling the cations from the anions and solvent molecules.The G4 system,in contrast,is dominated by the formation of long-lived,stable[Li(G4)]+solvation cages that results in a sluggish Li+transport.The difference between the two transport mechanisms is discussed via comparison of the bulk ionic conductivity,viscosity,ion self-diffusion coefficients,and the Onsager transport coefficients. 展开更多
关键词 anion-blocking conditions ion correlations low-frequency impedance spectroscopy transference number
下载PDF
Low-Frequency Oscillation Analysis of Grid-Connected VSG System Considering Multi-Parameter Coupling
14
作者 Shengyang Lu Tong Wang +6 位作者 Yuanqing Liang Shanshan Cheng Yupeng Cai Haixin Wang Junyou Yang Yuqiu Sui Luyu Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2373-2386,共14页
With the increasing integration of new energy generation into the power system and the massive withdrawal of traditional fossil fuel generation,the power system is faced with a large number of stability problems.The p... With the increasing integration of new energy generation into the power system and the massive withdrawal of traditional fossil fuel generation,the power system is faced with a large number of stability problems.The phenomenon of low-frequency oscillation caused by lack of damping and moment of inertia is worth studying.In recent years,virtual synchronous generator(VSG)technique has been developed rapidly because it can provide considerable damping and moment of inertia.While improving the stability of the system,it also inevitably causes the problem of active power oscillation,especially the low mutual damping between the VSG and the power grid will make the oscillation more severe.The traditional time-domain state-space method cannot reflect the interaction among state variables and study the interaction between different nodes and branches of the power grid.In this paper,a frequency-domain method for analyzing low-frequency oscillations considering VSG parameter coupling is proposed.First,based on the rotor motion equation of the synchronous generator(SG),a secondorder VSG model and linearized power-frequency control loop model are established.Then,the differences and connections between the coupling of key VSG parameters and low-frequency oscillation characteristics are studied through frequency domain analysis.The path and influencemechanism of a VSG during low-frequency power grid oscillations are illustrated.Finally,the correctness of the theoretical analysis model is verified by simulation. 展开更多
关键词 Inverter power supply low-frequency oscillation virtual synchronous generator rotor motor equation
下载PDF
Method for measuring the low-frequency sound power from a complex sound source based on sound-field correction in a non-anechoic tank
15
作者 徐宏哲 李琪 +1 位作者 唐锐 尚大晶 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期504-519,共16页
Similar to air reverberation chambers, non-anechoic water tanks are important acoustic measurement devices that can be used to measure the sound power radiated from complex underwater sound sources using diffusion fie... Similar to air reverberation chambers, non-anechoic water tanks are important acoustic measurement devices that can be used to measure the sound power radiated from complex underwater sound sources using diffusion field theory. However,the problem of the poor applicability of low-frequency measurements in these tanks has not yet been solved. Therefore,we propose a low-frequency acoustic measurement method based on sound-field correction(SFC) in an enclosed space that effectively solves the problem of measuring the sound power from complex sound sources below the Schroeder cutoff frequency in a non-anechoic tank. Using normal mode theory, the transfer relationship between the mean-square sound pressure in an underwater enclosed space and the free-field sound power of the sound source is established, and this is regarded as a correction term for the sound field between this enclosed space and the free field. This correction term can be obtained based on previous measurements of a known sound source. This term can then be used to correct the mean-square sound pressure excited by any sound source to be tested in this enclosed space and equivalently obtain its free-field sound power. Experiments were carried out in a non-anechoic water tank(9.0 m × 3.1 m × 1.7 m) to confirm the validity of the SFC method. Through measurements with a spherical sound source(whose free-field radiation characteristics are known),the correction term of the sound field between this water tank and the free field was obtained. On this basis, the sound power radiated from a cylindrical shell model under the action of mechanical excitation was measured. The measurement results were found to have a maximum deviation of 2.9 d B from the free-field results. These results show that the SFC method has good applicability in the frequency band above the first-order resonant frequency in a non-anechoic tank. This greatly expands the potential low-frequency applications of non-anechoic tanks. 展开更多
关键词 non-anechoic tank complex sound source sound-field correction low-frequency sound power
下载PDF
Development of a low-frequency magnetic lightning mapping system(LFM-LMS)in North China:validation and preliminary results
16
作者 Xiao Li GaoPeng Lu +3 位作者 FanChao Lyu HongBo Zhang Kainat Qamar RuBin Jiang 《Earth and Planetary Physics》 CAS CSCD 2023年第4期460-470,共11页
A low-frequency magnetic lightning mapping system(LFM-LMS)was built during the SHAndong Triggered Lightning Experiment(SHATLE),based on continuous measurements of magnetic field radiation from lightning.The hardware a... A low-frequency magnetic lightning mapping system(LFM-LMS)was built during the SHAndong Triggered Lightning Experiment(SHATLE),based on continuous measurements of magnetic field radiation from lightning.The hardware and source-mapping techniques used by the LFM-LMS were introduced;both Monte Carlo simulations and the observation of rocket-triggered lightning examples were employed to examine the location accuracy and detection effectiveness of the LFM-LMS.We estimated that the system’s location accuracy about 100−200 m horizontally and~200 m vertically.A natural intra-cloud lightning flash and a rocket-triggered lightning flash,both with intricate structures and discharging processes,were examined using the three-dimensional mapping results.The progressing path of negative lightning leaders is usually well-defined,and its propagation speed is estimated to be(0.5−1.4)×10^(6)m/s.In summary,the LFM-LMS can reconstruct the three-dimensional morphology of lightning flashes;this technology provides a efficient method for investigating the characteristics of lightning development,as well as the overall electrical strucuture of thunderstorms. 展开更多
关键词 rocket-triggered lightning low-frequency magnetic field lightning mapping observation location accuracy
下载PDF
Permeability evolution mechanism and the optimum permeability determination of uranium leaching from low-permeability sandstone treated with low-frequency vibration
17
作者 Yong Zhao Xiqi Li +2 位作者 Lin Lei Ling Chen Zhiping Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2597-2610,共14页
Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechani... Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process. 展开更多
关键词 low-frequency vibration Low-permeability sandstone Uranium migration Permeability evolution mechanism Chemical reactive rate Optimum permeability
下载PDF
TAP联合不同浓度舒芬太尼行自控静脉镇痛在产科快速康复中的应用价值
18
作者 谢丹 李洪琼 +1 位作者 董碧倩 汪芳俊 《西部医学》 2024年第1期114-119,共6页
目的 观察超声引导下双侧腹横肌平面阻滞(TAP)联合不同浓度的舒芬太尼行自控静脉镇痛(PCIA)对剖宫产术后疼痛及催乳素的影响,评价其在产科快速康复中的应用价值。方法 选择2020年5月—2021年12月我院择期行剖宫产的产妇96例为研究对象... 目的 观察超声引导下双侧腹横肌平面阻滞(TAP)联合不同浓度的舒芬太尼行自控静脉镇痛(PCIA)对剖宫产术后疼痛及催乳素的影响,评价其在产科快速康复中的应用价值。方法 选择2020年5月—2021年12月我院择期行剖宫产的产妇96例为研究对象。采用随机数字表分为3组,每组32例,3组产妇术后均在超声引导下行双侧TAP,并分别给予浓度0.50 ug/mL(S1组),0.75 ug/mL(S2组),1.00 ug/mL(S3组)的舒芬太尼行自控静脉镇痛(PCIA)。分别记录术后4、8、24、48 h产妇静息、运动状态下切口痛的VAS评分、宫缩痛的VAS评分,术前10 min及术后24、48 h产妇血清催乳素(PRL)水平,记录首次下床时间、排气时间、自行排尿时间,记录术后不良反应等。结果 S2组、S3组术后8、24 h切口静息VAS评分明显低于S1组(P<0.05),且在术后8、24、48 h切口活动痛和宫缩痛的VAS评分均明显低于S1组(P<0.05);S2组S3组术后24、48 h血清PRL浓度高于S1组(P<0.05);S3组术后排气时间(39.49±6.01) h、恶心呕吐发生率(26.7%)明显高于S1组和S2组(P<0.05)。结论 超声引导下的TAP联合0.75 ug/mL的舒芬太尼行PCIA用于剖宫产,术后镇痛效果好,对催乳素分泌影响小,且胃肠道恢复快,不良反应更少,是推动快速康复外科理念在剖宫产围术期应用的一种多模式镇痛方法。 展开更多
关键词 超声引导 腹横肌平面阻滞 舒芬太尼 镇痛 剖宫产
下载PDF
剖宫产术I-TAP阻滞应用对术后的镇痛效果
19
作者 董晓莉 吴继敏 岳松涛 《中国计划生育学杂志》 2024年第2期298-301,共4页
目的:探讨髂腹股沟-腹横肌平面(I-TAP)阻滞与腹横肌平面(TAP)阻滞对剖宫产产妇术后镇痛效果的影响。方法:将2021年4月-2023年3月在本院产科计划剖宫产分娩的86例产妇随机分成TAP组与I-TAP组各43例,分别采用TAP阻滞麻醉或I-TAP阻滞麻醉... 目的:探讨髂腹股沟-腹横肌平面(I-TAP)阻滞与腹横肌平面(TAP)阻滞对剖宫产产妇术后镇痛效果的影响。方法:将2021年4月-2023年3月在本院产科计划剖宫产分娩的86例产妇随机分成TAP组与I-TAP组各43例,分别采用TAP阻滞麻醉或I-TAP阻滞麻醉。观察两组术后疼痛程度(VAS评分)、自控镇痛(PCA)按压次数、血清泌乳素(PRL)水平、不良反应。结果:I-TAP组VAS评分术后2h(1.29±0.32分)、4h(2.02±0.53分)、8h(2.84±0.82分)、16h(2.31±0.72分)、24h(2.33±0.52分)均低于TAP组(1.67±0.46分、2.55±0.70分、3.62±1.00分、2.97±0.81分、2.65±0.74分),PCA总按压次数(12.12±2.69次)、PCA有效按压次数(5.88±1.46次)均少于TAP组(14.46±4.57次、7.03±1.25次),两组术后1d血清PRL水平均升高,且I-TAP组(318.26±40.15μg/L)高于TAP组(251.65±32.67μg/L);不良反应发生率(9.3%)与TAP组(14.0%)无差异(P>0.05)。结论:I-TAP阻滞在剖宫产术麻醉中的应用效果优于TAP阻滞,可减轻产妇术后疼痛,减少PCA按压次数,提高术后PRL水平,且不良反应少,有效性与安全性均较好,值得应用。 展开更多
关键词 剖宫产术 I-tap阻滞 tap阻滞 术后镇痛 泌乳素 不良反应
下载PDF
Hybrid Multi-Object Optimization Method for Tapping Center Machines
20
作者 Ping-Yueh Chang Fu-I Chou +1 位作者 Po-Yuan Yang Shao-Hsien Chen 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期23-38,共16页
This paper proposes a hybrid multi-object optimization method integrating a uniform design,an adaptive network-based fuzzy inference system(ANFIS),and a multi-objective particle swarm optimizer(MOPSO)to optimize the r... This paper proposes a hybrid multi-object optimization method integrating a uniform design,an adaptive network-based fuzzy inference system(ANFIS),and a multi-objective particle swarm optimizer(MOPSO)to optimize the rigid tapping parameters and minimize the synchronization errors and cycle times of computer numerical control(CNC)machines.First,rigid tapping parameters and uniform(including 41-level and 19-level)layouts were adopted to collect representative data for modeling.Next,ANFIS was used to build the model for the collected 41-level and 19-level uniform layout experiment data.In tapping center machines,the synchronization errors and cycle times are important consid-erations,so these two objects were used to build the ANFIS models.Then,a MOPSO algorithm was used to search for the optimal parameter combinations for the two ANFIS models simultaneously.The experimental results showed that the proposed method obtains suitable parameter values and optimal parameter combinations compared with the nonsystematic method.Additionally,the optimal parameter combination was used to optimize existing CNC tools during the commissioning process.Adjusting the proportional and integral gains of the spindle could improve resistance to deformation during rigid tapping.The posi-tion gain and prefeedback coefficient can reduce the synchronization errors significantly,and the acceleration and deceleration times of the spindle affect both the machining time and synchronization errors.The proposed method can quickly and accurately minimize synchronization errors from 107 to 19.5 pulses as well as the processing time from 3,600 to 3,248 ms;it can also shorten the machining time significantly and reduce simultaneous errors to improve tapping yield,there-by helping factories achieve carbon reduction. 展开更多
关键词 tapping center machine uniform design adaptive network-based fuzzy inference system(ANFIS) multi-objective particle swarm optimizer
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部