期刊文献+
共找到4,660篇文章
< 1 2 233 >
每页显示 20 50 100
Permeability evolution mechanism and the optimum permeability determination of uranium leaching from low-permeability sandstone treated with low-frequency vibration
1
作者 Yong Zhao Xiqi Li +2 位作者 Lin Lei Ling Chen Zhiping Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2597-2610,共14页
Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechani... Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process. 展开更多
关键词 low-frequency vibration Low-permeability sandstone Uranium migration Permeability evolution mechanism Chemical reactive rate Optimum permeability
下载PDF
Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials
2
作者 Rui Zhao Jian Zheng +4 位作者 Jin Guo Yunbo Shi Hengzhen Feng Jun Tang Jun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期217-224,共8页
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr... In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment. 展开更多
关键词 Star-shaped metamaterials BROADBAND vibration attenuation low-frequency ultrasound vibration Transmission loss
下载PDF
Research on modeling and self-excited vibration mechanism in magnetic levitation-collision interface coupling system
3
作者 Jinghu TANG Chaofeng LI +1 位作者 Jin ZHOU Zhiwei WU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期873-890,共18页
The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are a... The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state. 展开更多
关键词 magnetic levitation coupling system self-excited vibration mechanical interface vibration frequency
下载PDF
Dynamic analysis of a novel multilink-spring mechanism for vibration isolation and energy harvesting
4
作者 谢佳衡 杨涛 唐介 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期366-379,共14页
Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve t... Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve this problem.The VIEH performance of the MLSM under harmonic excitation and Gaussian white noise was analyzed.It was found that the MLSM has good vibration isolation performance for low-frequency isolation and the frequency band can be widened by adjusting parameters to achieve a higher energy harvesting power.By comparison with two special cases,the results show that the MLSM is basically the same as the other two oscillators in terms of vibration isolation but has better energy harvesting performance under multistable characteristics.The MLSM is expected to reduce the impact of vibration on high-precision sensitive equipment in some special sites such as subways and mines,and at the same time supply power to structural health monitoring devices. 展开更多
关键词 multilink-spring mechanism nonlinear dynamics vibration isolation energy harvester
下载PDF
Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review
5
作者 Qinghe Cui Xuefeng Liu +4 位作者 Wenjing Wang Shaojie Tian Vasili Rubanik Vasili Rubanik Jr. Dzmitry Bahrets 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1322-1332,共11页
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli... Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed. 展开更多
关键词 ultrasonic vibration plastic forming crystal structure MICROSTRUCTURE forming mechanism
下载PDF
A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms 被引量:4
6
作者 Bo YAN Ning YU Chuanyu WU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第7期1045-1062,共18页
Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isola... Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isolation is hard to meet the requirements of the loading capacity and isolation band simultaneously,which limits further engineering application,especially in the low-frequency range.In recent twenty years,the nonlinear vibration isolation technology has been widely investigated to broaden the vibration isolation band by exploiting beneficial nonlinearities.One of the most widely studied objects is the"three-spring"configured quasi-zero-stiffness(QZS)vibration isolator,which can realize the negative stiffness and high-static-low-dynamic stiffness(HSLDS)characteristics.The nonlinear vibration isolation with QZS can overcome the drawbacks of the linear one to achieve a better broadband vibration isolation performance.Due to the characteristics of fast response,strong stroke,nonlinearities,easy control,and low-cost,the nonlinear vibration with electromagnetic mechanisms has attracted attention.In this review,we focus on the basic theory,design methodology,nonlinear damping mechanism,and active control of electromagnetic QZS vibration isolators.Furthermore,we provide perspectives for further studies with electromagnetic devices to realize high-efficiency vibration isolation. 展开更多
关键词 quasi-zero-stiffness(QZS) nonlinear vibration isolation low-frequency electromagnetic vibration isolation BISTABLE
下载PDF
A bio-inspired spider-like structure isolator for low-frequency vibration 被引量:1
7
作者 Guangdong SUI Shuai HOU +5 位作者 Xiaofan ZHANG Xiaobiao SHAN Chengwei HOU Henan SONG Weijie HOU Jianming LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1263-1286,共24页
This paper proposes a quasi-zero stiffness(QZS)isolator composed of a curved beam(as spider foot)and a linear spring(as spider muscle)inspired by the precise capturing ability of spiders in vibrating environments.The ... This paper proposes a quasi-zero stiffness(QZS)isolator composed of a curved beam(as spider foot)and a linear spring(as spider muscle)inspired by the precise capturing ability of spiders in vibrating environments.The curved beam is simplified as an inclined horizontal spring,and a static analysis is carried out to explore the effects of different structural parameters on the stiffness performance of the QZS isolator.The finite element simulation analysis verifies that the QZS isolator can significantly reduce the first-order natural frequency under the load in the QZS region.The harmonic balance method(HBM)is used to explore the effects of the excitation amplitude,damping ratio,and stiffness coefficient on the system’s amplitude-frequency response and transmissibility performance,and the accuracy of the analytical results is verified by the fourth-order Runge-Kutta integral method(RK-4).The experimental data of the QZS isolator prototype are fitted to a ninth-degree polynomial,and the RK-4 can theoretically predict the experimental results.The experimental results show that the QZS isolator has a lower initial isolation frequency and a wider isolation frequency bandwidth than the equivalent linear isolator.The frequency sweep test of prototypes with different harmonic excitation amplitudes shows that the initial isolation frequency of the QZS isolator is 3 Hz,and it can isolate 90%of the excitation signal at 7 Hz.The proposed biomimetic spider-like QZS isolator has high application prospects and can provide a reference for optimizing low-frequency or ultra-low-frequency isolators. 展开更多
关键词 bionic isolation structure curved beam nonlinear stiffness quasi-zero stiffness(QzS) low-frequency vibration isolator
下载PDF
Effects of mechanical vibration on filling and solidification behavior, microstructure and performance of Al/Mg bimetal by lost foam compound casting 被引量:1
8
作者 Guang-yu Li Feng Guan +3 位作者 Wen-ming Jiang Yuan-cai Xu Zheng Zhang Zi-tian Fan 《China Foundry》 SCIE EI CAS CSCD 2023年第6期469-479,共11页
Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated.... Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated.Results show that the mechanical vibration has a remarkable influence on the filling and solidification processes.It is found that after mechanical vibration,the filling rate increases and the filling rate at different times is more uniform than that without vibration.In addition,the mechanical vibration also increases the wettability between liquid AZ91D and A356 inlays.The mechanical vibration reduces the horizontal and vertical temperature gradient of the casting and makes the temperature distribution of the whole casting more uniform.Compared to the Al/Mg bimetal without vibration,the shear strength is improved by 39.76%after the mechanical vibration is applied,due to the decrease of the inclusions and Al_(12)Mg_(17) dendrites,and the refinement and uniform distribution of the Mg_(2)Si particles in the interface of the Al/Mg bimetal. 展开更多
关键词 lost foam casting filling and solidification processes Al/Mg bimetal mechanical vibration MICROSTRUCTURE mechanical properties
下载PDF
Effect of mechanical vibration process parameters on the cement plugs properties for abandoned wells
9
作者 Hang-Ming Liu Yang-Ye He +6 位作者 Ji-Fang Wan Lin Chen Xian-Zhong Yi Yuan-Hua Zhou Yu-Xian He Xiang-Gui Ming Lu Ren 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2428-2441,共14页
A high-quality plug of the abandoned wellbore is considered an essential technical aspect of the oil and gas well abandonment technology system. This paper presents a method of active mechanical excitation to enhance ... A high-quality plug of the abandoned wellbore is considered an essential technical aspect of the oil and gas well abandonment technology system. This paper presents a method of active mechanical excitation to enhance the quality of wellbore plug barriers. An indoor simulation platform is developed, and the effects of different combinations of vibration frequency, amplitude and duration on the properties of the wellbore plug cement material are investigated. It is observed that the optimal combination of excitation parameters occurs at a vibration frequency of 15 Hz, a vibration time of 6 min, and a vibration amplitude of 3 mm. Compared with the condition without the vibration process, the cementing strength, compressive strength, and tensile strength of wellbore cement plug with the optimal mechanical vibration process could increase by 51%, 38% and 20%, respectively, while the porosity decreases by 5%. As determined by scanning electron microscopy of the set cement's microstructure, mechanical vibration effectively eliminates internal porosity and improves the set cement's density. The optimal excitation parameters obtained from the test can guide the design of the vibration plugging tool. The designed vibration plugging tool is simulated in the near field. The cement plug cementation quality tester tests the vibrating and non-vibrating samples, and the cementation ratio is calculated. The test results show that the average cementation ratio of vibrating samples is 0.89375, and that of non-vibrating samples is 0.70625, and the cementation quality is improved by 27%. It is concluded that it not only provides essential data for the design of mechanical vibration plug apparatus, on-site vibration plugs, and the development of operational specifications for vibration plugs, but also provides solid engineering guidance. 展开更多
关键词 Plugging and abandonment Cement plug vibration mechanical properties MICROSTRUCTURE
下载PDF
Experiment and mechanism of vibration liquefaction and compacting of saturated bulk solid 被引量:5
10
作者 WU Ai xiang,GU De sheng,SUN Ye zhi,HU Hua (College of Resources, Environment and Civil Engineering, Central South University, Changsha 410083, China) 《Journal of Central South University of Technology》 2001年第1期34-39,共6页
The paper studies the probability of industrial application of vibration liquefaction of bulk solid from the opposite point of view, and proposing turning its harmful effects into benefits. Utilizing a new device of v... The paper studies the probability of industrial application of vibration liquefaction of bulk solid from the opposite point of view, and proposing turning its harmful effects into benefits. Utilizing a new device of vibration liquefaction and by compacting saturated bulk solid, a set of additional device for experiment was designed. These experiments examined the problems related to vibration liquefaction of fine ores and tailings on the basis of DSA 1 type direct shear apparatus, including models of straight tubes, curved tubes and a sandbox. The changing properties of tailings under vibration and the mechanism of vibration liquefaction and compacting of tailings were studied, and future application of the technique to mines has been put forward. 展开更多
关键词 vibration LIQUEFACTION COMPACTING mechanism
下载PDF
Microstructure evolution and nucleation mechanism of Inconel 601H alloy welds by vibration-assisted GTAW 被引量:2
11
作者 Ze-long Wang Zhen-tai Zheng +2 位作者 Li-bing Zhao Yun-feng Lei Kun Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第7期788-799,共12页
Nickel-based alloys exhibit excellent high-temperature stxengtfi and oxidation resistance; however, because of coarse grains and severe segregation in daeir welding joints, these alloys exhibit increased susceptibilit... Nickel-based alloys exhibit excellent high-temperature stxengtfi and oxidation resistance; however, because of coarse grains and severe segregation in daeir welding joints, these alloys exhibit increased susceptibility to hot cracking. In this paper, to improve the hot-cracking resistance and mechaxtical properties ofinckel-based alloy welded joints, sodium daiosulfate was used to simulate crystallization, enabling the nucleation mechanism under mechaxtical vibration to be investigated. On the basis of the results, the grain refinement mechan- ism during the gas tungsten arc welding (GTAW) of Inconel 601H alloy under wxious vibration modes and parameters was investigated. Compared witfi the GTAW process, the low-frequency mechanical vibration processes resulted in substantial grain refinement effects in the welds; thus, a higher haxdness distxibution was also achieved under the vibration conditions. In addition, the 7' phase exhibited a dispersed distribution and segregation was improved in the welded joints witfi vibration assistance. The results demonstxated that the generation of free crystals caused by vibration in the nucleation stage was the main mechaxtism of grain refinement. Also, free equiaxed grains and a dispersed 7' phase were found to improve the grain-boundary strength and reduce the segregation, contributing to preventing the initiation of welding hot cracking in nickel-based alloys. 展开更多
关键词 mechanical vibration nickel-based alloy grain refinement microst3-ucture hot cracking
下载PDF
Improved uranium leaching efficiency from low-permeability sandstone using low-frequency vibration in the CO_(2)+O_(2) leaching process 被引量:2
12
作者 Yong Zhao Yong Gao +1 位作者 Caiwu Luo Jun Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期770-780,共11页
Extraction of uranium from low-permeability sandstone is a long-standing challenge in mining.The improvement of sandstone permeability has therefore become a key research focus to improve the uranium leaching effect.T... Extraction of uranium from low-permeability sandstone is a long-standing challenge in mining.The improvement of sandstone permeability has therefore become a key research focus to improve the uranium leaching effect.To address the low-permeability problem and corresponding leaching limits,leaching experiments are performed using newly developed equipment that could apply low-frequency vibration to the sandstone samples.The test results indicate that low-frequency vibration significantly improves the uranium leaching performance and permeability of the sandstone samples.The leaching effect of low-frequency vibration treatment is approximately nine times more effective than ultrasonic vibration treatment,whereas the concentration of uranium ions generated without vibration treatment is not detectable.Mathematical model that considers the combined action of physico-mechanical vibration and chemical erosion is established to describe the effect of low-frequency vibration on the permeability.The calculated results are in good agreement with the tested permeability values.This study thus offers a new method to effectively leach more uranium from low-permeability sandstone using CO_(2)+O_(2)and provides an insight into the impact of low-frequency vibration on the uranium leaching process. 展开更多
关键词 Uranium leaching low-frequency vibration Chemical erosion Low permeability Permeability model
下载PDF
Influence of vibration on granular flowability and its mechanism of aided flow 被引量:1
13
作者 WU Ai xiang,SUN Ye zhi,LI Jian hua (College of Resources, Environment and Civil Engineering, Central South University, Changsha 410083, China) 《Journal of Central South University of Technology》 2001年第4期252-257,共6页
Regarding flowing granular media as weak transverse isotropic media, the phase velocity expressions of wave P, wave SH and wave SV were deduced, the propagation characteristics of waves in flowing granular media were ... Regarding flowing granular media as weak transverse isotropic media, the phase velocity expressions of wave P, wave SH and wave SV were deduced, the propagation characteristics of waves in flowing granular media were analyzed. The experiments show that vibration has great influence on granular fluidity. The wavefront of wave P is elliptic or closely elliptic, the wavefront of wave SH is elliptic, and the wavefront of wave SV is not elliptic. Wave propagation in the granular flowing field attenuates layer after layer. The theory and experiment both substantiate that the density difference is the key factor which leads to the attenuation of vibrating energy. In terms of characteristics of wave propagation one can deduce that vibrating waves have less influence on flowability of granules when the amplitude and frequency are small. However, when the amplitude and frequency increase gradually, the eccentricity of ellipsoid, the viscosity resistance and inner friction among granules, and shear intensity of granules decrease, and the loosening coefficient of granules increases, which shows the granules have better flowability. 展开更多
关键词 granula MEDIA vibrating aided FLOW BODY WAVE mechanism
下载PDF
Design, Modeling and Analysis of Implementing a Multilayer Piezoelectric Vibration Energy Harvesting Mechanism in the Vehicle Suspension 被引量:2
14
作者 Wiwiek Hendrowati Harus Laksana Guntur I. Nyoman Sutantra 《Engineering(科研)》 2012年第11期728-738,共11页
This paper deals with the design, modeling and analysis of implementing a Multilayer Piezoelectric Vibration Energy Harvesting (ML PZT VEH) Mechanism in the vehicle suspension. The principle of work of the proposed ML... This paper deals with the design, modeling and analysis of implementing a Multilayer Piezoelectric Vibration Energy Harvesting (ML PZT VEH) Mechanism in the vehicle suspension. The principle of work of the proposed ML PZT VEH mechanism is reducing the relative motion of the suspension, amplifying the applied force to the PZT by a specific design of mechanism and combining a single layer PZT into multilayer PZT to increase the produced electricity. To maintain the performance of suspension as the original suspension, the ML PZT VEH mechanism is mounted in series with the spring of the suspension. The proposed ML PZT VEH mechanism and its implementation to the vehicle suspension were mathematically modeled. Responses of the vehicle before and after implementing ML PZT VEH mechanism were simulated. The results show the proposed mechanism can produce output voltage of 2.75 and power of 7.17 times bigger than direct mounting to the vehicle suspension. And the simulation result shows that mounting ML PZT VEH mechanism in series with the spring of the vehicle suspension does not change the performance of suspension. 展开更多
关键词 vibration Energy HARVESTING MULTILAYER PIEZOELECTRIC Force Amplifying mechanism Vehicle SUSPENSION
下载PDF
Intelligent Fault Detection of Retainer Clutch Mechanism of Tractor by ANFIS and Vibration Analysis 被引量:1
15
作者 Ebrahim Ebrahimi Payam Javadikia +3 位作者 Mohammad Hadi Jalili Nasrolah Astan Majid Haidari Mojtaba Bavandpour 《Modern Mechanical Engineering》 2013年第3期17-24,共8页
In this study, ANFIS, as decision support system, is applied to detect the faults of MF 285 mechanism tractor clutch. Maintenance mechanisms include normal mode, rolling element failure, seal failure and attrition-bas... In this study, ANFIS, as decision support system, is applied to detect the faults of MF 285 mechanism tractor clutch. Maintenance mechanisms include normal mode, rolling element failure, seal failure and attrition-based. Experiments were carried out in three speeds: 1000, 15,000, 2000 RPM and two conditions. The sensor was mounted vertically and horizontally. Vibrating spectrum of the time domain and the frequency of vibration data were obtained. Thirty-three statistical parameters of vibration signals in frequency domain and time were chosen as the sources attribute to detect errors. Finally, the top three features as input vectors to the ANFIS were evaluated. Using statistical parameters the performance of the system was calculated with the experimental data and training of ANFIS model. The system could not provide a seal to identify the fault. Regardless of the vibration data obtained from the classification of the seal, the overall classification accuracy of the ANFIS was 99.14% in the amount of 100% of the sensor installed vertically and horizontally. The results showed that this system can be used as an intelligent diagnosis system. 展开更多
关键词 Fault Detection Maintenance CLUTCH mechanism vibration Analysis NEURO-FUZZY Inference Systems
下载PDF
Mechanisms of low-frequency sea level fluctuations in the Hangzhou Bay 被引量:1
16
作者 Chen Wei and Su Jilan(Received Jme 1, 19891 accepted November 2, 1989) 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1991年第2期183-198,共16页
-low-frequency sea level fluctuations in the Hangzhou Bay in winter and summer, 1973-1974 are analyzed in this paper. The established multi-spectrum response models effectively identify the different dynamical factors... -low-frequency sea level fluctuations in the Hangzhou Bay in winter and summer, 1973-1974 are analyzed in this paper. The established multi-spectrum response models effectively identify the different dynamical factors and their contributions to the low-frequency sea level fluctuations inside the bay. The results show that the Ekman transport due to longshore winds is the major mechanism to induce the sea level fluctuations, more important than the frictional effect of local winds. There also exists obviously the influental effect of the free fluctuations of the continental shelf. In addition ,a simple estimation suggests that the remarkable sea level fluctuation of 0. 4 d-1 in the bay is related to the resonance of the Huanghai Sea and the Bohai Sea (taken as a single bay). 展开更多
关键词 mechanisms of low-frequency sea level fluctuations in the Hangzhou Bay
下载PDF
Analysis of Low-Frequency Vibrational Modes and Particle Rearrangements in Marginally Jammed Amorphous Solid under Quasi-Static Shear 被引量:1
17
作者 董远湘 张国华 +2 位作者 孙其诚 赵雪丹 牛晓娜 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第12期101-104,共4页
We present the numerical simulation results of a model granular assembly formed by spherical particles with tIertzian interaction subjected to a simple shear in the athermal quasi-static limit. The stress-strain curve... We present the numerical simulation results of a model granular assembly formed by spherical particles with tIertzian interaction subjected to a simple shear in the athermal quasi-static limit. The stress-strain curve is shown to separate into smooth, elastic branches followed by a subsequent plastic event. Mode analysis shows that the lowest-frequency vibrational mode is more localized, and eigenvalues and participation ratios of low- frequency modes exhibit similar power-law behavior as the system approaches plastic instability, indicating that the nature of plastic events in the granular system is also a saddle node bifurcation. The analysis of projection and spatial structure shows that over 75% contributions to the non-affine displacement field at a plastic instability come from the lowest-frequency mode, and the lowest-frequency mode is strongly spatially correlated with local plastic rearrangements, inferring that the lowest-frequency mode could be used as a predictor for future plastic rearrangements in the disordered system jammed marginally. 展开更多
关键词 Analysis of low-frequency vibrational Modes and Particle Rearrangements in Marginally Jammed Amorphous Solid under Quasi-Static Shear
下载PDF
Vibration Analysis of Fetching Carton Mechanism of Square Carpets Packaging
18
作者 任国斌 孟婥 +1 位作者 孙以泽 夏胜华 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期753-758,共6页
In this paper,according to the cantilever beam of fetching carton mechanism in square packaging machine, considering the impact of motion of air cylinder on it,its dynamics model and finite element model are built by ... In this paper,according to the cantilever beam of fetching carton mechanism in square packaging machine, considering the impact of motion of air cylinder on it,its dynamics model and finite element model are built by using ANSYS. This paper not only acquires the deformation distribution,stress distribution and natural frequency of the cantilever beam in the static state; but also gets the dynamic response curve in the maximum deformation and the dynamic stress response curve in the near of the maximum stress during the motion of air cylinder. Result shows that no matter static state or dynamic state,deformation of the cantilever in the fetching carton mechanism is acceptable. The design of mechanism is reliable and its motion is also stable; no resonance can occur on the cantilever beam. 展开更多
关键词 carpet packaging machine fetching carton mechanism parallelogram mechanism cantilever beam vibration analysis
下载PDF
Dimensionless Variation of Seepage in Porous Media with Cracks Stimulated by Low-Frequency Vibration
19
作者 Liming Zheng Xiaodong Han +2 位作者 Xinjun Yang Qingzhong Chu Guanghui Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1055-1080,共26页
Pulse excitation or vibration stimulation was imposed on the low permeable formation with cracks to enhance the production or injection capacity.During that process,a coupling of wave-induced flow and initial flow in ... Pulse excitation or vibration stimulation was imposed on the low permeable formation with cracks to enhance the production or injection capacity.During that process,a coupling of wave-induced flow and initial flow in dual-porous media was involved.Researchers had done much work on the rule of wave propagation in fractured porous media,whereas attentions on the variation law of flow in developing low permeable formation with cracks under vibration stimulation were not paid.In this study,the effect of low-frequency vibration on the seepage in dual-porous media was examined for the application of wave stimulation technology in developing reservoirs with natural cracks.A model for seepage of single-phase liquid in porous media with cracks under low-frequency vibration excitation was built by combining wave propagating theory for porous media with cracks and dual-porous media seepage mechanics.A governing equation group for the model,which was expressed by dimensionless fluid and solid displacements,was derived and solved with a numerical method.Variable physical properties were simulated to check the applicability of external low-frequency vibration load on dual-porous media and a parametric study for various vibration parameters.Stimulation of low-frequency vibration affected flow velocities of crack and rock matrix fluids.Compared with that in single-porous media,the stimulation effect on the fluid inner matrix of dual-porous media was relatively weakened.Different optimal vibration parameters were needed to increase the channeling flow between the crack and rock matrix or to only promote the flow velocity in the rock matrix.The theoretical study examines wave-coupled seepage field in fractured porous media with results that are applicable for low-frequency stimulation technology. 展开更多
关键词 low-frequency vibration wave-induced flow dual-porous media CRACK dimensionless.
下载PDF
Low-Frequency Vibrations of Indole Derivatives by Terahertz Time-Domain Spectroscopy
20
作者 Ya-Ru Dang Shao-Ping Li +3 位作者 Hui Liu Shao-Xian Li Jian-Bing Zhang Hong-Wei Zhao 《Journal of Electronic Science and Technology》 CAS CSCD 2016年第4期329-336,共8页
Several indole derivatives with different '3-' substituents have been investigated by terahertz (THz) time-domain spectroscopy. The low-frequency absorption spectra and refractive indices were obtained in the rang... Several indole derivatives with different '3-' substituents have been investigated by terahertz (THz) time-domain spectroscopy. The low-frequency absorption spectra and refractive indices were obtained in the range of 0.2 THz to 2.5 THz (7 cm-1 to 83 cm-1). These derivatives with different substituents present distinct features, which suggests that THz spectroscopy is sensitive to different structures and components of these chemicals. The density functional theory was employed to calculate the low-frequency vibrational properties of indole-3-carboxylic acid and indole-3-propionic acid based on their crystal structures, and the intermolecular interactions were involved. Meanwhile, the temperature dependence of the spectra agreed with the calculated results. The quantitative analysis of a ternary mixture was studied by taking the THz fingerprints into account, and the results demonstrate THz spectroscopy has great potential for the practical applications in biochemistry and pharmaceutics. 展开更多
关键词 Characteristic spectrum density functional theory indole derivatives low-frequency vibration terahertz.
下载PDF
上一页 1 2 233 下一页 到第
使用帮助 返回顶部