期刊文献+
共找到5,422篇文章
< 1 2 250 >
每页显示 20 50 100
Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials
1
作者 Rui Zhao Jian Zheng +4 位作者 Jin Guo Yunbo Shi Hengzhen Feng Jun Tang Jun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期217-224,共8页
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr... In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment. 展开更多
关键词 Star-shaped metamaterials BROADBAND vibration attenuation low-frequency ultrasound vibration Transmission loss
下载PDF
A bio-inspired spider-like structure isolator for low-frequency vibration 被引量:1
2
作者 Guangdong SUI Shuai HOU +5 位作者 Xiaofan ZHANG Xiaobiao SHAN Chengwei HOU Henan SONG Weijie HOU Jianming LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1263-1286,共24页
This paper proposes a quasi-zero stiffness(QZS)isolator composed of a curved beam(as spider foot)and a linear spring(as spider muscle)inspired by the precise capturing ability of spiders in vibrating environments.The ... This paper proposes a quasi-zero stiffness(QZS)isolator composed of a curved beam(as spider foot)and a linear spring(as spider muscle)inspired by the precise capturing ability of spiders in vibrating environments.The curved beam is simplified as an inclined horizontal spring,and a static analysis is carried out to explore the effects of different structural parameters on the stiffness performance of the QZS isolator.The finite element simulation analysis verifies that the QZS isolator can significantly reduce the first-order natural frequency under the load in the QZS region.The harmonic balance method(HBM)is used to explore the effects of the excitation amplitude,damping ratio,and stiffness coefficient on the system’s amplitude-frequency response and transmissibility performance,and the accuracy of the analytical results is verified by the fourth-order Runge-Kutta integral method(RK-4).The experimental data of the QZS isolator prototype are fitted to a ninth-degree polynomial,and the RK-4 can theoretically predict the experimental results.The experimental results show that the QZS isolator has a lower initial isolation frequency and a wider isolation frequency bandwidth than the equivalent linear isolator.The frequency sweep test of prototypes with different harmonic excitation amplitudes shows that the initial isolation frequency of the QZS isolator is 3 Hz,and it can isolate 90%of the excitation signal at 7 Hz.The proposed biomimetic spider-like QZS isolator has high application prospects and can provide a reference for optimizing low-frequency or ultra-low-frequency isolators. 展开更多
关键词 bionic isolation structure curved beam nonlinear stiffness quasi-zero stiffness(QzS) low-frequency vibration isolator
下载PDF
Permeability evolution mechanism and the optimum permeability determination of uranium leaching from low-permeability sandstone treated with low-frequency vibration
3
作者 Yong Zhao Xiqi Li +2 位作者 Lin Lei Ling Chen Zhiping Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2597-2610,共14页
Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechani... Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process. 展开更多
关键词 low-frequency vibration Low-permeability sandstone Uranium migration Permeability evolution mechanism Chemical reactive rate Optimum permeability
下载PDF
Numerical analysis of moving train induced vibrations on tunnel,surrounding ground and structure
4
作者 Swati Srivastav Sowmiya Chawla Swapnil Mishra 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期179-192,共14页
This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and ... This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures. 展开更多
关键词 moving train load TUNNELS vibration effect finite element method(FEM) wave propagation
下载PDF
A case study of blasting vibration attenuation based on wave component characteristics 被引量:1
5
作者 Chong Yu Haibo Li +2 位作者 Haozhen Yue Xiaohu Wang Xiang Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1298-1311,共14页
A typical blasting vibration wave is a composite wave,and its attenuation law is affected by the type of dominant wave component.The purpose of the present study is to establish an attenuation equation of the peak par... A typical blasting vibration wave is a composite wave,and its attenuation law is affected by the type of dominant wave component.The purpose of the present study is to establish an attenuation equation of the peak particle velocity(PPV),taking into account the attenuation characteristics of P-,S-and R-waves in the blasting vibration wave.Field blasting tests were carried out as a case to specifically apply the proposed equation.In view of the fact that the discrete properties of rock mass will inevitably cause the uncertainty of blasting vibration,we also carried out a probability analysis of PPV uncertainty,and introduced the concept of reliability to evaluate blasting vibration.The results showed that the established attenuation equation had a higher prediction accuracy,and can be considered as a promising equation implemented on more complex sites.The adopted uncertainty analysis method can comprehensively take account of the attenuation law of blasting vibration measured on site and discrete properties of rock masses.The obtained distribution of the PPV uncertainty factor can quantitatively evaluate the reliability of blasting vibration,which is a powerful and necessary supplement to the PPV attenuation equation. 展开更多
关键词 Blasting vibration wave component Field blasting tests Attenuation equation Uncertainty analysis Bayesian theory
下载PDF
Experimental Study on the Attenuation Law of Vibration Wave Propagation in Natural Gas Wells in Coal-Gas Cross-Mining Area
6
作者 Junqi Lei Wen Wang +3 位作者 Kun Yang Tong Zhang Runsheng Guo Yihe Yu 《World Journal of Engineering and Technology》 2023年第4期775-792,共18页
Aiming at the safety distance between coal mining working face and natural gas wells in the cross-mining area of multiple mineral resources, the cross- mining area of gas and coal resources in the Ordos Basin is taken... Aiming at the safety distance between coal mining working face and natural gas wells in the cross-mining area of multiple mineral resources, the cross- mining area of gas and coal resources in the Ordos Basin is taken as the engineering background. An anti-collision early warning technology method based on vibration wave propagation attenuation monitoring is proposed to prevent collision accidents between road headers and natural gas wells. Through the steel pipe and steel pipe concrete knocking vibration test and underground digging vibration test, the research results show that: The exponential decay coefficients of the vibration wave in steel pipe, steel pipe concrete and coal rock respectively are 0.1, 0.1140 and 0.03, which are all in accordance with the exponential decay law, and the vibration wave firstly decays sharply and then decays slowly;the formula for the distance from the road header to the natural gas well was derived based on the vibration attenuation formula, to provide a new method for realizing the problem of precise and coordinated extraction by surface monitoring of the distance from down hole road headers to gas wells, collision prevention prediction and warning and prevention of collision of extraction equipment with gas wells. 展开更多
关键词 Cross-Mining Natural Gas Wells vibration waves Attenuation Patterns Col-lision Monitoring
下载PDF
Optimization design of conical reaction teeth of shear wave vibroseis vibration plate
7
作者 WANG Hongxiang DU Lizhi SUN Zhen 《Global Geology》 2023年第4期264-272,共9页
The vibrator plate is the link between the vibroseis vehicle and the earth,as well as the core com-ponent of the vibrator vehicle.In this paper,the coupling effect between the vibrator plate and the earth is an-alyzed... The vibrator plate is the link between the vibroseis vehicle and the earth,as well as the core com-ponent of the vibrator vehicle.In this paper,the coupling effect between the vibrator plate and the earth is an-alyzed from two aspects of reaction tooth arrangement and reaction tooth conical angle,and three groups of experimental models are optimized and designed.The model construction and numerical analysis of the shear wave vibroseis vibrator plate are carried out with ANSYS software.The motion law between the vibration plate and the earth at work was studied,the strain energy of the three experimental models in operation,the maximum displacement of particle at the same position and other reference indices were compared and ana-lyzed,with 28 conical reaction teeth were arranged on both sides.The coupling effect between the vibration plate and the earth was best when the tooth angle was 60°.Compared with the toothless vibration plate,the energy efficiency is improved by about 20%,and the coupling effect between the vibrator plate and the earth is effectively enhanced.It is found that the coupling effect is enhanced through increasing the number of reac-tion teeth of the vibration plate by increasing the coupling area between the vibration plate and the earth. 展开更多
关键词 shear wave vibroseis vibration plate conical reaction teeth
下载PDF
A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms 被引量:4
8
作者 Bo YAN Ning YU Chuanyu WU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第7期1045-1062,共18页
Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isola... Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isolation is hard to meet the requirements of the loading capacity and isolation band simultaneously,which limits further engineering application,especially in the low-frequency range.In recent twenty years,the nonlinear vibration isolation technology has been widely investigated to broaden the vibration isolation band by exploiting beneficial nonlinearities.One of the most widely studied objects is the"three-spring"configured quasi-zero-stiffness(QZS)vibration isolator,which can realize the negative stiffness and high-static-low-dynamic stiffness(HSLDS)characteristics.The nonlinear vibration isolation with QZS can overcome the drawbacks of the linear one to achieve a better broadband vibration isolation performance.Due to the characteristics of fast response,strong stroke,nonlinearities,easy control,and low-cost,the nonlinear vibration with electromagnetic mechanisms has attracted attention.In this review,we focus on the basic theory,design methodology,nonlinear damping mechanism,and active control of electromagnetic QZS vibration isolators.Furthermore,we provide perspectives for further studies with electromagnetic devices to realize high-efficiency vibration isolation. 展开更多
关键词 quasi-zero-stiffness(QZS) nonlinear vibration isolation low-frequency electromagnetic vibration isolation BISTABLE
下载PDF
Improved uranium leaching efficiency from low-permeability sandstone using low-frequency vibration in the CO_(2)+O_(2) leaching process 被引量:2
9
作者 Yong Zhao Yong Gao +1 位作者 Caiwu Luo Jun Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期770-780,共11页
Extraction of uranium from low-permeability sandstone is a long-standing challenge in mining.The improvement of sandstone permeability has therefore become a key research focus to improve the uranium leaching effect.T... Extraction of uranium from low-permeability sandstone is a long-standing challenge in mining.The improvement of sandstone permeability has therefore become a key research focus to improve the uranium leaching effect.To address the low-permeability problem and corresponding leaching limits,leaching experiments are performed using newly developed equipment that could apply low-frequency vibration to the sandstone samples.The test results indicate that low-frequency vibration significantly improves the uranium leaching performance and permeability of the sandstone samples.The leaching effect of low-frequency vibration treatment is approximately nine times more effective than ultrasonic vibration treatment,whereas the concentration of uranium ions generated without vibration treatment is not detectable.Mathematical model that considers the combined action of physico-mechanical vibration and chemical erosion is established to describe the effect of low-frequency vibration on the permeability.The calculated results are in good agreement with the tested permeability values.This study thus offers a new method to effectively leach more uranium from low-permeability sandstone using CO_(2)+O_(2)and provides an insight into the impact of low-frequency vibration on the uranium leaching process. 展开更多
关键词 Uranium leaching low-frequency vibration Chemical erosion Low permeability Permeability model
下载PDF
Analysis of Low-Frequency Vibrational Modes and Particle Rearrangements in Marginally Jammed Amorphous Solid under Quasi-Static Shear 被引量:1
10
作者 董远湘 张国华 +2 位作者 孙其诚 赵雪丹 牛晓娜 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第12期101-104,共4页
We present the numerical simulation results of a model granular assembly formed by spherical particles with tIertzian interaction subjected to a simple shear in the athermal quasi-static limit. The stress-strain curve... We present the numerical simulation results of a model granular assembly formed by spherical particles with tIertzian interaction subjected to a simple shear in the athermal quasi-static limit. The stress-strain curve is shown to separate into smooth, elastic branches followed by a subsequent plastic event. Mode analysis shows that the lowest-frequency vibrational mode is more localized, and eigenvalues and participation ratios of low- frequency modes exhibit similar power-law behavior as the system approaches plastic instability, indicating that the nature of plastic events in the granular system is also a saddle node bifurcation. The analysis of projection and spatial structure shows that over 75% contributions to the non-affine displacement field at a plastic instability come from the lowest-frequency mode, and the lowest-frequency mode is strongly spatially correlated with local plastic rearrangements, inferring that the lowest-frequency mode could be used as a predictor for future plastic rearrangements in the disordered system jammed marginally. 展开更多
关键词 Analysis of low-frequency vibrational Modes and Particle Rearrangements in Marginally Jammed Amorphous Solid under Quasi-Static Shear
下载PDF
Dimensionless Variation of Seepage in Porous Media with Cracks Stimulated by Low-Frequency Vibration
11
作者 Liming Zheng Xiaodong Han +2 位作者 Xinjun Yang Qingzhong Chu Guanghui Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1055-1080,共26页
Pulse excitation or vibration stimulation was imposed on the low permeable formation with cracks to enhance the production or injection capacity.During that process,a coupling of wave-induced flow and initial flow in ... Pulse excitation or vibration stimulation was imposed on the low permeable formation with cracks to enhance the production or injection capacity.During that process,a coupling of wave-induced flow and initial flow in dual-porous media was involved.Researchers had done much work on the rule of wave propagation in fractured porous media,whereas attentions on the variation law of flow in developing low permeable formation with cracks under vibration stimulation were not paid.In this study,the effect of low-frequency vibration on the seepage in dual-porous media was examined for the application of wave stimulation technology in developing reservoirs with natural cracks.A model for seepage of single-phase liquid in porous media with cracks under low-frequency vibration excitation was built by combining wave propagating theory for porous media with cracks and dual-porous media seepage mechanics.A governing equation group for the model,which was expressed by dimensionless fluid and solid displacements,was derived and solved with a numerical method.Variable physical properties were simulated to check the applicability of external low-frequency vibration load on dual-porous media and a parametric study for various vibration parameters.Stimulation of low-frequency vibration affected flow velocities of crack and rock matrix fluids.Compared with that in single-porous media,the stimulation effect on the fluid inner matrix of dual-porous media was relatively weakened.Different optimal vibration parameters were needed to increase the channeling flow between the crack and rock matrix or to only promote the flow velocity in the rock matrix.The theoretical study examines wave-coupled seepage field in fractured porous media with results that are applicable for low-frequency stimulation technology. 展开更多
关键词 low-frequency vibration wave-induced flow dual-porous media CRACK dimensionless.
下载PDF
Low-Frequency Vibrations of Indole Derivatives by Terahertz Time-Domain Spectroscopy
12
作者 Ya-Ru Dang Shao-Ping Li +3 位作者 Hui Liu Shao-Xian Li Jian-Bing Zhang Hong-Wei Zhao 《Journal of Electronic Science and Technology》 CAS CSCD 2016年第4期329-336,共8页
Several indole derivatives with different '3-' substituents have been investigated by terahertz (THz) time-domain spectroscopy. The low-frequency absorption spectra and refractive indices were obtained in the rang... Several indole derivatives with different '3-' substituents have been investigated by terahertz (THz) time-domain spectroscopy. The low-frequency absorption spectra and refractive indices were obtained in the range of 0.2 THz to 2.5 THz (7 cm-1 to 83 cm-1). These derivatives with different substituents present distinct features, which suggests that THz spectroscopy is sensitive to different structures and components of these chemicals. The density functional theory was employed to calculate the low-frequency vibrational properties of indole-3-carboxylic acid and indole-3-propionic acid based on their crystal structures, and the intermolecular interactions were involved. Meanwhile, the temperature dependence of the spectra agreed with the calculated results. The quantitative analysis of a ternary mixture was studied by taking the THz fingerprints into account, and the results demonstrate THz spectroscopy has great potential for the practical applications in biochemistry and pharmaceutics. 展开更多
关键词 Characteristic spectrum density functional theory indole derivatives low-frequency vibration terahertz.
下载PDF
Piezoelectric nanofoams with the interlaced ultrathin graphene confining Zn–N–C dipoles for efficient piezocatalytic H_(2) evolution under low-frequency vibration
13
作者 Penghui Hu Yan Xu +10 位作者 Yanhua Lei Jie Yuan Rui Lei Rong Hu Junkang Chen Difa Xu Shiying Zhang Ping Liu Xiangchao Zhang Xiaoqing Qiu Wenhui Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期115-122,I0004,共9页
Unique nanofoams consisting of interweaved ultrathin graphene confining Zn–N–C dipoles (ZnNG) are constructed via calcination of Zn-coordinated precursor.Due to the introduction of local polar Zn–N–C configuration... Unique nanofoams consisting of interweaved ultrathin graphene confining Zn–N–C dipoles (ZnNG) are constructed via calcination of Zn-coordinated precursor.Due to the introduction of local polar Zn–N–C configurations,with hypersensitivity for mechanical stress,the piezoelectricity is created on the nonpiezoelectric graphene,and the hierarchical ZnNG exhibits obvious piezocatalytic activity of water splitting for H_(2) production even under mild agitation.The corresponding rate of H_(2) production is about 14.65 μmol g^(-1)h^(-1).It triggers a breakthrough in piezocatalytic H_(2) evolution under low-frequency vibration,and takes a significant step forward for piezocatalysis towards practical applications.Furthermore,the presented concept of confining atomic polar configuration for engineering piezoelectricity would open up new horizon for constructing new-type piezoelectrics based on both piezoelectric and nonpiezoelectric materials. 展开更多
关键词 Piezocatalysis Water splitting for H_(2)production low-frequency vibration Ultrathin graphene confining Zn–N–C DIPOLES
下载PDF
A low-frequency and broadband wave-insulating vibration isolator based on plate-shaped metastructures
14
作者 Wei WEI Feng GUAN Xin FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2024年第7期1171-1188,共18页
A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists ... A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency. 展开更多
关键词 metamaterial and metastructure vibration isolation bandgap wave insulation plate
下载PDF
Optimal Active Control of Wave-Induced Vibration for Offshore Platforms 被引量:10
15
作者 李华军 Sau-LonJamesHU TomotsukaTAKAYAMA 《China Ocean Engineering》 SCIE EI 2001年第1期1-14,共14页
An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is a... An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is an optimal frequency domain control method based on minimization of H-2 norm of the system transfer function In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding 'generalized' wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H-2 active control and the corresponding passive control using a TMD with the same device parameters. 展开更多
关键词 active control offshore platform vibration wave loading
下载PDF
Semi-Active Control of Wave-Induced Vibration for Offshore Platforms by Use of MR Damper 被引量:8
16
作者 李华军 土树青 秘春艳 《China Ocean Engineering》 SCIE EI 2002年第1期33-40,共8页
The objective of the present research is to examine the effectiveness of the lateral vibration control of wave-excited response of offshore platforms with magneto-rheological (MR) damper. In this study, the offshore p... The objective of the present research is to examine the effectiveness of the lateral vibration control of wave-excited response of offshore platforms with magneto-rheological (MR) damper. In this study, the offshore platform is simplified to be a singled degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The external 'generalized' wave force is determined with a white noise via a designed filter. A semi-active control method based on optimal control theory is proposed considering that the yield stress of the MR damper can he varied continuously within a certain range. The dynamics of SDOF structure coupled with the MR damper is investigated. Numerical simulation demonstrates that the MR damper with this control strategy can significantly reduce the maximum responses and the root-mean-square (RMS) values. 展开更多
关键词 semi-active control offshore platform vibration reduction wave loading magneto-rheological damper
下载PDF
Suppression of Wave-Excited Vibration of Offshore Platform by Use of Tuned Liquid Dampers 被引量:6
17
作者 董胜 李华军 Tomotsuka TAKAYAMA 《China Ocean Engineering》 SCIE EI 2001年第2期165-176,共12页
This paper describes experimental and theoretical investigations of Tuned Liquid Damper (TLD) characteristics for suppressing the wave-excited structural vibration. The structural model for the experiments is scaled a... This paper describes experimental and theoretical investigations of Tuned Liquid Damper (TLD) characteristics for suppressing the wave-excited structural vibration. The structural model for the experiments is scaled according to a full size offshore platform by matching their dynamic properties. Rectangular TLDs of different sizes with partially filled liquid are examined. By observing the performance and behavior of TLDs through laboratory experiments, the Study investigates the influence of a number of parameters, including container size, container shape, frequency ratio, and incident wave characteristics. In an analytical study, a mathematical model that describes the nonlinear behavior of liquid in TLD and the interaction of TLD and structure is prerequisite. The validity of the model is evaluated and simulating results can reasonably match the corresponding experimental results. 展开更多
关键词 numerical simulation offshore platform tuned liquid damper structural vibration rectangular container shallow water wave theory
下载PDF
Influence of laser fields on the vibrational population of molecules and its wave-packet dynamical investigation 被引量:4
18
作者 王军 刘芳 +4 位作者 岳大光 赵娟 许燕 孟庆田 Liu Wing-Ki 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期193-202,共10页
The time-dependent wave packet method is used to investigate the influence of laser-fields on the vibrational population of molecules. For a two-state system in laser fields, the populations on different vibrational l... The time-dependent wave packet method is used to investigate the influence of laser-fields on the vibrational population of molecules. For a two-state system in laser fields, the populations on different vibrational levels of the upper and lower electronic states are given by wavefunctions obtained by solving the Schrbdinger equation with the split- operator method. The calculation shows that the field parameters, such as intensity, wavelength, duration, and delay time etc. can have different influences on the vibrational population. By varying the laser parameters appropriately one can control the evolution of wave packet and so the vibrational population in each state, which will benefit the light manipulation of atomic and molecular processes. 展开更多
关键词 intense laser field time-dependent wave packet method light-matter interaction vibrational population
下载PDF
Propagation characteristics of vibration waves induced in surrounding rock by tunneling blasting 被引量:4
19
作者 chen shi-hai hu shuai-wei +1 位作者 zhang zi-hua wu jian 《Journal of Mountain Science》 SCIE CSCD 2017年第12期2620-2630,共11页
The effect of blasting vibration waves on surrounding rock and supporting structures is an important field in underground engineering. In this paper, the separation variable method is used to solve the displacement po... The effect of blasting vibration waves on surrounding rock and supporting structures is an important field in underground engineering. In this paper, the separation variable method is used to solve the displacement potential function for the propagation of the blasting vibration waves. In the axis coordinate system, the particle motion and stress change with axial distance, radial distance and time is obtained in surrounding rock. The peak particle velocity law in surrounding rock under different blast loads and surrounding rock parameters is discussed.In addition, the particle vibration characteristics in the surrounding rock are studied using numerical simulations method. The results shows that the peak particle velocity in surrounding rock appears negative exponent attenuation with the increase of axial distance, but it appears positive and negative fluctuations in radial direction. This phenomenon is a new discovery and it has been rarely investigated before. Moreover, the peak particle velocity attenuates more quickly and intensely in the near blasting field,which means that the supporting structure in a shorter distance away from the heading face is vulnerable to the impact of blasting vibration. Theattenuation of blasting vibration velocity is closely related to charge length, blasting load amplitude,attenuation index and rock elastic modulus. The numerical simulation accomplishes the same results and then demonstrates the validity of theoretical results. 展开更多
关键词 Tunneling blasting Blasting vibration wave Surrounding rock wave equation vibration velocity
下载PDF
Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory 被引量:3
20
作者 M.MOHAMMADIMEHR M.J.FARAHI S.ALIMIRZAEI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第10期1375-1392,共18页
In this research, vibration and wave propagation analysis of a twisted micro- beam on Pasternak foundation is investigated. The strain-displacement relations (kine-matic equations) are calculated by the displacement... In this research, vibration and wave propagation analysis of a twisted micro- beam on Pasternak foundation is investigated. The strain-displacement relations (kine-matic equations) are calculated by the displacement fields of the twisted micro-beam. The strain gradient theory (SGT) is used to implement the size dependent effect at micro-scale. Finally, using an energy method and Hamilton's principle, the governing equations of motion for the twisted micro-beam are derived. Natural frequencies and the wave prop- agation speed of the twisted micro-beam are calculated with an analytical method. Also, the natural frequency, the phase speed, the cut-off frequency, and the wave number of the twisted micro-beam are obtained by considering three material length scale parameters, the rate of twist angle, the thickness, the length of twisted micro-beam, and the elastic medium. The results of this work indicate that the phase speed in a twisted micro-beam increases with an increase in the rate of twist angle. Moreover, the wave number is in- versely related with the thickness of micro-beam. Meanwhile, it is directly related to the wave propagation frequency. Increasing the rate of twist angle causes the increase in the natural frequency especially with higher thickness. The effect of the twist angle rate on the group velocity is observed at a lower wave propagation frequency. 展开更多
关键词 vibration and wave propagation analysis twisted micro-beam strain gradient theory (SGT) rate of twist angle
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部