期刊文献+
共找到1,248篇文章
< 1 2 63 >
每页显示 20 50 100
Application of response surface methodology(RSM) for optimization of leaching parameters for ash reduction from low-grade coal 被引量:12
1
作者 Sushanta Kumar Behera Himanshu Meena +1 位作者 Sudipto Chakraborty B.C.Meikap 《International Journal of Mining Science and Technology》 EI CSCD 2018年第4期617-625,共9页
Coal is the world's most abundant energy source because of its abundance and relatively low cost. Due to the scarcity in the supply of high-grade coal, it is necessary to use low-.grade coal for fulfilling energy dem... Coal is the world's most abundant energy source because of its abundance and relatively low cost. Due to the scarcity in the supply of high-grade coal, it is necessary to use low-.grade coal for fulfilling energy demands of modern civilization. However, due to ItS high ash and moisture content, low-grade coal exerts the substantial impact on their consumption like pyrolysis, liquefaction, gasification and combus- tion process. The present research aimed to develop the efficient technique for the production of clean coal by optimizing the operating parameters with the help of response surface methodology. The effect of three independent variables such as hydrofluoric acid (HF) concentration (10-20% by vo!ume ),. temper- ature (60-100 ~C), and time (90-180 min), for ash reduction from the low-grade coal was Investigated.. A quadratic model was proposed to correlate the independent variables for maximum ash reduction at the optimum process condition by using central composite design (CC.D)method. The study reveals that HF concentration was the most effective parameter for ash reduction in comparison with time and temper- ature. It may be due to the higher F-statistics value for HF concentration, which effects to large extent of ash reduction. The characterization of coal was evaluated by Fourier transform infrared spectroscopy (FTIR) analysis and Field-emission scanning electron microscopy with energy-dispersive X-ray (FESEM- EDX) analysis for confirmation of the ash reduction. 展开更多
关键词 low-grade coal Hydrofluoric acid (HF)Leaching Ash reduction Response surface methodology
下载PDF
Understanding poromechanical response of a biogenic coalbed methane reservoir
2
作者 Rohit Pandey Satya Harpalani 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期32-50,共19页
Biogenic coalbed methane(BCBM)reservoirs aim to produce methane from in situ coal deposits following microbial conversion of coal.Success of BCBM reservoirs requires economic methane production within an acceptable ti... Biogenic coalbed methane(BCBM)reservoirs aim to produce methane from in situ coal deposits following microbial conversion of coal.Success of BCBM reservoirs requires economic methane production within an acceptable timeframe.The work reported here quantifies the findings of previously published qualitative work,where it was found that bioconversion induces strains in the pore,matrix and bulk scales.Using imaging and dynamic strain monitoring techniques,the bioconversion induced strain is quantified here.To understand the effect of these strains from a reservoir geomechanics perspective,a corresponding poromechanical model is developed.Furthermore,findings of imaging experiments are validated using core-flooding flow experiments.Finally,expected field-scale behavior of the permeability response of a BCBM operation is modeled and analyzed.The results of the study indicated that,for Illinois coals,bioconversion induced strains result in a decrease in fracture porosity,resulting in a detrimental permeability drop in excess of 60%during bioconversion,which festers itself exponentially throughout its producing life.Results indicate that reservoirs with high initial permeability that will support higher Darcian flowrates,would be better suited for coal bioconversion,thereby providing a site-selection criteria for BCBM operations. 展开更多
关键词 coal bioconversion Poromechanical model reservoir response Bioconversion induced strain
下载PDF
Thermally-induced cracking behaviors of coal reservoirs subjected to cryogenic liquid nitrogen shock
3
作者 Songcai Han Qi Gao +5 位作者 Xinchuang Yan Lile Li Lei Wang Xian Shi Chuanliang Yan Daobing Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2894-2908,共15页
The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with t... The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs. 展开更多
关键词 coal reservoirs Cryogenic shock Thermal cracking behaviors Fracture morphology
下载PDF
Graded and Quantitative Technology and Application of Coal-Bearing Reservoir Based on Seismic Reflection Characteristics
4
作者 Hao Zhang Huan Wan +7 位作者 Liming Lin Wenjun Xing Tiemei Yang Longgang Zhou Lijun Gao Guangchao Zhi Xin Liu Xiaowen Song 《Journal of Geoscience and Environment Protection》 2024年第6期279-290,共12页
Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information... Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information of coal-bearing reservoir on seismic data. Previous researchers have studied the reservoir by stripping or weakening the strong reflection, but it is difficult to determine the effectiveness of the remaining reflection seismic data. In this paper, through the establishment of 2D forward model of coal-bearing strata, the corresponding geophysical characteristics of different reflection types of coal-bearing strata are analyzed, and then the favorable sedimentary facies zones for reservoir development are predicted. On this basis, combined with seismic properties, the coal-bearing reservoir is quantitatively characterized by seismic inversion. The above research shows that the Taiyuan formation in LS block of Ordos Basin is affected by coals and forms three or two peaks in different locations. The reservoir plane sedimentary facies zone is effectively characterized by seismic reflection structure. Based on the characteristics of sedimentary facies belt and petrophysical analysis, the reservoir is semi quantitatively characterized by attribute analysis and waveform indication, and quantitatively characterized by pre stack geostatistical inversion. Based on the forward analysis of coal measure strata, this technology characterizes the reservoir facies belt through seismic reflection characteristics, and describes coal measure reservoirs step by step. It effectively guides the exploration of LS block in Ordos Basin, and has achieved good practical application effect. 展开更多
关键词 coal-Bearing reservoir Seismic Reflection Characteristics Waveform Indication Inversion Geostatistics Inversion
下载PDF
Study on Distribution Characteristics of Coal Reservoir Pressure near Normal Fault in Central Shizhuang South Block of Qinshui Basin 被引量:4
5
作者 李志恒 侃小明 李忠诚 《矿业安全与环保》 北大核心 2017年第5期21-24,29,共5页
下载PDF
Coalbed Methane-bearing Characteristics and Reservoir Physical Properties of Principal Target Areas in North China 被引量:15
6
作者 TANGShuheng SUNShenglin +1 位作者 HAODuohu TANGDazhen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第3期724-728,共5页
The coalbed methane (CBM) resources in North China amounts up to 60% of total resources in China. North China is the most important CBM accumulation area in China. The coal beds of the Upper Paleozoic Taiyuan and Shan... The coalbed methane (CBM) resources in North China amounts up to 60% of total resources in China. North China is the most important CBM accumulation area in China. The coal beds of the Upper Paleozoic Taiyuan and Shanxi formations have a stable distribution. The coal reservoir of target areas such as Jincheng, Yanquan-Shouyang, Hancheng, Liulin, etc. have good CBM-bearing characteristics, high permeability and appropriate reservoir pressure, and these areas are the preferred target areas of CBM developing in China. The coal reservoirs of Wupu, Sanjiaobei, Lu'an, Xinmi, Anyang-Hebi, Jiaozuo, Xinggong and Huainan also have as good CBM-bearing characteristics, but the physical properties of coal reservoirs vary observably. So, further work should be taken to search for districts with high pressure, high permeability and good CBM-bearing characteristics. Crustal stresses have severe influence on the permeability of coal reservoirs in North China. From west to east, the crustal stress gradient increases, while the coal reservoirs permeability decreases. 展开更多
关键词 coalbed methane (CBM) coal reservoir physical property crustal stress North China
下载PDF
Comprehensive analysis of CBM recovery in high rank coal reservoir of Jincheng area 被引量:6
7
作者 Liu Aihua Fu Xuehai +2 位作者 Luo Bin Luo Peipei Jiao Chunlin 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期447-452,共6页
Coalbed methane (CBM) predicting recovery in high rank coal reservoir varies greatly in Jincheng area and it seriously influences efficient and economic exploitation of CBM resource. In order to predict more accurate ... Coalbed methane (CBM) predicting recovery in high rank coal reservoir varies greatly in Jincheng area and it seriously influences efficient and economic exploitation of CBM resource. In order to predict more accurate CBM recovery, we conducted history matching and productivity prediction of vertical well by using COMET 3 reservoir modeling software, innovatively adopted the gas desorption experiment of bulk coal at fixed test pressure, analyzed the recovery extent method of Daning multiple-hole horizontal well and Panzhuang well group, and calculated recovery by sorption isotherm method of 14 vertical CBM wells at the abandonment pressures 1.0, 0.7, 0.5 and 0.3 MPa, respectively. The results show that the reservoir simulation methods (numerical simulation method and the recovery extent method) is more reliable than the theoretical analysis of coal sample (sorption isotherm method and desorption experiment method). Also, desorption experiment method at fixed pressure is superior to sorption isotherm method. Through the comprehensive analysis and linear correction, CBM recovery ratios in high rank coal reservoir of Jincheng area were found to be 38.64%, 49.30%, 59.30%, and 69.20% at the abandonment pressures 1.0, 0.7, 0.5 and 0.3 MPa, respectively. The research results are of significant importance in the CBM exploration and development in Jincheng area. 展开更多
关键词 Abandoned wells Adsorption isotherms coal coal deposits DESORPTION Experiments Forecasting Horizontal wells Petroleum reservoirs Recovery Software testing
下载PDF
Predicting the height of water-flow fractured zone during coal mining under the Xiaolangdi Reservoir 被引量:6
8
作者 XU Zhimin SUN Yajun +2 位作者 DONG Qinghong ZHANG Guowei LI Shi 《Mining Science and Technology》 EI CAS 2010年第3期434-438,共5页
It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failu... It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs. 展开更多
关键词 coal mining under reservoir water-flow fractured zone development law water inrush of mine predicting model
下载PDF
Response of coal reservoir porosity to magma intrusion in the Shandong Qiwu Mine,China 被引量:4
9
作者 Li Wu Zhu Yanming +1 位作者 Chen Shangbin Wang Hui 《Mining Science and Technology》 EI CAS 2011年第2期185-190,共6页
The Qiwu Mine is located in the Ten Xian coal field of Shandong province.It experienced repeated volcanic activity,after the coal beds formed,where magma intrusion was significant The effect of coal reservoir porosity... The Qiwu Mine is located in the Ten Xian coal field of Shandong province.It experienced repeated volcanic activity,after the coal beds formed,where magma intrusion was significant The effect of coal reservoir porosity after magma intrusion was studied by analysis of regional and mine structure and magmatic activity.Experimental methods including maceral measurement under the microscope and mercury porosimetry were used for testing the pore structure.The authors believe that magma intrusion into low-rank bituminous coal causes reservoir porosity to gradually increase:the closer to the magmatic rock a sample is,the less the porosity.The pore size distribution also changes.In the natural coal bed the pore size is mainly in the transitive and middle pore range.However,the coal changes to anthracite next to the magmatic rock and larger pores dominate.Regional magma thermal evolution caused coal close to magmatic rock to be roasted,which reduced the volatile matter,developed larger holes,and destroyed plant tissue holes.The primary reason for a porosity decrease in the vicinity of magmatic rock is that Bituminite resulting from the roasting fills the holes that were present initially. 展开更多
关键词 Magma intrusion coal reservoir porosity Low-rank bituminous coal Qiwu Mine
下载PDF
Structure and production fluid flow pattern of post-fracturing high-rank coal reservoir in Southern Qinshui Basin 被引量:4
10
作者 刘世奇 桑树勋 +2 位作者 朱启朋 刘会虎 高贺凤 《Journal of Central South University》 SCIE EI CAS 2014年第10期3970-3982,共13页
Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reser... Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow. 展开更多
关键词 flow pattern structure model high-rank coal reservoir hydraulic fracture Southern Qinshui Basin
下载PDF
Understanding of mineral change mechanisms in coal mine groundwater reservoir and their influences on effluent water quality:a experimental study 被引量:4
11
作者 Kai Zhang Huifang Li +2 位作者 Jiaming Han Binbin Jiang Ju Gao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第1期154-167,共14页
This paper presents results of an experimental study to characterize the law of mineral change of fallen rock in coal mine groundwater reservoir ant its influence on water quality.The minerals of the underground reser... This paper presents results of an experimental study to characterize the law of mineral change of fallen rock in coal mine groundwater reservoir ant its influence on water quality.The minerals of the underground reservoir of Daliuta Coal Mine is taken as the research object.Simulation experiments were designed and conducted to simulate water–rock action in the laboratory.The mineral composition was analyzed by X-ray diffractometer(XRD),the surface morphology of the mineral was analyzed by scanning electron microscope(SEM),and the specific surface area,total pore volume and average pore diameter of the mineral were measured by fast specific surface/pore analyzer(BET).The experimental results show that the sandstone and mudstone in the groundwater reservoir of Daliuta Coal Mine account for 70%and 30%,respectively.The pore diameter is 15.62–17.55 nm,and pore volume is 0.035 cc/g.Its pore structure is a key factor in the occurrence of water–rock interaction.According to the water–rock simulation experiment,the quartz content before the water–rock action is about 34.28%,the albite is about 21.84%,the feldspar is about 17.48%,and the kaolinite is about 8.00%.After the water–rock action,they are 36.14%,17.78%,11.62%,and 16.75%,respectively.The content of albite and orthoclase is reduced while the content of kaolinite is increased,that is,the Na+content becomes higher,and the Ca2+and Mg2+contents become lower.This research builds a good theoretical foundation for revealing the role of water and rock in underground coal reservoirs. 展开更多
关键词 coal mine underground reservoir Fallen rock Water-rock interaction Rock composition
下载PDF
Physical simulation of hydrodynamic conditions in high rank coalbed methane reservoir formation 被引量:5
12
作者 WANG Bo JIANG Bo +5 位作者 LIU Lei ZHENG Gui-qiang QIN Yong WANG Hong-yan LIU Hong-lin LI Gui-zhong 《Mining Science and Technology》 EI CAS 2009年第4期435-440,共6页
In order to select highly productive and enriched areas of high rank coalbed methane reservoirs, based on hydrologic geology as one of the main factors controlling coalbed methane (CBM) reservoir formations, the eff... In order to select highly productive and enriched areas of high rank coalbed methane reservoirs, based on hydrologic geology as one of the main factors controlling coalbed methane (CBM) reservoir formations, the effect of hydrodynamic forces controlling CBM reservoir formations was studied by a physical simulation experiment in which we used CBM reservoir simulation facilities. The hydrodynamic conditions of high coal rank reservoirs in the Qinshui basin were analyzed. Our experiment shows the following results: under strong hydrodynamic alternating action, 6C~ of coalbed methane reservoir changed from the start at -2.95% ~ -3.66%, and the lightening process occurred in phases; the CI-I4 volume reduced from 96.35% to 12.42%; the CO2 vo- lume decreased from 0.75% in sample 1 to 0.68% in sample 2, then rose to 1.13% in sample 3; the N2 volume changed from 2.9% in sample 1 to 86.45% in sample 3. On one hand, these changes show the complexity of CBM reservoir formation; on the other hand, they indicate that strong hydrodynamic actions have an unfavorable impact on CBM reservoir formation. It was found that the gas volume and hydrodynamic intensity were negatively correlated and low hydrodynamic flow conditions might result in highly productive and enriched areas of high rank CBM. 展开更多
关键词 high coal rank coalbed methane reservoir hydrodynamic condition physical simulation Qinshui basin
下载PDF
Mathematical Simulation of Cleat Porosity in Coal Reservoir 被引量:1
13
作者 韦重韬 刘焕杰 《International Journal of Mining Science and Technology》 SCIE EI 1998年第1期74-79,共6页
Cleat system of coal reservoir is one of the main migrating passage of coalbed methane (CBM). The development of cleat system has important influence on both the preservation of CBM in geological history and surface C... Cleat system of coal reservoir is one of the main migrating passage of coalbed methane (CBM). The development of cleat system has important influence on both the preservation of CBM in geological history and surface CBM exploitation. The relationship among cleat porosity, net confine pressure, rock mechanics, coal seam’s occurrence and other factors of coal reservoir is established and simulated based on the energy conservation law. The result indicates that the net confine pressure and buried depth of coalbed are the major control factors of cleat porosity. The extensive stress and abnormal high reservoir pressure can make cleats open thus increase tbe cleat porosity; while the overburden pressure and compressive stress make cleats close and decrease the cleat porosity. The influence of occurrence (dip and dip angle) of coalbed on cleat porosity depends on the change of the above mentioned factors. It is also affected by rock mechanics parameters to some extent, while water-gas saturation and reservoir temperature have little effect on cleat porosity. The above conclusions are of great significance in geological exploration and surface exploitation region determination of CBM. 展开更多
关键词 coal reservoir CLEAT CLEAT POROSITY simulation NET confine PRESSURE
下载PDF
Impact of Reservoir Properties on the Production of the Mannville Coal Measures, South Central Alberta from a Numerical Modelling Parametric Analysis 被引量:2
14
作者 Amanda M. M. Bustin Robert Marc Bustin 《Engineering(科研)》 2017年第3期291-327,共37页
Numerical simulations are used to investigate the impact of intrinsic and extrinsic reservoir properties on the production from coal and organic rich lithologies in the Lower Cretaceous Mannville coal measures of the ... Numerical simulations are used to investigate the impact of intrinsic and extrinsic reservoir properties on the production from coal and organic rich lithologies in the Lower Cretaceous Mannville coal measures of the Western Canadian Sedimentary Basin. The coal measures are complex reservoirs in which production is from horizontal wells drilled and completed in the thickest coal seam in the succession (1 m versus 3 m), which has production and pressure support from thinner coals in the adjacent stratigraphy and from organic-rich shales interbedded and over and underlying the coal seams. Numerical models provide insight as to the relative importance of the myriad of parameters that may impact production that are not self-evident or intuitive in complex coal measures. 展开更多
关键词 coal BED METHANE Gas SHALES Parametric Analysis reservoir Modelling UNCONVENTIONAL reservoirS
下载PDF
Coal reservoir characteristics and their controlling factors in the eastern Ordos basin in China 被引量:8
15
作者 Li Guihong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期1051-1058,共8页
In the eastern Ordos basin, due to the diversity of the tectonic setting, coal rank, gas content and permeability, coal reservoirs have differing characteristics. In this paper, based on coal reservoir geometry, gas c... In the eastern Ordos basin, due to the diversity of the tectonic setting, coal rank, gas content and permeability, coal reservoirs have differing characteristics. In this paper, based on coal reservoir geometry, gas content, adsorption capacity, pores and fissures developments and permeability data, the coalbed methane(CBM) reservoir characteristics and their controlling factors in the eastern Ordos basin is discussed. The results show that, due to undergoing different paleo-temperatures in the geological history,coal rank has a higher trend from the north part to the south and from the shallow part to the inward basin, which determines CBM distribution and recoverability. In the north, although having large coal thickness and high permeability, Zhungeer-Xingxian coal rank is low, and gas content is small. In the central part, with medium rank, higher gas content and relatively high permeability, and the Wubao-Liulin area is the most favorable area in the eastern Ordos basin. In the southern part, medium and high metamorphism coal occurs, and although having the highest gas content, the permeability in the Hancheng area is low due to the development of sheared coal. 展开更多
关键词 coal reservoir coal rank Controlling factors Eastern Ordos basin
下载PDF
Anisotropy of crack initiation strength and damage strength of coal reservoirs 被引量:2
16
作者 HAO Xianjie WEI Yingnan +6 位作者 YANG Ke SU Jian SUN Yingfeng ZHU Guangpei WANG Shaohua CHEN Haibo SUN Zhuowen 《Petroleum Exploration and Development》 CSCD 2021年第1期243-255,共13页
The crack volume strain method and acoustic emission(AE)method are used to analyze the anisotropy of the crack initiation strength,damage strength,the failure mode and the AE characteristics of coal reservoir.The resu... The crack volume strain method and acoustic emission(AE)method are used to analyze the anisotropy of the crack initiation strength,damage strength,the failure mode and the AE characteristics of coal reservoir.The results show that coal reservoirs show obvious anisotropic characteristics in compressive strength,cracking initiation strength and damage strength.The compressive strength of coal reservoirs decreases with the increase of bedding angle,but the reservoirs with bedding angles of 450 and 900 differ little in compressive strength.The crack initiation strength and damage strength decrease first and then increase with the increase of bedding angle.The crack initiation strength and damage strength are the highest,at the bedding angle of 0°,moderate at the bedding angle of 90°,and lowest at the bedding angle of 45°.When the bedding angle is 0°,the failure of the coal reservoirs is mainly steady propagation of large-scale fractures.When the bedding angle is 45°,one type of failure is caused by steady propagation of small-scale fractures,and the other type of failure is due to a sudden instability of large-scale fractures.When the bedding angle is 90°,the failure is mainly demonstrated by a sudden-instability of small-scale fractures.Compared with the cumulative count method of the AE,the cumulative energy method is more suitable for determining crack initiation strength and damage strength of coal reservoirs. 展开更多
关键词 coalbed methane coal reservoir crack initiation strength damage strength hydraulic fracturing BEDDING crack volume strain acoustic emission
下载PDF
A New Discovery on the Deformation Behavior of Shale Gas Reservoirs Affecting Pore Morphology in the Juhugeng Coal Mining Area of Qinghai Province, Northwest China 被引量:5
17
作者 WANG Anmin CAO Daiyong +2 位作者 LI Jing JIANG Ailin YANG Chengwei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第5期1932-1933,共2页
Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive struc... Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive structural movements during geological periods, 展开更多
关键词 A New Discovery on the Deformation Behavior of Shale Gas reservoirs Affecting Pore Morphology in the Juhugeng coal Mining Area of Qinghai Province Northwest China
下载PDF
Biological Permeability Enhancement Technology for Coal Reservoir 被引量:1
18
作者 GUO Hongyu LIU Xile +2 位作者 XIA Daping BAI Yang FU Chaoyong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第5期1938-1939,共2页
Objective Despite the adoption of various permeability enhancement technologies,the low permeability of coal reservoir has not been fundamentally improved for the development of coalbed methane(CBM)on the ground or ... Objective Despite the adoption of various permeability enhancement technologies,the low permeability of coal reservoir has not been fundamentally improved for the development of coalbed methane(CBM)on the ground or the control of gas underground. 展开更多
关键词 Biological Permeability Enhancement Technology for coal reservoir
下载PDF
In-situ stress of coal reservoirs in the Zhengzhuang area of the southern Qinshui Basin and its effects on coalbed methane development
19
作者 Peng Zhang Ya Meng +4 位作者 Chaoying Liu Yuanling Guo Xiangbin Yan Lixue Cai Zhe Cheng 《Energy Geoscience》 2023年第2期17-27,共11页
In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on ... In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on coal reservoir permeability and production capacity are significant for CBM development.This study investigated the CBM development zone in the Zhengzhuang area of the Qinshui Basin.According to the low mechanical strength of coal reservoirs,this study derived a calculation model of the in-situ stress of coal reservoirs based on the multi-loop hydraulic fracturing method and analyzed the impacts of initial fractures on the calculated results.Moreover,by combining the data such as the in-situ stress,permeability,and drainage and recovery data of CBM wells,this study revealed the spatial distribution patterns of the current in-situ stress of the coal reservoirs and discussed the impacts of the insitu stress on the permeability and production capacity.The results are as follows.(1)Under given fracturing pressure,longer initial fractures are associated with higher calculated maximum horizontal principal stress values.Therefore,ignoring the effects of the initial fractures will cause the calculated values of the in-situ stress to be less than the actual values.(2)As the burial depth increases,the fracturing pressure,closure pressure,and the maximum and minimum horizontal principal stress of the coal reservoirs in the Zhengzhuang area constantly increase.The average gradients of the maximum and minimum horizontal principal stress are 3.17 MPa/100 m and 2.05 MPa/100 m,respectively.(3)Coal reservoir permeability is significantly controlled by the magnitude and state of the current in-situ stress.The coal reservoir permeability decreases exponentially with an increase in the effective principal stress.Moreover,a low lateral pressure coefficient(less than 1)is associated with minor horizontal compressive effects and high coal reservoir permeability.(4)Under similar conditions,such as resource endowments,CBM well capacity is higher in primary structural coal regions with moderate paleotectonic stress modification,low current in-situ stress,and lateral pressure coefficient of less than 1. 展开更多
关键词 In-situ stress coal reservoir Multi-loop hydraulic fracturing method PERMEABILITY Production capacity
下载PDF
Development of Superhydrophobic Nano-SiO_(2)and Its Field Application in Low-permeability,High-temperature,and High-salinity Oil Reservoirs
20
作者 Qin Bing Gao Min +4 位作者 Lei Xue Zhao Lin Zhu Qizhi Meng Fanbin Jiang Jianlin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期1-14,共14页
In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,second... In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d. 展开更多
关键词 nano-SiO_(2)particle hydrophobic modification enhanced injection operation low-grade reservoir low permeability oilfield
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部