The leaching kinetics of copper from low-grade copper ore was investigated in ammonia-ammonium sulfate solution with sodium persulfate. The effect parameters of stirring speed, temperature, particle size, concentratio...The leaching kinetics of copper from low-grade copper ore was investigated in ammonia-ammonium sulfate solution with sodium persulfate. The effect parameters of stirring speed, temperature, particle size, concentrations of ammonia, ammonium sulfate and sodium persulfate were determined. The results show that the leaching rate is nearly independent of agitation above 300 r/min and increases with the increase of temperature, concentrations of ammonia, ammonium sulfate and sodium persulfate. The EDS analysis and phase quantitative analysis of the residues indicate that bornite can be dissolved by persulfate oxidization. The leaching kinetics with activation energy of 22.91 kJ/mol was analyzed by using a new shrinking core model (SCM) in which both the interfacial transfer and diffusion across the product layer affect the leaching rate. A semi-empirical rate equation was obtained to describe the leaching process and the empirical reaction orders with respect to the concentrations of ammonia, ammonium sulfate and sodium persulfate are 0.5, 1.2 and 0.5, respectively.展开更多
The leaching kinetics of low-grade copper ore with high-alkality gangues was studied in ammonia-ammonium sulphate solution.The main parameters,such as ammonia and ammonium sulphate concentrations,particle size,solid-t...The leaching kinetics of low-grade copper ore with high-alkality gangues was studied in ammonia-ammonium sulphate solution.The main parameters,such as ammonia and ammonium sulphate concentrations,particle size,solid-to-liquid ratio and reaction temperature,were chosen in the experiments.The results show that the increase of temperature,concentrations of ammonia and ammonium sulphate is propitious to the leaching rate of copper ore.The leaching rate increases with the decrease of particle size and solid-to-liquid ratio.The leaching rate is controlled by the diffusion through the ash layer and the activation energy is determined to be 25.54 kJ/mol.A semi-empirical equation was proposed to describe the leaching kinetics.展开更多
This article reports the study on acid equilibrium during bioleaching of alkaline low-grade copper sulfide ore. Adding auxiliary agents 1# (sulfur) and 2# (pyrite) makes bacterial leaching of copper and acid produ...This article reports the study on acid equilibrium during bioleaching of alkaline low-grade copper sulfide ore. Adding auxiliary agents 1# (sulfur) and 2# (pyrite) makes bacterial leaching of copper and acid production carried out simultaneously because the auxiliary agents can be oxidized by bacteria and the oxidation products involve acid. The acid required for dissolving alkaline gangue during bacterial leaching is produced, and acid equilibrium is reached during the ore bio-leaching. The recovery of copper reaches more than 95%.展开更多
In order to economically recover the copper from the low grade copper ores, a bioleaching solvent extraction electrowinning plant with a design capacity of 2 000 t cathode copper per year in Dexing Copper Mine was ope...In order to economically recover the copper from the low grade copper ores, a bioleaching solvent extraction electrowinning plant with a design capacity of 2 000 t cathode copper per year in Dexing Copper Mine was operated in September, 1997. The results during the 10 month period of the industrial copper dump leaching have been obtained and the approaches have been carried out to enhance the copper dissolution from the waste rocks. The overall operation flowsheet is depicted. The problems confronted in the process and possible way for improving are discussed.展开更多
Bacterial community dynamics and copper leaching with applied forced aeration were investigated during low-grade copper sulphide bioleaching to obtain better bioleaching efficiency.Results illustrated that appropriate...Bacterial community dynamics and copper leaching with applied forced aeration were investigated during low-grade copper sulphide bioleaching to obtain better bioleaching efficiency.Results illustrated that appropriate aeration improved bacterial concentrations and leaching efficiencies.The highest bacterial concentration and Cu^(2+)concentration after 14-d leaching were 7.61×10^(7) cells·mL^(−1) and 704.9 mg·L^(−1),respectively,at aeration duration of 4 h·d^(−1).The attached bacteria played a significant role during bioleaching from 1 to 7 d.However,free bacteria dominated the bioleaching processes from 8 to 14 d.This phenomenon was mainly caused by the formation of passivation layer through Fe3+hydrolysis along with bioleaching,which inhibited the contact between the attached bacteria and ore.Meanwhile,16S rDNA analysis verified the effect of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans on the bioleaching process.The results demonstrate the importance of free and attached bacteria in bioleaching.展开更多
基金Project(2007CB613601)supported by the National Basic Research Program of ChinaProject(10C1095)supported by the Foundation of Hunan Educational Committee,China
文摘The leaching kinetics of copper from low-grade copper ore was investigated in ammonia-ammonium sulfate solution with sodium persulfate. The effect parameters of stirring speed, temperature, particle size, concentrations of ammonia, ammonium sulfate and sodium persulfate were determined. The results show that the leaching rate is nearly independent of agitation above 300 r/min and increases with the increase of temperature, concentrations of ammonia, ammonium sulfate and sodium persulfate. The EDS analysis and phase quantitative analysis of the residues indicate that bornite can be dissolved by persulfate oxidization. The leaching kinetics with activation energy of 22.91 kJ/mol was analyzed by using a new shrinking core model (SCM) in which both the interfacial transfer and diffusion across the product layer affect the leaching rate. A semi-empirical rate equation was obtained to describe the leaching process and the empirical reaction orders with respect to the concentrations of ammonia, ammonium sulfate and sodium persulfate are 0.5, 1.2 and 0.5, respectively.
基金Project(2007CB613601) supported by the National Basic Research Program of ChinaProject(10C1095) supported by the Foundation of Hunan Educational Committee,China
文摘The leaching kinetics of low-grade copper ore with high-alkality gangues was studied in ammonia-ammonium sulphate solution.The main parameters,such as ammonia and ammonium sulphate concentrations,particle size,solid-to-liquid ratio and reaction temperature,were chosen in the experiments.The results show that the increase of temperature,concentrations of ammonia and ammonium sulphate is propitious to the leaching rate of copper ore.The leaching rate increases with the decrease of particle size and solid-to-liquid ratio.The leaching rate is controlled by the diffusion through the ash layer and the activation energy is determined to be 25.54 kJ/mol.A semi-empirical equation was proposed to describe the leaching kinetics.
文摘This article reports the study on acid equilibrium during bioleaching of alkaline low-grade copper sulfide ore. Adding auxiliary agents 1# (sulfur) and 2# (pyrite) makes bacterial leaching of copper and acid production carried out simultaneously because the auxiliary agents can be oxidized by bacteria and the oxidation products involve acid. The acid required for dissolving alkaline gangue during bacterial leaching is produced, and acid equilibrium is reached during the ore bio-leaching. The recovery of copper reaches more than 95%.
文摘In order to economically recover the copper from the low grade copper ores, a bioleaching solvent extraction electrowinning plant with a design capacity of 2 000 t cathode copper per year in Dexing Copper Mine was operated in September, 1997. The results during the 10 month period of the industrial copper dump leaching have been obtained and the approaches have been carried out to enhance the copper dissolution from the waste rocks. The overall operation flowsheet is depicted. The problems confronted in the process and possible way for improving are discussed.
基金This work was supported by National Science Foundation for Excellent Young Scholars,China(No.51722401)Key Project of National Natural Science Foundation,China(No.51734001)Fundamental Research Funds for the Central Universities(No.FRF-TP-18-003C1).
文摘Bacterial community dynamics and copper leaching with applied forced aeration were investigated during low-grade copper sulphide bioleaching to obtain better bioleaching efficiency.Results illustrated that appropriate aeration improved bacterial concentrations and leaching efficiencies.The highest bacterial concentration and Cu^(2+)concentration after 14-d leaching were 7.61×10^(7) cells·mL^(−1) and 704.9 mg·L^(−1),respectively,at aeration duration of 4 h·d^(−1).The attached bacteria played a significant role during bioleaching from 1 to 7 d.However,free bacteria dominated the bioleaching processes from 8 to 14 d.This phenomenon was mainly caused by the formation of passivation layer through Fe3+hydrolysis along with bioleaching,which inhibited the contact between the attached bacteria and ore.Meanwhile,16S rDNA analysis verified the effect of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans on the bioleaching process.The results demonstrate the importance of free and attached bacteria in bioleaching.