A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resis...A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resistance and sodium dendrite growth originating from the poor interface contact seriously hinder its practical application.Herein,a modified ultrasound welding was proposed to atomically bond Na anodes and Au-metalized Na_(3)Zr_(2)Si_(2)PO_(12) electrolytes associated with the in situ formation of Na–Au alloy interlayers.Thereupon,intimate Na_(3)Zr_(2)Si_(2)PO_(12)-Au/Na interfaces with a low interfacial resistance(~23Ωcm^(2))and a strong dendrite inhibition ability were constructed.The optimized Na symmetric battery can cycle steadily for more than 900 h at 0.3 mA cm^(-2) under a low overpotential(<50 mV)of Na electroplating/stripping and deliver a high critical current density of 0.8 mAcm^(-2) at room temperature.By incorporating the above interface into the solid-state Na metal battery,taking three-dimensional Na_(3)V_(2)(PO_(4))_(3) as the cathode,the full battery offers a high energy density of 291 Wh kg^(-1) at a high power density of 1860Wkg^(-1).A pouch-type solid-state sodium metal full battery based on a ceramic electrolyte was assembled for the first time,and it lit a 3 V LED lamp.Such a strategy of the ultrasound welding metalized solid-state electrolyte/Na interface by engineering the Na-Au interlayer would pave a new pathway to engineer a low-resistance and highly stable interface for high-energy/density solid-state sodium metal batteries.展开更多
The explosive demands for facial masks as vital personal protection equipment(PPE)in the wake of Covid-19 have challenged many industries and enterprises in technology and capacity,and the piezoelectric ceramic(PZT)tr...The explosive demands for facial masks as vital personal protection equipment(PPE)in the wake of Covid-19 have challenged many industries and enterprises in technology and capacity,and the piezoelectric ceramic(PZT)transducers for the production of facial masks in the welding process are in heavy demand.In the earlier days of the epidemic,the supply of ceramic transducers cannot meet its increasing demands,and efforts in materials,development,and production are mobilized to provide the transducers to mask producers for quick production.The simplest solution is presented with the employment of Rayleigh-Ritz method for the vibration analysis,then different materials can be selected to achieve the required frequency and energy standards.The fully tailored method and results can be utilized by the engineers for quick development of the PZT transducers to perform precise function in welding.展开更多
A series of fundamental experimental investigation was conducted in order to examine the effect of PWHT by sheet-type ceramic heater on the residual stress, deformation and compressive behavior of non-stiffened welded...A series of fundamental experimental investigation was conducted in order to examine the effect of PWHT by sheet-type ceramic heater on the residual stress, deformation and compressive behavior of non-stiffened welded box columns. The sheet-type ceramic heater was able to control the required temperature history for PWHT with high accuracy. The welding-induced tensile and compressive residual stresses of the specimens were reduced by 90% and 76% respectively with PWHT. Besides, PWHT could reduce the welding-induced out-of-plane deformation by 22%. It was revealed that the PWHT specimens had a slight higher stiffness than the As-welded specimens when applying monotonic static compressive load on both As-welded and PWHT specimens. They could also enhance the ultimate compressive load capacity about 32% of that of the As-welded specimens. The effectiveness of PWHT with the sheet-type ceramic heater could be confirmed.展开更多
Spark plasma sintering(SPS) was used to weld the ceramics,eg,Cr3C2 and metal,Ni in this paper.It is found that the SPS can weld the Cr3C2 and Ni plates at lower temperatures and shorter holding time comparing with t...Spark plasma sintering(SPS) was used to weld the ceramics,eg,Cr3C2 and metal,Ni in this paper.It is found that the SPS can weld the Cr3C2 and Ni plates at lower temperatures and shorter holding time comparing with that of hot-pressing(HP).The binding strength was 113 MPa when the temperature was 1000 ℃ by SPS,compared with 10 MPa by HP at the same temperature.SPS remarkably enhances the atom diffusion in welding.Thermodynamics analysis at different welding temperatures and holding times of SPS or HP shows that the local temperature gradient,different from the past effects of by-passing current,is the dominative mechanism of the SPS welding.展开更多
基金Scientific Developing Foundation of Tianjin Education Commission,Grant/Award Number:2018ZD09National Natural Science Foundation of China,Grant/Award Numbers:51777138,52202282。
文摘A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resistance and sodium dendrite growth originating from the poor interface contact seriously hinder its practical application.Herein,a modified ultrasound welding was proposed to atomically bond Na anodes and Au-metalized Na_(3)Zr_(2)Si_(2)PO_(12) electrolytes associated with the in situ formation of Na–Au alloy interlayers.Thereupon,intimate Na_(3)Zr_(2)Si_(2)PO_(12)-Au/Na interfaces with a low interfacial resistance(~23Ωcm^(2))and a strong dendrite inhibition ability were constructed.The optimized Na symmetric battery can cycle steadily for more than 900 h at 0.3 mA cm^(-2) under a low overpotential(<50 mV)of Na electroplating/stripping and deliver a high critical current density of 0.8 mAcm^(-2) at room temperature.By incorporating the above interface into the solid-state Na metal battery,taking three-dimensional Na_(3)V_(2)(PO_(4))_(3) as the cathode,the full battery offers a high energy density of 291 Wh kg^(-1) at a high power density of 1860Wkg^(-1).A pouch-type solid-state sodium metal full battery based on a ceramic electrolyte was assembled for the first time,and it lit a 3 V LED lamp.Such a strategy of the ultrasound welding metalized solid-state electrolyte/Na interface by engineering the Na-Au interlayer would pave a new pathway to engineer a low-resistance and highly stable interface for high-energy/density solid-state sodium metal batteries.
基金supported in part by the National Natural Science Foundation of China(No.11672142)the Technology Innovation 2025 Program of the Municipality of Ningbo(No.2019B10122)。
文摘The explosive demands for facial masks as vital personal protection equipment(PPE)in the wake of Covid-19 have challenged many industries and enterprises in technology and capacity,and the piezoelectric ceramic(PZT)transducers for the production of facial masks in the welding process are in heavy demand.In the earlier days of the epidemic,the supply of ceramic transducers cannot meet its increasing demands,and efforts in materials,development,and production are mobilized to provide the transducers to mask producers for quick production.The simplest solution is presented with the employment of Rayleigh-Ritz method for the vibration analysis,then different materials can be selected to achieve the required frequency and energy standards.The fully tailored method and results can be utilized by the engineers for quick development of the PZT transducers to perform precise function in welding.
文摘A series of fundamental experimental investigation was conducted in order to examine the effect of PWHT by sheet-type ceramic heater on the residual stress, deformation and compressive behavior of non-stiffened welded box columns. The sheet-type ceramic heater was able to control the required temperature history for PWHT with high accuracy. The welding-induced tensile and compressive residual stresses of the specimens were reduced by 90% and 76% respectively with PWHT. Besides, PWHT could reduce the welding-induced out-of-plane deformation by 22%. It was revealed that the PWHT specimens had a slight higher stiffness than the As-welded specimens when applying monotonic static compressive load on both As-welded and PWHT specimens. They could also enhance the ultimate compressive load capacity about 32% of that of the As-welded specimens. The effectiveness of PWHT with the sheet-type ceramic heater could be confirmed.
基金Funded by the National Natural Science Foundation of China(No.U12301013)the Innovation Fund of Wuhan University of Technology(No.123243005)
文摘Spark plasma sintering(SPS) was used to weld the ceramics,eg,Cr3C2 and metal,Ni in this paper.It is found that the SPS can weld the Cr3C2 and Ni plates at lower temperatures and shorter holding time comparing with that of hot-pressing(HP).The binding strength was 113 MPa when the temperature was 1000 ℃ by SPS,compared with 10 MPa by HP at the same temperature.SPS remarkably enhances the atom diffusion in welding.Thermodynamics analysis at different welding temperatures and holding times of SPS or HP shows that the local temperature gradient,different from the past effects of by-passing current,is the dominative mechanism of the SPS welding.