The quality and safety of residents’water rely heavily on the design of municipal water supply and drainage pipes.Therefore,this paper aims to enhance the optimization of municipal water supply and drainage pipe desi...The quality and safety of residents’water rely heavily on the design of municipal water supply and drainage pipes.Therefore,this paper aims to enhance the optimization of municipal water supply and drainage pipe design by focusing on design requirements,principles,and key elements.Drawing from relevant design optimization experiences,technology advancements,and optimization measures,the research will analyze and consolidate the essential aspects of municipal water supply and drainage pipe design.The goal is to fundamentally elevate the quality standards of these designs,ensuring they meet the criteria for engineering project excellence.Through this comprehensive approach,we aim to contribute to the improvement and sustainability of water supply and drainage systems,safeguarding the well-being of residents.展开更多
An in-process technology approach is proposed to identify the source of acid mine drainage(AMD)generation and prevent its formation in a porphyry copper waste rock(WR).Adopting actions before stockpiling the WR enable...An in-process technology approach is proposed to identify the source of acid mine drainage(AMD)generation and prevent its formation in a porphyry copper waste rock(WR).Adopting actions before stockpiling the WR enables the establishment of potential contaminants and predicts the more convenient method for AMD prevention.A WR sample was separated into size fractions,and the WR’s net acidgenerating potential was quantified using chemical and mineralogical characterization.The diameter of physical locking of sulfides(DPLS)was determined,and the fractions below the DPLS were desulfurized using flotation.Finally,the WR fractions and tailing from the flotation test were submitted to acid-base accounting and weathering tests to evaluate their acid-generating potential.Results show that the WR’s main sulfide mineral is pyrite,and the DPLS was defined as 850μm.A sulfide recovery of 91%was achieved using a combination of HydroFloat^(®)and Denver cells for a size fraction lower than DPLS.No grinding was conducted.The results show that size fractions greater than DPLS and the desulfurized WR are unlikely to produce AMD.The outcomes show that in-processing technology can be a more proactive approach and an effective tool for avoiding AMD in a porphyry copper WR.展开更多
In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor...In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure(EWP). By means of a threedimensional(3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system(TDS) widely used in China and its optimized drainage system(ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice,including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 k Pa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.展开更多
Under the increasing demands as well as resource shortages in today’s society,energy-saving technologies in building water supply and drainage construction plays a vital role.Through the rational application of energ...Under the increasing demands as well as resource shortages in today’s society,energy-saving technologies in building water supply and drainage construction plays a vital role.Through the rational application of energy-saving technologies,energy consumption in water supply and drainage projects can be significantly minimized and wastage of water resources can be reduced.This will play a very promising role in promoting sustainable development of resources and environmental conservation in the modern era.This paper analyzes the application of energy-saving technology in building water supply and drainage construction,with an aspiration to make energy-saving technology more reasonable in today’s building water supply and drainage projects and to improve the quality of water supply and drainage construction projects,while achieving effective environmental protection.展开更多
At present,China’s social and economic development is faster and faster.At the same time,people pay more and more attention to the construction concept of energy and water conservation.We can see the popularization a...At present,China’s social and economic development is faster and faster.At the same time,people pay more and more attention to the construction concept of energy and water conservation.We can see the popularization and development of the concept of energy saving and water saving in every major field of our country,the same is true in the construction field.In order to effectively protect the ecological environment and maximize the use of limited resources,the energysaving and water-saving technology of the building,as well as water supply and drainage technology should be actively used.Based on this,this paper first analyzes the application significance of water supplydrainage and energy-water conservation technology in the construction field,analyzes the current situation of water supply and drainage in China,and proposes the application of water supply-drainage and energy-water conservation technology of the building for reference.展开更多
With the increase in mining depth, the danger of coal and gas outbursts increases.In order to drain coal gas effectively and to eliminate the risk of coal and gas outbursts, we used a specific number of penetration bo...With the increase in mining depth, the danger of coal and gas outbursts increases.In order to drain coal gas effectively and to eliminate the risk of coal and gas outbursts, we used a specific number of penetration boreholes for draining of pressure relief gas.Based on the principle of overlying strata movement, deformation and pressure relief, a good effect of gas drainage was obtained.The practice in the Panyi coal mine has shown that, after mining the C11coal seam as the protective layer, the relative expansion deformation value of the protected layer C13 reached 2.63%, The permeability coefficient increased 2880 times, the gas drainage rate of the C13 coal seam increased to more than 60%, the amount of gas was reduced from 13.0 to 5.2 m3/t and the gas pressure declined from 4.4 to 0.4 MPa, which caused the danger the outbursts in the coal seams to be eliminated.The result was that we achieved a safe and highly efficient mining operation of the C13 coal seam.展开更多
The presence of seam gas in the form of methane or carbon dioxide presents a hazard to underground coal mining operations.In-seam drilling has been undertaken for the past three decades for gas drainage to reduce the ...The presence of seam gas in the form of methane or carbon dioxide presents a hazard to underground coal mining operations.In-seam drilling has been undertaken for the past three decades for gas drainage to reduce the risk of gas outburst and lower the concentrations of seam gas in the underground ventilation.The drilling practices have reflected the standards of the times and have evolved with the development of technology and equipment and the needs to provide a safe mining environment underground.Early practice was to adapt equipment from other felds,with rotary drilling being the only form of drilling available.This form of drainage allowed various levels of gas drainage coverage but with changing emphasis,research and development within the coal industry has created specifc equipment,technology and practices to accurately place in-seam boreholes to provide effcient and effective gas drainage.Research into gas content determination established a standard for the process and safe levels for mining operations to continue.Surveying technology improved from the wire-line,single-shot Eastman survey instruments which was time-dependent on borehole depth to electronic instruments located in the drill string which transmitted accurate survey data to the drilling crew without time delays.This allowed improved directional control and increased drilling rates.Directional drilling technology has now been established as the industry standard to provide effective gas drainage drilling.Exploration was identifed as an additional beneft with directional drilling as it has the ability to provide exploration data from long boreholes.The ability of the technology to provide safe and reliable means to investigate the need for inrush protection and water drainage ahead of mining has been established.Directional drilling technology has now been introduced to the Chinese coal industry for gas drainage through a practice of auditing,design,supply,training and ongoing support.Experienced drilling crews can offer site specifc gas drainage drilling services utilising the latest equipment and technology.展开更多
Objective:Observation on the effect of Ilizarov external fixation combined with vacuum pressure sealing drainage and antibiotics in the treatment of infective tibial nonunion.Methods:79 patients with tibial infective ...Objective:Observation on the effect of Ilizarov external fixation combined with vacuum pressure sealing drainage and antibiotics in the treatment of infective tibial nonunion.Methods:79 patients with tibial infective nonunion who were treated in our hospital from August 2016 to August 2018 were divided into two groups according to random number table,with 39 patients in the control group treated with Ilizarov external fixation technology and 40 patients in the study group treated with vacuum pressure sealing drainage and antibiotics on the basis of the control group.Bone healing time and daily walking were recorded.Rasmussen score,serum intercellular adhesion molecule-1(ICAM-1)and IL-6 levels,lower limb Fugl-Meyer motor function score and lower limb BI index score were compared at different time.Results:The daily walking condition of the study group was significantly better than that of the control group(P<0.05),and the healing time of bone was significantly shorter than that of the control group(P<0.05);the Rasmussen score of the study group was higher than that of the control group at 1 month,6 months and 12 months after treatment(P<0.05);the levels of serum ICAM-1 and IL-6 in the two groups after treatment were lower than those before treatment(P<0.05),and the levels of serum ICAM-1 and IL-6 in the study group were lower than those in the control group after treatment(P<0.05).The lower limb Fugl-Meyer motor function score and lower limb BI index score of the two groups after treatment were higher than those before treatment(P<0.05),and the lower limb Fugl-Meyer motor function score and lower limb BI index score of the study group after treatment were higher than those of the control group(P<0.05).Conclusions:Ilizarov external fixation combined with vacuum pressure sealing drainage and antibiotics can promote the bone healing of patients with infective tibial nonunion,significantly improving their daily walking condition,alleviating inflammation,and recovering the knee joint function and lower limb function well.展开更多
Computational fluid dynamics(CFD) simulation is an effective approach to develop and optimise gas drainage design for underground longwall coal mining. As part of the project supported by the Australian Government Coa...Computational fluid dynamics(CFD) simulation is an effective approach to develop and optimise gas drainage design for underground longwall coal mining. As part of the project supported by the Australian Government Coal Mining Abatement Technology Support Package(CMATSP), threedimensional CFD simulations were conducted to test and optimise a conceptual design which proposes using horizontal boreholes to replace vertical boreholes at an underground coal mine in Australia.Drainage performance between a vertical borehole and a horizontal borehole was first carried out to compare their capacity and effectiveness. Then a series of cases with different horizontal borehole designs were simulated to optimise borehole configuration parameters such as location, diameter, and number of boreholes. The study shows that the horizontal borehole is able to create low pressure sinks that protect the workings from goaf gas ingresses by changing goaf gas flow directions, and that it has the advantage to continuously maintain such low pressure sinks near the tailgate as the longwall advances. An example of optimising horizontal borehole locations in the longwall lateral direction is also given in this paper.展开更多
The construction of water supply and drainage pipelines is a very important part of municipal construction.The construction of HDPE pipe has been widely used in the construction field of water supply and drainage pipe...The construction of water supply and drainage pipelines is a very important part of municipal construction.The construction of HDPE pipe has been widely used in the construction field of water supply and drainage pipelines due to its many advantages.Therefore,the construction process of HDPE pipe has also been studied more and more in the construction of municipal water supply and drainage,which is of great significance for the application of HDPE in municipal water supply and drainage construction.This paper analyzes the HDPE pipe construction process of municipal water supply and drainage construction workers,and hopes to help the good application of HDPE pipe and the improvement of municipal water supply and drainage construction quality.展开更多
文摘The quality and safety of residents’water rely heavily on the design of municipal water supply and drainage pipes.Therefore,this paper aims to enhance the optimization of municipal water supply and drainage pipe design by focusing on design requirements,principles,and key elements.Drawing from relevant design optimization experiences,technology advancements,and optimization measures,the research will analyze and consolidate the essential aspects of municipal water supply and drainage pipe design.The goal is to fundamentally elevate the quality standards of these designs,ensuring they meet the criteria for engineering project excellence.Through this comprehensive approach,we aim to contribute to the improvement and sustainability of water supply and drainage systems,safeguarding the well-being of residents.
基金supported by Agencia Nacional de Investigación y Desarrollo de Chile(ANID)Anillo-Grant ANID/ACT210027,Fondecyt 1211498,and ANID/AFB230001+1 种基金the ANID scholarship Grant 21210801partially performed by Luis Cisternas during the visit to the Universitédu Québec,supported by MINEDUC-UA project,code ANT1999.
文摘An in-process technology approach is proposed to identify the source of acid mine drainage(AMD)generation and prevent its formation in a porphyry copper waste rock(WR).Adopting actions before stockpiling the WR enables the establishment of potential contaminants and predicts the more convenient method for AMD prevention.A WR sample was separated into size fractions,and the WR’s net acidgenerating potential was quantified using chemical and mineralogical characterization.The diameter of physical locking of sulfides(DPLS)was determined,and the fractions below the DPLS were desulfurized using flotation.Finally,the WR fractions and tailing from the flotation test were submitted to acid-base accounting and weathering tests to evaluate their acid-generating potential.Results show that the WR’s main sulfide mineral is pyrite,and the DPLS was defined as 850μm.A sulfide recovery of 91%was achieved using a combination of HydroFloat^(®)and Denver cells for a size fraction lower than DPLS.No grinding was conducted.The results show that size fractions greater than DPLS and the desulfurized WR are unlikely to produce AMD.The outcomes show that in-processing technology can be a more proactive approach and an effective tool for avoiding AMD in a porphyry copper WR.
基金supported by the National Natural Science Foundation of China (Grant No. U1934211)the Open Foundation of National Engineering Research Center of High-speed Railway Construction Technology (Grant No. HSR202005)Scientific Research Project of Hunan Education Department (Grant No.20B596)。
文摘In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure(EWP). By means of a threedimensional(3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system(TDS) widely used in China and its optimized drainage system(ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice,including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 k Pa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.
文摘Under the increasing demands as well as resource shortages in today’s society,energy-saving technologies in building water supply and drainage construction plays a vital role.Through the rational application of energy-saving technologies,energy consumption in water supply and drainage projects can be significantly minimized and wastage of water resources can be reduced.This will play a very promising role in promoting sustainable development of resources and environmental conservation in the modern era.This paper analyzes the application of energy-saving technology in building water supply and drainage construction,with an aspiration to make energy-saving technology more reasonable in today’s building water supply and drainage projects and to improve the quality of water supply and drainage construction projects,while achieving effective environmental protection.
文摘At present,China’s social and economic development is faster and faster.At the same time,people pay more and more attention to the construction concept of energy and water conservation.We can see the popularization and development of the concept of energy saving and water saving in every major field of our country,the same is true in the construction field.In order to effectively protect the ecological environment and maximize the use of limited resources,the energysaving and water-saving technology of the building,as well as water supply and drainage technology should be actively used.Based on this,this paper first analyzes the application significance of water supplydrainage and energy-water conservation technology in the construction field,analyzes the current situation of water supply and drainage in China,and proposes the application of water supply-drainage and energy-water conservation technology of the building for reference.
基金Projects 2005CB221503 supported by the National Basic Research Program of China70533050 and 50674089 by the National Natural Science Foundationof China
文摘With the increase in mining depth, the danger of coal and gas outbursts increases.In order to drain coal gas effectively and to eliminate the risk of coal and gas outbursts, we used a specific number of penetration boreholes for draining of pressure relief gas.Based on the principle of overlying strata movement, deformation and pressure relief, a good effect of gas drainage was obtained.The practice in the Panyi coal mine has shown that, after mining the C11coal seam as the protective layer, the relative expansion deformation value of the protected layer C13 reached 2.63%, The permeability coefficient increased 2880 times, the gas drainage rate of the C13 coal seam increased to more than 60%, the amount of gas was reduced from 13.0 to 5.2 m3/t and the gas pressure declined from 4.4 to 0.4 MPa, which caused the danger the outbursts in the coal seams to be eliminated.The result was that we achieved a safe and highly efficient mining operation of the C13 coal seam.
文摘The presence of seam gas in the form of methane or carbon dioxide presents a hazard to underground coal mining operations.In-seam drilling has been undertaken for the past three decades for gas drainage to reduce the risk of gas outburst and lower the concentrations of seam gas in the underground ventilation.The drilling practices have reflected the standards of the times and have evolved with the development of technology and equipment and the needs to provide a safe mining environment underground.Early practice was to adapt equipment from other felds,with rotary drilling being the only form of drilling available.This form of drainage allowed various levels of gas drainage coverage but with changing emphasis,research and development within the coal industry has created specifc equipment,technology and practices to accurately place in-seam boreholes to provide effcient and effective gas drainage.Research into gas content determination established a standard for the process and safe levels for mining operations to continue.Surveying technology improved from the wire-line,single-shot Eastman survey instruments which was time-dependent on borehole depth to electronic instruments located in the drill string which transmitted accurate survey data to the drilling crew without time delays.This allowed improved directional control and increased drilling rates.Directional drilling technology has now been established as the industry standard to provide effective gas drainage drilling.Exploration was identifed as an additional beneft with directional drilling as it has the ability to provide exploration data from long boreholes.The ability of the technology to provide safe and reliable means to investigate the need for inrush protection and water drainage ahead of mining has been established.Directional drilling technology has now been introduced to the Chinese coal industry for gas drainage through a practice of auditing,design,supply,training and ongoing support.Experienced drilling crews can offer site specifc gas drainage drilling services utilising the latest equipment and technology.
基金Qinghai provincial commission of health and family planning appropriate technology promotion project(2018-wjtg-03).
文摘Objective:Observation on the effect of Ilizarov external fixation combined with vacuum pressure sealing drainage and antibiotics in the treatment of infective tibial nonunion.Methods:79 patients with tibial infective nonunion who were treated in our hospital from August 2016 to August 2018 were divided into two groups according to random number table,with 39 patients in the control group treated with Ilizarov external fixation technology and 40 patients in the study group treated with vacuum pressure sealing drainage and antibiotics on the basis of the control group.Bone healing time and daily walking were recorded.Rasmussen score,serum intercellular adhesion molecule-1(ICAM-1)and IL-6 levels,lower limb Fugl-Meyer motor function score and lower limb BI index score were compared at different time.Results:The daily walking condition of the study group was significantly better than that of the control group(P<0.05),and the healing time of bone was significantly shorter than that of the control group(P<0.05);the Rasmussen score of the study group was higher than that of the control group at 1 month,6 months and 12 months after treatment(P<0.05);the levels of serum ICAM-1 and IL-6 in the two groups after treatment were lower than those before treatment(P<0.05),and the levels of serum ICAM-1 and IL-6 in the study group were lower than those in the control group after treatment(P<0.05).The lower limb Fugl-Meyer motor function score and lower limb BI index score of the two groups after treatment were higher than those before treatment(P<0.05),and the lower limb Fugl-Meyer motor function score and lower limb BI index score of the study group after treatment were higher than those of the control group(P<0.05).Conclusions:Ilizarov external fixation combined with vacuum pressure sealing drainage and antibiotics can promote the bone healing of patients with infective tibial nonunion,significantly improving their daily walking condition,alleviating inflammation,and recovering the knee joint function and lower limb function well.
基金the Department of Industry and Science,Australian Government for funding this researchthe management and staff of Glencore Bulga Underground Operations for their significant contributions in this project
文摘Computational fluid dynamics(CFD) simulation is an effective approach to develop and optimise gas drainage design for underground longwall coal mining. As part of the project supported by the Australian Government Coal Mining Abatement Technology Support Package(CMATSP), threedimensional CFD simulations were conducted to test and optimise a conceptual design which proposes using horizontal boreholes to replace vertical boreholes at an underground coal mine in Australia.Drainage performance between a vertical borehole and a horizontal borehole was first carried out to compare their capacity and effectiveness. Then a series of cases with different horizontal borehole designs were simulated to optimise borehole configuration parameters such as location, diameter, and number of boreholes. The study shows that the horizontal borehole is able to create low pressure sinks that protect the workings from goaf gas ingresses by changing goaf gas flow directions, and that it has the advantage to continuously maintain such low pressure sinks near the tailgate as the longwall advances. An example of optimising horizontal borehole locations in the longwall lateral direction is also given in this paper.
文摘The construction of water supply and drainage pipelines is a very important part of municipal construction.The construction of HDPE pipe has been widely used in the construction field of water supply and drainage pipelines due to its many advantages.Therefore,the construction process of HDPE pipe has also been studied more and more in the construction of municipal water supply and drainage,which is of great significance for the application of HDPE in municipal water supply and drainage construction.This paper analyzes the HDPE pipe construction process of municipal water supply and drainage construction workers,and hopes to help the good application of HDPE pipe and the improvement of municipal water supply and drainage construction quality.