Thermal stability of HgCl2 has a pivotal importance for the hydrochlorination reaction as the loss of mercuric compounds is toxic and detrimental to environment.Here we report a low-mercury catalyst which has durabili...Thermal stability of HgCl2 has a pivotal importance for the hydrochlorination reaction as the loss of mercuric compounds is toxic and detrimental to environment.Here we report a low-mercury catalyst which has durability over 10000 h for acetylene hydrochlorination under the industrial condition.The stability of the catalyst is carefully analyzed from a combined experimental and density functional theory study.The analysis shows that the extraordinary stability of mercury catalyst is resulted from the synergy effects between surface oxygen groups and defective edge sites.The binding energy of HgCl2 is increased to be higher than 130 kJ/mol when adsorption is at the edge site with a nearby oxygen group.Therefore,the present study revealed that the thermal stability problem of mercury-based catalyst can be solved by simply adjusting the surface chemistry of activated carbon.Furthermore,the reported catalyst has already been successfully applied in the commercialized production of vinyl chloride.展开更多
Mercuric chloride supported on activated carbon(HgCl_2/AC) is used as an industrial catalyst for the hydrochlorination of acetylene. Loss of HgCl_2 by sublimating from the surface of activated carbon causes the irreve...Mercuric chloride supported on activated carbon(HgCl_2/AC) is used as an industrial catalyst for the hydrochlorination of acetylene. Loss of HgCl_2 by sublimating from the surface of activated carbon causes the irreversible deactivation of mercury catalyst and environmental pollution. In this work, a ligand coordination approach based on the Principle of Hard and Soft Acids and Bases(HSAB) was employed to design more stable lowmercury catalyst. The low-mercury catalysts(4% HgCl_2 loading) were prepared by using HgCl_2 and potassium halides(KX, X = Cl, I) as precursors. The HgCl_2-4KI/AC catalyst showed best catalytic stability than HgCl_2/AC and HgCl_2-4KCl/AC in the hydrochloriantion of acetylene. HgCl_2 could form more stable complex with KI,K_2HgI_4 as the main active component of the HgCl_2-4KI/AC catalyst. The characterizations of XRD and EDX analysis illustrated that the active component of HgCl_2-4KI/AC was highly dispersed on the surface of activated carbon.The sublimation rates of HgCl_2 from the catalysts verified that the active component with larger stability constant had better thermal stability. Using Hg(Ⅱ) complexes with high stability constant as the active component may be the research direction of developing highly stable low-mercury catalyst for the hydrochlorination of acetylene.展开更多
In order to improve the ability of SCR catalyst to catalyze the oxidation of gaseous elemental mercury,a series of novel Ce modified SCR(Selection Catalytic Reduction,V_(2)O_(5)-WO_(3)/TiO_(2))catalysts were prepared ...In order to improve the ability of SCR catalyst to catalyze the oxidation of gaseous elemental mercury,a series of novel Ce modified SCR(Selection Catalytic Reduction,V_(2)O_(5)-WO_(3)/TiO_(2))catalysts were prepared via two-step ultrasonic impregnation method.The performance of Ce/SCR catalysts on Hg^(0)oxidation and NO reduction as well as the catalytic mechanism on Hg^(0)oxidation was also studied.The XRD,BET measurements and XPS were used to characterize the catalysts.The results showed that the pore volume and pore size of catalyst was reduced by Ce doping,and the specific surface area decreased with the increase of Ce content in catalyst.The performance on Hg^(0)oxidation was promoted by the introduction of CeO_(2).Ce_(1)/SCR(1%Ce,wt.%)catalyst exhibited the best Hg^(0)oxidation activity of 21.2%higher than that of SCR catalyst at 350℃,of which the NO conversion efficiency was also higher at 200-400℃.Furthermore,Ce_(1)/SCR showed a better H_(2)O resistance but a slightly weaker SO_(2)resistance than SCR catalyst.The chemisorbed oxygen and weak absorbed oxygen on the surface of catalyst were increased by the addition of CeO_(2).The chemisorbed oxygen and weak absorbed oxygen on the surface of catalyst were increased by the addition of CeO_(2).The Ce_(1)/SCR possed better redox ability compared with SCR catalyst.HCl was the most effective gas responsible for the Hg^(0)oxidation,and the redox cycle(V^(4+)+Ce^(4+)←→V^(5+)+Ce^(3+))played an important role in promoting Hg^(0)oxidation.展开更多
We recently reported an N‐doped mesoporous carbon(N‐MC)extrudate,with major quaternary N species,prepared by a cheap and convenient method through direct carbonization of wheat flour with silica,which has excellent ...We recently reported an N‐doped mesoporous carbon(N‐MC)extrudate,with major quaternary N species,prepared by a cheap and convenient method through direct carbonization of wheat flour with silica,which has excellent catalytic performance in acetylene hydrochlorination.Herein,we examined the activity of Au supported on N‐MC(Au/N‐MC)and compared it with that of Au supported on nitrogen‐free mesoporous carbon(Au/MC).The acetylene conversion of Au/N‐MC was 50%at 180°C with an acetylene space velocity of 600 h–1 and VHCl/VC2H2 of 1.1,which was double the activity of Au/MC(25%).The introduced nitrogen atoms acted as anchor sites that stabilized the Au3+species and inhibited the reduction of Au3+to Au0 during the preparation of Au/N‐MC catalysts.展开更多
Due to the harmful impacts on the ecosystem and even human health,mercury(Hg)compounds in the environment deserve serious concern.Atmospheric mobilization and exchange at the air-sea interface are important processes ...Due to the harmful impacts on the ecosystem and even human health,mercury(Hg)compounds in the environment deserve serious concern.Atmospheric mobilization and exchange at the air-sea interface are important processes in biogeochemical cycling of Hg.Relying on the 30th(2013/2014),31st(2014/2015),and 33rd(2016/2017)Chinese National Antarctic Research Expedition aboard R/V Xuelong,we found significant rising gaseous elemental mercury(GEM)concentrations over the equatorial Central Indo-Pacific region.Excluding the contribution of anthropogenic,volcanic and biomass burning emissions,the enhanced GEM in marine boundary layer was likely due to the combined actions of two driving factors drove by the Inter-Tropical Conversion Zone(ITCZ):(1)intense wet deposition of Hg,followed by subsequent rapid photoreduction and vast evasion from the surface sea;and(2)the regional low-level convergence of airflow that caused the mass accumulation of GEM in air.In addition,apparently higher GEM concentration level in the equatorial Central Indo-Pacific than in the Southern Ocean was observed in one cruise.Further investigation suggests that apart from the ITCZ corresponded mechanisms,the effects of spatial differences in anthropogenic emissions and more significant GEM oxidation in Antarctic sea should play roles in this phenomenon.展开更多
文摘Thermal stability of HgCl2 has a pivotal importance for the hydrochlorination reaction as the loss of mercuric compounds is toxic and detrimental to environment.Here we report a low-mercury catalyst which has durability over 10000 h for acetylene hydrochlorination under the industrial condition.The stability of the catalyst is carefully analyzed from a combined experimental and density functional theory study.The analysis shows that the extraordinary stability of mercury catalyst is resulted from the synergy effects between surface oxygen groups and defective edge sites.The binding energy of HgCl2 is increased to be higher than 130 kJ/mol when adsorption is at the edge site with a nearby oxygen group.Therefore,the present study revealed that the thermal stability problem of mercury-based catalyst can be solved by simply adjusting the surface chemistry of activated carbon.Furthermore,the reported catalyst has already been successfully applied in the commercialized production of vinyl chloride.
基金Supported by the National Natural Science Foundation of China(21476207)the China Postdoctoral Science Foundation(2016M592015)
文摘Mercuric chloride supported on activated carbon(HgCl_2/AC) is used as an industrial catalyst for the hydrochlorination of acetylene. Loss of HgCl_2 by sublimating from the surface of activated carbon causes the irreversible deactivation of mercury catalyst and environmental pollution. In this work, a ligand coordination approach based on the Principle of Hard and Soft Acids and Bases(HSAB) was employed to design more stable lowmercury catalyst. The low-mercury catalysts(4% HgCl_2 loading) were prepared by using HgCl_2 and potassium halides(KX, X = Cl, I) as precursors. The HgCl_2-4KI/AC catalyst showed best catalytic stability than HgCl_2/AC and HgCl_2-4KCl/AC in the hydrochloriantion of acetylene. HgCl_2 could form more stable complex with KI,K_2HgI_4 as the main active component of the HgCl_2-4KI/AC catalyst. The characterizations of XRD and EDX analysis illustrated that the active component of HgCl_2-4KI/AC was highly dispersed on the surface of activated carbon.The sublimation rates of HgCl_2 from the catalysts verified that the active component with larger stability constant had better thermal stability. Using Hg(Ⅱ) complexes with high stability constant as the active component may be the research direction of developing highly stable low-mercury catalyst for the hydrochlorination of acetylene.
基金This work was supported by the National Key Research and Development Program of China(No.2016YFB0600603).
文摘In order to improve the ability of SCR catalyst to catalyze the oxidation of gaseous elemental mercury,a series of novel Ce modified SCR(Selection Catalytic Reduction,V_(2)O_(5)-WO_(3)/TiO_(2))catalysts were prepared via two-step ultrasonic impregnation method.The performance of Ce/SCR catalysts on Hg^(0)oxidation and NO reduction as well as the catalytic mechanism on Hg^(0)oxidation was also studied.The XRD,BET measurements and XPS were used to characterize the catalysts.The results showed that the pore volume and pore size of catalyst was reduced by Ce doping,and the specific surface area decreased with the increase of Ce content in catalyst.The performance on Hg^(0)oxidation was promoted by the introduction of CeO_(2).Ce_(1)/SCR(1%Ce,wt.%)catalyst exhibited the best Hg^(0)oxidation activity of 21.2%higher than that of SCR catalyst at 350℃,of which the NO conversion efficiency was also higher at 200-400℃.Furthermore,Ce_(1)/SCR showed a better H_(2)O resistance but a slightly weaker SO_(2)resistance than SCR catalyst.The chemisorbed oxygen and weak absorbed oxygen on the surface of catalyst were increased by the addition of CeO_(2).The chemisorbed oxygen and weak absorbed oxygen on the surface of catalyst were increased by the addition of CeO_(2).The Ce_(1)/SCR possed better redox ability compared with SCR catalyst.HCl was the most effective gas responsible for the Hg^(0)oxidation,and the redox cycle(V^(4+)+Ce^(4+)←→V^(5+)+Ce^(3+))played an important role in promoting Hg^(0)oxidation.
基金Zhejiang Provincial Natural Science Foundation of China(LY17B030010)~~
文摘We recently reported an N‐doped mesoporous carbon(N‐MC)extrudate,with major quaternary N species,prepared by a cheap and convenient method through direct carbonization of wheat flour with silica,which has excellent catalytic performance in acetylene hydrochlorination.Herein,we examined the activity of Au supported on N‐MC(Au/N‐MC)and compared it with that of Au supported on nitrogen‐free mesoporous carbon(Au/MC).The acetylene conversion of Au/N‐MC was 50%at 180°C with an acetylene space velocity of 600 h–1 and VHCl/VC2H2 of 1.1,which was double the activity of Au/MC(25%).The introduced nitrogen atoms acted as anchor sites that stabilized the Au3+species and inhibited the reduction of Au3+to Au0 during the preparation of Au/N‐MC catalysts.
基金financially supported by National Polar Special Program “Impact and Response of Antarctic Seas to Climate Change” (Grant no. 01-01-02E)supported by the National Natural Science Foundation of China (Grant no. 41941014)。
文摘Due to the harmful impacts on the ecosystem and even human health,mercury(Hg)compounds in the environment deserve serious concern.Atmospheric mobilization and exchange at the air-sea interface are important processes in biogeochemical cycling of Hg.Relying on the 30th(2013/2014),31st(2014/2015),and 33rd(2016/2017)Chinese National Antarctic Research Expedition aboard R/V Xuelong,we found significant rising gaseous elemental mercury(GEM)concentrations over the equatorial Central Indo-Pacific region.Excluding the contribution of anthropogenic,volcanic and biomass burning emissions,the enhanced GEM in marine boundary layer was likely due to the combined actions of two driving factors drove by the Inter-Tropical Conversion Zone(ITCZ):(1)intense wet deposition of Hg,followed by subsequent rapid photoreduction and vast evasion from the surface sea;and(2)the regional low-level convergence of airflow that caused the mass accumulation of GEM in air.In addition,apparently higher GEM concentration level in the equatorial Central Indo-Pacific than in the Southern Ocean was observed in one cruise.Further investigation suggests that apart from the ITCZ corresponded mechanisms,the effects of spatial differences in anthropogenic emissions and more significant GEM oxidation in Antarctic sea should play roles in this phenomenon.