In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-si...In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-situ wind profiles in the eastern tropical Indian Ocean.This equipment successfully captured low-level jets(LLJs)in the region,and their characteristics were thoroughly analyzed.Results reveal that the observed wind speed of LLJs in the eastern Indian Ocean ranges from 6 m s^(-1) to 10 m s^(-1) during the boreal winter and spring seasons,showing a height range of 0.6 to 1 km and two peak times at 0800 and 2000 UTC.This wind shear is weaker than that in land or offshore areas,ranging from 0 s^(-1) to 0.006 s^(-1).Moreover,the accuracy of the CDL data is compared to that of ERA5 data in the study area.The results indicate that the zonal wind from ERA5 data significantly deviated from the CDL measurement data,and the overall ERA5 data are substantially weaker than the in-situ observations.Notably,ERA5 underestimates northwestward LLJs.展开更多
An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitatio...An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitation. The present study examines the roles of persistent low-level jets(LLJs) in maintaining the precipitation using surface station observations and reanalysis datasets. The LLJs triggered strong ascending motions and carried moisture mainly from the outflow of Typhoon In-fa(2021). The varying directions of the LLJs well corresponded to the meridional shifts of the rainfall. The precipitation rate reached a maximum during 20-21 July as the LLJs strengthened and expanded vertically into double LLJs, including synoptic-weather-system-related LLJs(SLLJs) at 850–700 hPa and boundary-layer jets(BLJs)at ~950 hPa. The coupling of the SLLJ and BLJ provided strong mid-and low-level convergence on 20 July, whereas the SLLJ produced mid-level divergence at its entrance that coupled with low-level convergence at the terminus of the BLJ on21 July. The formation mechanisms of the two types of LLJs are further examined. The SLLJs and the low-pressure vortex(or inverted trough) varied synchronously as a whole and were affected by the southwestward movement of the WPSH in the rainiest period. The persistent large total pressure gradient force at low levels also maintained the strength of low-level geostrophic winds, thus sustaining the BLJs on the synoptic scale. The results based on a Du-Rotunno 1D model show that the Blackadar and Holton mechanisms jointly governed the BLJ dynamics on the diurnal scale.展开更多
The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral ...The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.展开更多
AIM:To report the myopia-controlling effect of repeated low-level red-light(RLRL)therapy in patients with Stickler syndrome(STL),an inherited collagenic disease typically presenting with early onset myopia.METHODS:Thr...AIM:To report the myopia-controlling effect of repeated low-level red-light(RLRL)therapy in patients with Stickler syndrome(STL),an inherited collagenic disease typically presenting with early onset myopia.METHODS:Three STL children,aged 3,7,and 11y,received RLRL therapy throughout the follow-up period of 17,3,and 6mo,respectively after exclusion of fundus anomalies.Data on best-corrected visual acuity(BCVA),intraocular pressure,cycloplegic subjective refraction,ocular biometrics,scanning laser ophthalmoscope,optical coherence tomography,genetic testing,systemic disease history,and family history were recorded.RESULTS:At the initiation of the RLRL therapy,the spherical equivalent(SE)of 6 eyes from 3 patients ranged from-3.75 to-20.38 D,axial length(AL)were from 23.88 to 30.68 mm,and BCVA were from 0.4 to 1.0(decimal notation).Myopia progression of all six eyes slowed down after RLRL therapy.AL in five out of the six eyes shortened-0.07 to-0.63 mm.No side effects were observed.CONCLUSION:Three cases of STL whose progression of myopic shift and AL elongation are successfully reduced and even reversed after RLRL therapy.展开更多
This study examines the diversity of low-level jet(LLJ)formation and related physical processes over southern China.A total of 171 LLJ formation events with enhanced daily southwesterlies and early-morning maximum win...This study examines the diversity of low-level jet(LLJ)formation and related physical processes over southern China.A total of 171 LLJ formation events with enhanced daily southwesterlies and early-morning maximum wind speeds were observed during the mei-yu seasons of 1989–2018.The LLJs can be further categorized into four types based on the increases in the daily mean and diurnal amplitude of the low-level winds.Analysis of the synoptic-scale disturbances shows that the two types of LLJ formation(Q1 and Q4),which feature large increases of daily southerly wind components,are mainly induced by west-east dipole patterns of pressure change,in association with the enhanced southwest vortex and/or the western Pacific subtropical high(WPSH).In contrast,the other two types(Q2 and Q3),which feature relatively large increases in their daily westerly components,are related to a northwest-southeast dipole pattern of pressure change due to the mid-latitude trough and the WPSH.We further analyze the considerable variations in the diurnal thermal forcing among the LLJ formation events.The strong(weak)daytime heating of solar radiation leads to relatively large(small)increases in the diurnal amplitude of low-level winds in Q1 and Q2(Q3 and Q4)types.Therefore,different combinations of synopticscale disturbances and diurnal thermal forcings are found to account for the diversity in LLJ formation and associated differences in downstream rainfall patterns.These results help to improve our understanding and prediction of the formation of LLJs.展开更多
In this paper,the data of Automatic Weather Stations(AWSs),ERA5 reanalysis,sounding,wind profile radar,and dual-polarization radar are used to study an extreme rainfall event in the south China Coast on 11 to 12 May 2...In this paper,the data of Automatic Weather Stations(AWSs),ERA5 reanalysis,sounding,wind profile radar,and dual-polarization radar are used to study an extreme rainfall event in the south China Coast on 11 to 12 May 2022 from the aspects of thermodynamics and microphysical characteristics under the influence of low-level jets(LLJs).Results show that:(1)The extreme rainfall event can be divided into two stages:the first stage(S1)from 0000 to 0600 LST on May 12 and the second stage(S2)from 0700 to 1700 LST on the same day.During S1,the rainfall is mainly caused by the upper-level shortwave trough and the boundary layer jet(BLJ),characterized by strong upward motion on the windward side of mountains.In S2,the combined influence of the BLJ and synoptic-system-related low-level jet(SLLJ)increases the vertical wind shear and vertical vorticity,strengthening the rainstorm.In combination with the effect of topography,a warm and humid southwest flow continuously transports water vapor to farther north,resulting in a significant increase in rainfall over the study area(on the terrain’s windward slope).From S1 to S2,the altitude of a divergence center in the upper air decreases obviously.(2)The rainfalls in the two stages are both associated with the mesoscale convergence line(MCL)on the surface,and the wind field from the mesoscale outflow boundary(MOB)in S1 is in the same direction as the environmental winds.Due to a small area of convergence that is left behind the MOB,convection moves eastward quickly and causes a short duration of heavy rainfall.In S2,the convergence along the MOB is enhanced,which strengthens the rainfall and leads to strong outflows,further enhancing the surface convergence near the MOB and forming a positive feedback mechanism.It results in a slow motion of convection and a long duration of heavy rainfall.(3)In terms of microphysics,the center of a strong echo in S1 is higher than in S2.The warm-rain process of the oceanic type characterizes both stages,but the convective intensity in S2 is significantly stronger than that in S1,featuring bigger drop sizes and lower concentrations.It is mainly due to the strengthening of LLJs,which makes small cloud droplets lift to melting levels,enhancing the ice phase process(riming process),producing large amounts of graupel particles and enhancing the melting and collision processes as they fall,resulting in the increase of liquid water content(LWC)and the formation of large raindrops near the surface.展开更多
Here,we analyze the characteristics and the formation mechanisms of low-level jets(LLJs)in the middle reaches of the Yangtze River during the 2010 mei-yu season using Wuhan station radiosonde data and the fifth genera...Here,we analyze the characteristics and the formation mechanisms of low-level jets(LLJs)in the middle reaches of the Yangtze River during the 2010 mei-yu season using Wuhan station radiosonde data and the fifth generation of the European Centre for Medium-Range Weather Forecasts(ERA5)reanalysis dataset.Our results show that the vertical structure of LLJs is characterized by a predominance of boundary layer jets(BLJs)concentrated at heights of 900-1200 m.The BLJs occur most frequently at 2300 LST(LST=UTC+8 hours)but are strongest at 0200 LST,with composite wind velocities>14 m s^(-1).Synoptic-system-related LLJs(SLLJs)occur most frequently at 0800 LST but are strongest at 1100LST,with composite wind velocities>12 m s^(-1).Both BLJs and SLLJs are characterized by a southwesterly wind direction,although the wind direction of SLLJs is more westerly,and northeasterly SLLJs occur more frequently than northeasterly BLJs.When Wuhan is south of the mei-yu front,the westward extension of the northwest Pacific subtropical high intensifies,and the low-pressure system in the eastern Tibetan Plateau strengthens,favoring the formation of LLJs,which are closely related to precipitation.The wind speeds on rainstorm days are greater than those on LLJ days.Our analysis of four typical heavy precipitation events shows the presence of LLJs at the center of the precipitation and on its southern side before the onset of heavy precipitation.BLJs were shown to develop earlier than SLLJs.展开更多
Prof. Gong Feili was born and raised in Shanghai, China. He attended Sun Yat-sen Medical College, Guang zhou during 1962 to 1968, and received his M.D. degree there in 1968. After graduation, he worked as a physician ...Prof. Gong Feili was born and raised in Shanghai, China. He attended Sun Yat-sen Medical College, Guang zhou during 1962 to 1968, and received his M.D. degree there in 1968. After graduation, he worked as a physician in the Department of Internal Medicine of the Wugang Hospital, Wuhan, from 1968 to 1980. During that period of time, cases of leukemia drew his attention, and made展开更多
Objective:To investigate the effect of Kangfuxin Solution(康复新液)combined with low-level laser therapy(LLLT)on cytokines and immune function in patients with radiation-induced oral mucositis.Methods:There were 84 na...Objective:To investigate the effect of Kangfuxin Solution(康复新液)combined with low-level laser therapy(LLLT)on cytokines and immune function in patients with radiation-induced oral mucositis.Methods:There were 84 nasopharyngeal carcinoma patients with oral mucositis after intensity-modulated radiation therapy(IMRT)were randomly divided into the control group(CG)and the observation group(OG),with 42 cases in each group.The CG was given LLLT,and the OG was treated with Kangfuxin Solution in addition to LLLT for 10 consecutive days.The healing time of oral mucosa,mucositis grading,oral pain scores,cytokines(interleukin-6,interleukin-1βand tumor necrosis factor-α)and T lymphocyte subsets were compared between the 2 groups before and after treatment.Results:The healing time of oral mucosa in the OG was(6.8±1.4)d,which was significantly shorter than(8.6±1.9)d in the CG(t=4.943,P<0.01).After treatment,the grading of oral mucositis in the OG was better than that in the CG,with a statistically significant difference(Z=2.942,P<0.05).The oral pain scores of the OG was lower than that in the CG at different time points after treatment,and the difference was statistically significant(t=8.207,11.017,P<0.01).After treatment,the levels of IL-6,IL-1βand TNF-αin peripheral blood of the OG were significantly lower than those in the CG(t=5.217,2.775,4.053,P<0.01).There were statistically significant differences in CD4+,CD8+and CD4+/CD8+between the OG and the CG after treatment(t=5.692,6.093,3.658,P<0.01).Conclusion:Kangfuxin Solution combined with LLLT can significantly shorten the healing time of oral mucosal,reduce the grading of oral mucositis,relieve oral pain,reduce inflammatory response and improve the immune function of patients.展开更多
Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss pos...Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.展开更多
Chronic hepatitis B virus(HBV)infection(CHB)is a public health concern worldwide.Current therapies utilizing nucleos(t)ide analogs(NA)have not resulted in a complete cure for CHB.Furthermore,patients on long-term NA t...Chronic hepatitis B virus(HBV)infection(CHB)is a public health concern worldwide.Current therapies utilizing nucleos(t)ide analogs(NA)have not resulted in a complete cure for CHB.Furthermore,patients on long-term NA treatment often develop low-level viremia(LLV).Persistent LLV,in addition to causing the progression of liver disease or hepatocellular carcinoma,may shed light on the current plight of NA therapy.Here,we review the literature on LLV,NA treatment,and various doses of entecavir to find a strategy for improving the efficacy of this antiviral agent.For LLV patients,three therapeutic options are available,switching to another antiviral monotherapy,interferon-αswitching therapy,and continuing monotherapy.In real-world clinical practice,entecavir overdose has been used in antiviral therapy for CHB patients with NA refractory and persistent LLV,which encouraged us to conduct further in-depth literature survey on dosage and duration related entecavir studies.The studies of pharmacodynamics and pharmacokinetics show that entecavir has the maximal selected index for safety,and has great potential in inhibiting HBV replication,in all of the NAs.In the particular section of the drug approval package published by the United States Food and Drug Administration,entecavir doses 2.5-20 mg/d do not increase adverse events,and entecavir doses higher than 1.0 mg/d might improve the antiviral efficacy.The literature survey led us to two suggestions:(1)Increasing entecavir dose to 1.0 mg/d for the treatment of NA naïve patients with HBV DNA>2×106 IU/mL is feasible and would provide better prognosis;and(2)Further research is needed to assess the long-term toxic effects of higher entecavir doses(2.5 and 5.0 mg/d),which may prove beneficial in treating patients with prior NA treatment,partial virological response,or LLV state.展开更多
The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is ...The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is verified against surface rain-gauge observations. The observed morning precipitation peak on the windward(relative to the prevailing synoptic-scale wind) side of the DBM is reproduced with good spatial and temporal accuracy. The interaction between the DBM and a nocturnal boundary layer low-level jet(BLJ) due to the inertial oscillation mechanism is shown to be responsible for this precipitation peak. The BLJ is aligned with the lower-level southwesterly synoptic-scale flow that carries abundant moisture.The BLJ core is established at around 0200 LST upwind of the mountains. It moves towards the DBM and reaches maximum intensity at about 70 km ahead of the mountains. When the BLJ impinges upon the windward side of the DBM in the early morning, mechanical lifting of moist air leads to condensation and subsequent precipitation.展开更多
Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power gen...Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.展开更多
Three-month wind profiles, 260 m PM_1 concentrations [i.e., particulate matter(PM) with an aerodynamic diameter ≤1μm], and carrier-to-noise ratio data at two Beijing sites 55 km apart(urban and suburban) were collec...Three-month wind profiles, 260 m PM_1 concentrations [i.e., particulate matter(PM) with an aerodynamic diameter ≤1μm], and carrier-to-noise ratio data at two Beijing sites 55 km apart(urban and suburban) were collected to analyze the characteristics of low-level nocturnal wind and PM in autumn and winter. Three mountain-plain wind events with wind shear were selected for analysis. The measurements indicated that the maximum wind speeds of the northerly weak low-level jet(LLJ) below 320 m at the suburban site were weaker than those at the urban site, and the LLJ heights and depths at the suburban site were lower than those at the urban site. The nocturnal 140 m mean vertical velocities and the variations in vertical velocity at the urban site were larger than those at the suburban site. A nocturnal breeze with a weak LLJ of ~3 m s^(-1) noticeably offset nocturnal PM transport due to southerly flow and convergence within the northern urban area of Beijing. Characteristics of the nocturnal LLJ, such as start-up time, structure, intensity, and duration, were important factors in determining the decrease in the nocturnal horizontal range and site-based low-level variations in PM.展开更多
The southwesterly low-level jet (LLJ) over southeast China in the summer of 2003 is analyzed in this study. The analysis is based on the National Centers for Environmental Prediction (NCEP) Final (FNL) operation...The southwesterly low-level jet (LLJ) over southeast China in the summer of 2003 is analyzed in this study. The analysis is based on the National Centers for Environmental Prediction (NCEP) Final (FNL) operational global analysis data on 1.0-1.0-degree grids at 6-h intervals. The major criteria for choosing the LLJ ineluded the following: a maximum wind speed equal to or greater than 12.0 m s-1, a wind direction of between 180° and 270°, and the height of wind maximum at 900-700 hPa, not confined to single pressure level. The results show that the LLJs over southeast China dominate at 850 and 800 hPa. These LLJs are closely associated with the topography of this area and tend to locate regions with large terrain gradients, including the northeastern and eastem Yunnan-Guizhou Plateau. Under the influence of mid-latitude westerly winds, the LLJs above 750 hPa move northward to the Yangtze-Huai River Basin. Com- pared to the ten-year (2000-2009) mean climate condi- tions, the LLJs in the warm season of summer 2003 were exceptionally active and strong, as reflected by the posi- tive anomalies of LLJ occurrence numbers and wind speed. In addition, the 2003 LLJs showed strong diurnal variation, especially at pressure levels below 800 hPa. The majority of the LLJs appeared between midnight and the early moming hours (before 8 a.m.). Finally, the summary of LLJ grid numbers indicates that more than 80% of LLJs in June and July 2003 occurred within the 33-d rainy period. Thus, these LLJs are directly related to the anomalously heavy rainfall in the Yangtze-Huai River Basin.展开更多
Low-level radio frequency(LLRF)systems stabilize the electromagnetic field in the RF cavities used for beam acceleration in particle accelerators.Reliable,accurate,and precise detection of RF amplitude and phase is pa...Low-level radio frequency(LLRF)systems stabilize the electromagnetic field in the RF cavities used for beam acceleration in particle accelerators.Reliable,accurate,and precise detection of RF amplitude and phase is particularly important to achieve high field stability for pulsed accelerators of free-electron lasers(FEL).The digital LLRF systems employ analog-to-digital converters to sample the frequency down-converted RF signal and use digital demodulation algorithms to calculate the RF amplitude and phase.Different sampling strategies and demodulation algorithms have been developed for these purposes and are introduced in this paper.This article focuses on advanced topics concerning RF detection,including accurate RF transient measurement,wideband RF detection,and RF detection with an asynchronous trigger,local oscillator,or clock.The analysis is based on the SwissFEL measurements,but the algorithms introduced are general for RF signal detection in particle accelerators.展开更多
基金supported by the Taishan Scholars Programs of Shandong Province(No.tsqn201909165)the Global Change and Air-Sea Interaction Program(Nos.GASI-04-QYQH-03,GASI-01-WIND-STwin)the National Natural Science Foundation of China(Nos.41876028,42349910).
文摘In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-situ wind profiles in the eastern tropical Indian Ocean.This equipment successfully captured low-level jets(LLJs)in the region,and their characteristics were thoroughly analyzed.Results reveal that the observed wind speed of LLJs in the eastern Indian Ocean ranges from 6 m s^(-1) to 10 m s^(-1) during the boreal winter and spring seasons,showing a height range of 0.6 to 1 km and two peak times at 0800 and 2000 UTC.This wind shear is weaker than that in land or offshore areas,ranging from 0 s^(-1) to 0.006 s^(-1).Moreover,the accuracy of the CDL data is compared to that of ERA5 data in the study area.The results indicate that the zonal wind from ERA5 data significantly deviated from the CDL measurement data,and the overall ERA5 data are substantially weaker than the in-situ observations.Notably,ERA5 underestimates northwestward LLJs.
基金supported by Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)the National Natural Science Foundation of China(Grant Nos.42122033,41875055,and 42075006)Guangzhou Science and Technology Plan Projects(202002030346 and 202002030196).
文摘An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitation. The present study examines the roles of persistent low-level jets(LLJs) in maintaining the precipitation using surface station observations and reanalysis datasets. The LLJs triggered strong ascending motions and carried moisture mainly from the outflow of Typhoon In-fa(2021). The varying directions of the LLJs well corresponded to the meridional shifts of the rainfall. The precipitation rate reached a maximum during 20-21 July as the LLJs strengthened and expanded vertically into double LLJs, including synoptic-weather-system-related LLJs(SLLJs) at 850–700 hPa and boundary-layer jets(BLJs)at ~950 hPa. The coupling of the SLLJ and BLJ provided strong mid-and low-level convergence on 20 July, whereas the SLLJ produced mid-level divergence at its entrance that coupled with low-level convergence at the terminus of the BLJ on21 July. The formation mechanisms of the two types of LLJs are further examined. The SLLJs and the low-pressure vortex(or inverted trough) varied synchronously as a whole and were affected by the southwestward movement of the WPSH in the rainiest period. The persistent large total pressure gradient force at low levels also maintained the strength of low-level geostrophic winds, thus sustaining the BLJs on the synoptic scale. The results based on a Du-Rotunno 1D model show that the Blackadar and Holton mechanisms jointly governed the BLJ dynamics on the diurnal scale.
基金supported by the National Natural Science Foundation of China(Nos.12205190,11805121)the Science and Technology Commission of Shanghai Municipality(No.21ZR1435400).
文摘The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.
文摘AIM:To report the myopia-controlling effect of repeated low-level red-light(RLRL)therapy in patients with Stickler syndrome(STL),an inherited collagenic disease typically presenting with early onset myopia.METHODS:Three STL children,aged 3,7,and 11y,received RLRL therapy throughout the follow-up period of 17,3,and 6mo,respectively after exclusion of fundus anomalies.Data on best-corrected visual acuity(BCVA),intraocular pressure,cycloplegic subjective refraction,ocular biometrics,scanning laser ophthalmoscope,optical coherence tomography,genetic testing,systemic disease history,and family history were recorded.RESULTS:At the initiation of the RLRL therapy,the spherical equivalent(SE)of 6 eyes from 3 patients ranged from-3.75 to-20.38 D,axial length(AL)were from 23.88 to 30.68 mm,and BCVA were from 0.4 to 1.0(decimal notation).Myopia progression of all six eyes slowed down after RLRL therapy.AL in five out of the six eyes shortened-0.07 to-0.63 mm.No side effects were observed.CONCLUSION:Three cases of STL whose progression of myopic shift and AL elongation are successfully reduced and even reversed after RLRL therapy.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)the National Natural Science Foundation of China(Grant Nos.42275002,41875055,and 42122033).
文摘This study examines the diversity of low-level jet(LLJ)formation and related physical processes over southern China.A total of 171 LLJ formation events with enhanced daily southwesterlies and early-morning maximum wind speeds were observed during the mei-yu seasons of 1989–2018.The LLJs can be further categorized into four types based on the increases in the daily mean and diurnal amplitude of the low-level winds.Analysis of the synoptic-scale disturbances shows that the two types of LLJ formation(Q1 and Q4),which feature large increases of daily southerly wind components,are mainly induced by west-east dipole patterns of pressure change,in association with the enhanced southwest vortex and/or the western Pacific subtropical high(WPSH).In contrast,the other two types(Q2 and Q3),which feature relatively large increases in their daily westerly components,are related to a northwest-southeast dipole pattern of pressure change due to the mid-latitude trough and the WPSH.We further analyze the considerable variations in the diurnal thermal forcing among the LLJ formation events.The strong(weak)daytime heating of solar radiation leads to relatively large(small)increases in the diurnal amplitude of low-level winds in Q1 and Q2(Q3 and Q4)types.Therefore,different combinations of synopticscale disturbances and diurnal thermal forcings are found to account for the diversity in LLJ formation and associated differences in downstream rainfall patterns.These results help to improve our understanding and prediction of the formation of LLJs.
基金National Natural Science Foundation of China(U2242203,41975138,42275008)Natural Science Foundation of Guangdong Province(2019A1515010814,2021A1515011415)+1 种基金Science and Technology Development Fund Project of Guangdong Meteorological Bureau(GRMC2020M27)Jiangmen Young science and technology talents lifting Project(2022-2023)。
文摘In this paper,the data of Automatic Weather Stations(AWSs),ERA5 reanalysis,sounding,wind profile radar,and dual-polarization radar are used to study an extreme rainfall event in the south China Coast on 11 to 12 May 2022 from the aspects of thermodynamics and microphysical characteristics under the influence of low-level jets(LLJs).Results show that:(1)The extreme rainfall event can be divided into two stages:the first stage(S1)from 0000 to 0600 LST on May 12 and the second stage(S2)from 0700 to 1700 LST on the same day.During S1,the rainfall is mainly caused by the upper-level shortwave trough and the boundary layer jet(BLJ),characterized by strong upward motion on the windward side of mountains.In S2,the combined influence of the BLJ and synoptic-system-related low-level jet(SLLJ)increases the vertical wind shear and vertical vorticity,strengthening the rainstorm.In combination with the effect of topography,a warm and humid southwest flow continuously transports water vapor to farther north,resulting in a significant increase in rainfall over the study area(on the terrain’s windward slope).From S1 to S2,the altitude of a divergence center in the upper air decreases obviously.(2)The rainfalls in the two stages are both associated with the mesoscale convergence line(MCL)on the surface,and the wind field from the mesoscale outflow boundary(MOB)in S1 is in the same direction as the environmental winds.Due to a small area of convergence that is left behind the MOB,convection moves eastward quickly and causes a short duration of heavy rainfall.In S2,the convergence along the MOB is enhanced,which strengthens the rainfall and leads to strong outflows,further enhancing the surface convergence near the MOB and forming a positive feedback mechanism.It results in a slow motion of convection and a long duration of heavy rainfall.(3)In terms of microphysics,the center of a strong echo in S1 is higher than in S2.The warm-rain process of the oceanic type characterizes both stages,but the convective intensity in S2 is significantly stronger than that in S1,featuring bigger drop sizes and lower concentrations.It is mainly due to the strengthening of LLJs,which makes small cloud droplets lift to melting levels,enhancing the ice phase process(riming process),producing large amounts of graupel particles and enhancing the melting and collision processes as they fall,resulting in the increase of liquid water content(LWC)and the formation of large raindrops near the surface.
基金supported by the National Natural Science Foundation of China(Grant Nos.42230612,41620104009,41705019,42075186,and 41975058)the Projects of the S&T Development Foundation of the Hubei Meteorological Bureau(Grants No.2021Q04 and 2020Y04)。
文摘Here,we analyze the characteristics and the formation mechanisms of low-level jets(LLJs)in the middle reaches of the Yangtze River during the 2010 mei-yu season using Wuhan station radiosonde data and the fifth generation of the European Centre for Medium-Range Weather Forecasts(ERA5)reanalysis dataset.Our results show that the vertical structure of LLJs is characterized by a predominance of boundary layer jets(BLJs)concentrated at heights of 900-1200 m.The BLJs occur most frequently at 2300 LST(LST=UTC+8 hours)but are strongest at 0200 LST,with composite wind velocities>14 m s^(-1).Synoptic-system-related LLJs(SLLJs)occur most frequently at 0800 LST but are strongest at 1100LST,with composite wind velocities>12 m s^(-1).Both BLJs and SLLJs are characterized by a southwesterly wind direction,although the wind direction of SLLJs is more westerly,and northeasterly SLLJs occur more frequently than northeasterly BLJs.When Wuhan is south of the mei-yu front,the westward extension of the northwest Pacific subtropical high intensifies,and the low-pressure system in the eastern Tibetan Plateau strengthens,favoring the formation of LLJs,which are closely related to precipitation.The wind speeds on rainstorm days are greater than those on LLJ days.Our analysis of four typical heavy precipitation events shows the presence of LLJs at the center of the precipitation and on its southern side before the onset of heavy precipitation.BLJs were shown to develop earlier than SLLJs.
文摘Prof. Gong Feili was born and raised in Shanghai, China. He attended Sun Yat-sen Medical College, Guang zhou during 1962 to 1968, and received his M.D. degree there in 1968. After graduation, he worked as a physician in the Department of Internal Medicine of the Wugang Hospital, Wuhan, from 1968 to 1980. During that period of time, cases of leukemia drew his attention, and made
文摘Objective:To investigate the effect of Kangfuxin Solution(康复新液)combined with low-level laser therapy(LLLT)on cytokines and immune function in patients with radiation-induced oral mucositis.Methods:There were 84 nasopharyngeal carcinoma patients with oral mucositis after intensity-modulated radiation therapy(IMRT)were randomly divided into the control group(CG)and the observation group(OG),with 42 cases in each group.The CG was given LLLT,and the OG was treated with Kangfuxin Solution in addition to LLLT for 10 consecutive days.The healing time of oral mucosa,mucositis grading,oral pain scores,cytokines(interleukin-6,interleukin-1βand tumor necrosis factor-α)and T lymphocyte subsets were compared between the 2 groups before and after treatment.Results:The healing time of oral mucosa in the OG was(6.8±1.4)d,which was significantly shorter than(8.6±1.9)d in the CG(t=4.943,P<0.01).After treatment,the grading of oral mucositis in the OG was better than that in the CG,with a statistically significant difference(Z=2.942,P<0.05).The oral pain scores of the OG was lower than that in the CG at different time points after treatment,and the difference was statistically significant(t=8.207,11.017,P<0.01).After treatment,the levels of IL-6,IL-1βand TNF-αin peripheral blood of the OG were significantly lower than those in the CG(t=5.217,2.775,4.053,P<0.01).There were statistically significant differences in CD4+,CD8+and CD4+/CD8+between the OG and the CG after treatment(t=5.692,6.093,3.658,P<0.01).Conclusion:Kangfuxin Solution combined with LLLT can significantly shorten the healing time of oral mucosal,reduce the grading of oral mucositis,relieve oral pain,reduce inflammatory response and improve the immune function of patients.
文摘Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.
文摘Chronic hepatitis B virus(HBV)infection(CHB)is a public health concern worldwide.Current therapies utilizing nucleos(t)ide analogs(NA)have not resulted in a complete cure for CHB.Furthermore,patients on long-term NA treatment often develop low-level viremia(LLV).Persistent LLV,in addition to causing the progression of liver disease or hepatocellular carcinoma,may shed light on the current plight of NA therapy.Here,we review the literature on LLV,NA treatment,and various doses of entecavir to find a strategy for improving the efficacy of this antiviral agent.For LLV patients,three therapeutic options are available,switching to another antiviral monotherapy,interferon-αswitching therapy,and continuing monotherapy.In real-world clinical practice,entecavir overdose has been used in antiviral therapy for CHB patients with NA refractory and persistent LLV,which encouraged us to conduct further in-depth literature survey on dosage and duration related entecavir studies.The studies of pharmacodynamics and pharmacokinetics show that entecavir has the maximal selected index for safety,and has great potential in inhibiting HBV replication,in all of the NAs.In the particular section of the drug approval package published by the United States Food and Drug Administration,entecavir doses 2.5-20 mg/d do not increase adverse events,and entecavir doses higher than 1.0 mg/d might improve the antiviral efficacy.The literature survey led us to two suggestions:(1)Increasing entecavir dose to 1.0 mg/d for the treatment of NA naïve patients with HBV DNA>2×106 IU/mL is feasible and would provide better prognosis;and(2)Further research is needed to assess the long-term toxic effects of higher entecavir doses(2.5 and 5.0 mg/d),which may prove beneficial in treating patients with prior NA treatment,partial virological response,or LLV state.
基金supported by the Special Foundation of the China Meteorological Administration (Grant No.GYHY201506006)supported by the National Science Foundation of China (Grant Nos.41405100,41322032 and 41275031)
文摘The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is verified against surface rain-gauge observations. The observed morning precipitation peak on the windward(relative to the prevailing synoptic-scale wind) side of the DBM is reproduced with good spatial and temporal accuracy. The interaction between the DBM and a nocturnal boundary layer low-level jet(BLJ) due to the inertial oscillation mechanism is shown to be responsible for this precipitation peak. The BLJ is aligned with the lower-level southwesterly synoptic-scale flow that carries abundant moisture.The BLJ core is established at around 0200 LST upwind of the mountains. It moves towards the DBM and reaches maximum intensity at about 70 km ahead of the mountains. When the BLJ impinges upon the windward side of the DBM in the early morning, mechanical lifting of moist air leads to condensation and subsequent precipitation.
基金the Science and Technology Foundation of Shaanxi Province (No.2002K08-G9).
文摘Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.
基金supported by the National Key R&D Program of China (Grant No.2017YFC0209801)the National Natural Science Foundation of China (Grant Nos.41505091,91544221,41675137,41575124 and 41505116)
文摘Three-month wind profiles, 260 m PM_1 concentrations [i.e., particulate matter(PM) with an aerodynamic diameter ≤1μm], and carrier-to-noise ratio data at two Beijing sites 55 km apart(urban and suburban) were collected to analyze the characteristics of low-level nocturnal wind and PM in autumn and winter. Three mountain-plain wind events with wind shear were selected for analysis. The measurements indicated that the maximum wind speeds of the northerly weak low-level jet(LLJ) below 320 m at the suburban site were weaker than those at the urban site, and the LLJ heights and depths at the suburban site were lower than those at the urban site. The nocturnal 140 m mean vertical velocities and the variations in vertical velocity at the urban site were larger than those at the suburban site. A nocturnal breeze with a weak LLJ of ~3 m s^(-1) noticeably offset nocturnal PM transport due to southerly flow and convergence within the northern urban area of Beijing. Characteristics of the nocturnal LLJ, such as start-up time, structure, intensity, and duration, were important factors in determining the decrease in the nocturnal horizontal range and site-based low-level variations in PM.
基金supported by the National Natural Science Foundation of China (Grant No. 40905049)the National High Technology Research and Development Program of China (863 Program, Grant No. 2010AA012304)+1 种基金the China Mete-orological Administration for the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY200906020)the State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) State Key Laboratory special fund
文摘The southwesterly low-level jet (LLJ) over southeast China in the summer of 2003 is analyzed in this study. The analysis is based on the National Centers for Environmental Prediction (NCEP) Final (FNL) operational global analysis data on 1.0-1.0-degree grids at 6-h intervals. The major criteria for choosing the LLJ ineluded the following: a maximum wind speed equal to or greater than 12.0 m s-1, a wind direction of between 180° and 270°, and the height of wind maximum at 900-700 hPa, not confined to single pressure level. The results show that the LLJs over southeast China dominate at 850 and 800 hPa. These LLJs are closely associated with the topography of this area and tend to locate regions with large terrain gradients, including the northeastern and eastem Yunnan-Guizhou Plateau. Under the influence of mid-latitude westerly winds, the LLJs above 750 hPa move northward to the Yangtze-Huai River Basin. Com- pared to the ten-year (2000-2009) mean climate condi- tions, the LLJs in the warm season of summer 2003 were exceptionally active and strong, as reflected by the posi- tive anomalies of LLJ occurrence numbers and wind speed. In addition, the 2003 LLJs showed strong diurnal variation, especially at pressure levels below 800 hPa. The majority of the LLJs appeared between midnight and the early moming hours (before 8 a.m.). Finally, the summary of LLJ grid numbers indicates that more than 80% of LLJs in June and July 2003 occurred within the 33-d rainy period. Thus, these LLJs are directly related to the anomalously heavy rainfall in the Yangtze-Huai River Basin.
文摘Low-level radio frequency(LLRF)systems stabilize the electromagnetic field in the RF cavities used for beam acceleration in particle accelerators.Reliable,accurate,and precise detection of RF amplitude and phase is particularly important to achieve high field stability for pulsed accelerators of free-electron lasers(FEL).The digital LLRF systems employ analog-to-digital converters to sample the frequency down-converted RF signal and use digital demodulation algorithms to calculate the RF amplitude and phase.Different sampling strategies and demodulation algorithms have been developed for these purposes and are introduced in this paper.This article focuses on advanced topics concerning RF detection,including accurate RF transient measurement,wideband RF detection,and RF detection with an asynchronous trigger,local oscillator,or clock.The analysis is based on the SwissFEL measurements,but the algorithms introduced are general for RF signal detection in particle accelerators.