期刊文献+
共找到9,109篇文章
< 1 2 250 >
每页显示 20 50 100
Self‑Assembly of Binderless MXene Aerogel for Multiple‑Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding 被引量:1
1
作者 Chuanbiao Zhu Yurong Hao +8 位作者 Hao Wu Mengni Chen Bingqing Quan Shuang Liu Xinpeng Hu Shilong Liu Qinghong Ji Xiang Lu Jinping Qu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期367-382,共16页
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here... The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs. 展开更多
关键词 Self-assembly Multiple-scenario Phase change composites thermal energy storage Electromagnetic interference shielding
下载PDF
Development status and prospect of underground thermal energy storage technology 被引量:1
2
作者 Ying-nan Zhang Yan-guang Liu +3 位作者 Kai Bian Guo-qiang Zhou Xin Wang Mei-hua Wei 《Journal of Groundwater Science and Engineering》 2024年第1期92-108,共17页
Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES te... Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES. 展开更多
关键词 Aquifer thermal energy storage Borehole thermal energy storage Cavern thermal energy storage thermal energy storage technology Benefit evaluation
下载PDF
Thermo-hydro-mechanical (THM) coupled simulation of the land subsidence due to aquifer thermal energy storage (ATES) system in soft soils 被引量:1
3
作者 Yang Wang Fengshou Zhang Fang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1952-1966,共15页
Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect o... Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils. 展开更多
关键词 Aquifer thermal energy storage(ATES) Land subsidence TOUGH-FLAC3D Thermo-elastoplastic constitutive model
下载PDF
Role of outdoor trees on pedestrian wind and thermal conditions around a pre-education building for sustainable energy management
4
作者 LI Xiao-jie TANG Hui-li 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2039-2053,共15页
Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian... Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building. 展开更多
关键词 sustainable management energy trees urban area thermal condition building
下载PDF
Particle Size Optimization of Thermochemical Salt Hydrates for High Energy Density Thermal Storage
5
作者 Andrew Martin Drew Lilley +1 位作者 Raνi Prasher Sumanjeet Kaur 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期326-333,共8页
Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy... Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy sources by time shifting the load,which are critical toward zero energy buildings.Thermochemical materials(TCMs)as a class of TES undergo a solid-gas reversible chemical reaction with water vapor to store and release energy with high storage capacities(600 kWh m^(-3))and negligible self-discharge that makes them uniquely suited as compact,stand-alone units for daily or seasonal storage.However,TCMs suffer from instabilities at the material(salt particles)and reactor level(packed beds of salt),resulting in poor multi-cycle efficiency and high-levelized cost of storage.In this study,a model is developed to predict the pulverization limit or Rcrit of various salt hydrates during thermal cycling.This is critical as it provides design rules to make mechanically stable TCM composites as well as enables the use of more energy-efficient manufacturing process(solid-state mixing)to make the composites.The model is experimentally validated on multiple TCM salt hydrates with different water content,and effect of Rcrit on hydration and dehydration kinetics is also investigated. 展开更多
关键词 high energy density hydration kinetics long-term cycling thermal energy storage thermochemical materials
下载PDF
Enhanced properties of stone coal-based composite phase change materials for thermal energy storage
6
作者 Baoshan Xie Huan Ma +1 位作者 Chuanchang Li Jian Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期206-215,共10页
Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential... Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals. 展开更多
关键词 thermal energy storage phase change material stone coal vanadium extraction secondary utilization
下载PDF
Vertically aligned montmorillonite aerogel-encapsulated polyethylene glycol with directional heat transfer paths for efficient solar thermal energy harvesting and storage
7
作者 Qijing Guo Cong Guo +2 位作者 Hao Yi Feifei Jia Shaoxian Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期907-916,共10页
The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in mon... The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications. 展开更多
关键词 montmorillonite aerogel polyethylene glycol phase change materials solar thermal energy storage flame retardant
下载PDF
Geothermo-mechanical alterations due to heat energy extraction in enhanced geothermal systems: Overview and prospective directions
8
作者 Mary C.Ngoma Oladoyin Kolawole Olufemi Olorode 《Deep Underground Science and Engineering》 2024年第3期256-268,共13页
Geothermal energy from deep underground (or geological) formations,with or without its combination with carbon capture and storage (CCS),can be a key technology to mitigate anthropogenic greenhouse gas emissions and m... Geothermal energy from deep underground (or geological) formations,with or without its combination with carbon capture and storage (CCS),can be a key technology to mitigate anthropogenic greenhouse gas emissions and meet the 2050 net‐zero carbon emission target.Geothermal resources in low‐permeability and medium‐and high‐temperature reservoirs in sedimentary sequence require hydraulic stimulation for enhanced geothermal systems (EGS).However,fluid migration for geothermal energy in EGS or with potential CO_(2) storage in a CO_(2)‐EGS are both dependent on the in situ flow pathway network created by induced fluid injection.These thermo‐mechanical interactions can be complex and induce varying alterations in the mechanical response when the working fluid is water (in EGS) or supercritical CO_(2)(in CO_(2)‐EGS),which could impact the geothermal energy recovery from geological formations.Therefore,there is a need for a deeper understanding of the heat extraction process in EGS and CO_(2)‐EGS.This study presents a systematic review of the effects of changes in mechanical properties and behavior of deep underground rocks on the induced flow pathway and heat recovery in EGS reservoirs with or without CO_(2) storage in CO_(2) ‐EGS.Further,we proposed waterless‐stimulated EGS as an alternative approach to improve heat energy extraction in EGS.Lastly,based on the results of our literature review and proposed ideas,we recommend promising areas of investigation that may provide more insights into understanding geothermo‐mechanics to further stimulate new research studies and accelerate the development of geothermal energy as a viable clean energy technology. 展开更多
关键词 CO_(2)-EGS enhanced geothermal systems GEOMECHANICS geothermal energy underground thermal energy
下载PDF
Simulation and Optimization of Energy Efficiency and Total Enthalpy Analysis of Sand Based Packed Bed Solar Thermal Energy Storage
9
作者 Matiewos Mekonen Abera Venkata Ramayya Ancha +3 位作者 Balewgize Amare L.Syam Sundar Kotturu V.V.Chandra Mouli Sambasivam Sangaraju 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期1043-1070,共28页
This study is focused on the simulation and optimization of packed-bed solar thermal energy storage by using sand as a storage material and hot-water is used as a heat transfer fluid and storage as well.The analysis h... This study is focused on the simulation and optimization of packed-bed solar thermal energy storage by using sand as a storage material and hot-water is used as a heat transfer fluid and storage as well.The analysis has been done by using the COMSOL multi-physics software and used to compute an optimization charging time of the storage.Parameters that control this optimization are storage height,storage diameter,heat transfer fluid flow rate,and sand bed particle size.The result of COMSOL multi-physics optimized thermal storage has been validated with Taguchi method.Accordingly,the optimized parameters of storage are:storage height of 1.4m,storage diameter of 0.4 m,flow rate of 0.02 kg/s,and sand particle size 12 mm.Among these parameters,the storage diameter result is the highest influenced optimized parameter of the thermal storage fromthe ANOVA analysis.For nominal packed bed thermal storage,the charging time needed to attain about 520 K temperature is more than 3500 s,while it needs only about 2000 s for the optimized storage which is very significant difference.Average charging energy efficiency of the optimized is greater than the nominal and previous concrete-based storage by 13.7%,and 13.1%,respectively in the charging time of 2700 s. 展开更多
关键词 OPTIMIZATION solar thermal energy storage Taguchimethod COMSOLmultiphysics packed bed thermal storage charging time
下载PDF
Performance of Thermal Insulation of Different Composite Walls and Roofs Materials Used for Energy Efficient Building Construction in Iraq
10
作者 Ahmed Mustaffa Saleem Abdullah A.Badr +1 位作者 Bahjat Hassan Alyas Omar Rafae Alomar 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期1231-1244,共14页
This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq.T... This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq.The mathematical model is solved by building its code using the Transmission Matrix Method in MATLAB software.The weather data of 21st July 2022 in Baghdad City/Iraq is selected as a test day.The wall types are selected:the first type consists of cement mortar,brick,and gypsum,the second type consists of cement mortar,brick,gypsum,and plaster and the third type consists of cement mortar,brick,gypsum,air cavity,and sheathing timber.The roof types are chosen:the first type consists of reinforced concrete,gypsum,and plaster,and the second type consists of the precast concrete flag,river sand,tar,reinforced concrete,gypsum,and plaster.The obtained solutions are compared with previous studies for the same city but with different types of walls and roofs.The findings display that the second and third types of walls reduce the entry heat flux by 4%and 10%as compared to the first type of wall.Also,the results indicate that the second type of roof reduces the entry heat flux by 21%as compared to the first type of roof.The results confirm that the best models of walls and roofs in Iraq are the third and second types,respectively,as compared to other models and hence,the performance of insulation material strongly depends on the materials used while building them. 展开更多
关键词 thermal insulation energy gain composites walls and roofs heat flux transmission matrix method
下载PDF
Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage 被引量:2
11
作者 Chuanchang Li Xinke Peng +1 位作者 Jianjun He Jian Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1835-1845,共11页
Sepiolite(ST) was used as a supporting matrix in compiste phase change materials(PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatme... Sepiolite(ST) was used as a supporting matrix in compiste phase change materials(PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatment were innovatively used for the modification of sepiolite. The modified sepiolite(ST_(m)) obtained in different hydrochloric acid concentrations(0.25, 0.5, 0.75, and 1.0 mol·L^(-1)) was added to stearic acid(SA) via vacuum impregnation method. The thermophysical properties of the composites were changed by varying the hydrochloric acid concentration. The SA-ST_(m0.5)obtained by microwave acid treatment at 0.5 mol·L^(-1)hydrochloric acid concentration showed a higher loading capacity(82.63%) than other composites according to the differential scanning calorimeter(DSC) analysis. The melting and freezing enthalpies of SA-ST_(m0.5)were of 152.30 and 148.90 J·g^(-1), respectively. The thermal conductivity of SA-ST_(m0.5)was as high as 1.52 times that of pure SA. In addition, the crystal structure, surface morphology, and microporous structure of ST_(m)were studied, and the mechanism of SAST_(m0.5)performance enhancement was further revealed by Brunauere Emmett Teller(BET) analysis. Leakage experiment showed that SAST_(m0.5)had a good morphological stability. These results demostrate that SA-ST_(m0.5)has a potential application in thermal energy storage. 展开更多
关键词 SEPIOLITE stearic acid phase change materials thermal energy storage
下载PDF
Efficient thermal management and all-season energy harvesting using adaptive radiative cooling and a thermoelectric power generator 被引量:1
12
作者 Chanil Park Woohwa Lee +4 位作者 Choyeon Park Sungmin Park Jaeho Lee Yong Seok Kim Youngjae Yoo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期496-501,共6页
Passive daytime radiative cooling(PDRC) is useful for thermal management because it allows an object to emit terrestrial heat into space without the use of additional energy.To produce sub-ambient temperatures under d... Passive daytime radiative cooling(PDRC) is useful for thermal management because it allows an object to emit terrestrial heat into space without the use of additional energy.To produce sub-ambient temperatures under direct sunlight,PDRC materials are designed to reduce their absorption of solar energy and to enhance their long-wavelength infrared(LWIR) emissivity.In recent years,many photonic structures and polymer composites have been studied to improve the cooling system of buildings.However,in cold weather(i.e. during winter in cold climates),buildings need to be kept warm rather than cooled due to heat loss.To overcome this limitation,temperature-responsive radiative cooling is a promising alternative.In the present study,adaptive radiative cooling(ARC) film fabricated from a polydimethylsiloxane/hollow SiO_(2) microsphere/thermochromic pigment composite was investigated.We found that the ARC film absorbed solar radiation under cold conditions while exhibiting radiative cooling at ambient temperatures above 40℃.Thus,in outdoor experiments,the ARC film achieved sub-ambient temperatures and had a theoretical cooling power of 63.2 W/m~2 in hot weather.We also demonstrated that radiative cooling with an energy harvesting system could be used to improve the energy management of buildings,with the thermoelectric module continuously generating output power using the ARC film.Therefore,we believe that our proposed ARC film can be employed for efficient thermal management of buildings and all-season energy harvesting in the near future. 展开更多
关键词 thermal management Daytime radiative cooling Temperature-adaptive film Thermoelectric device energy harvesting
下载PDF
Reinforcement Learning-Based Electric Vehicles Energy Management Strategy with Battery Thermal Model 被引量:1
13
作者 黄淦 曹童杰 +2 位作者 韩俊华 赵萍 张光林 《Journal of Donghua University(English Edition)》 CAS 2023年第1期80-87,共8页
The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning... The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The work focusing on the energy management strategy for EVs mainly uses the traditional optimization strategies,thereby limiting the advantages of energy economy.To this end,a novel energy management strategy that considered the impact of battery thermal effects was proposed with the help of reinforcement learning.The main idea was to first analyze the energy flow path of EVs,further formulize the energy management as an optimization problem,and finally propose an online strategy based on reinforcement learning to obtain the optimal strategy.Additionally,extensive simulation results have demonstrated that our strategy reduces energy consumption by at least 27.4%compared to the existing methods. 展开更多
关键词 energy management electric vehicle(EV) reinforcement learning battery thermal management
下载PDF
Integrating thermal energy storage and microwave absorption in phase change material-encapsulated core-sheath MoS_(2)@CNTs
14
作者 Panpan Liu Yang Li +6 位作者 Zhaodi Tang Junjun Lv Piao Cheng Xuemei Diao Yu Jiang Xiao Chen Ge Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期41-49,共9页
Developing advanced nanocomposite integrating solar-driven thermal energy storage and thermal management functional microwave absorption can facilitate the cutting-edge application of phase change materials(PCMs).To c... Developing advanced nanocomposite integrating solar-driven thermal energy storage and thermal management functional microwave absorption can facilitate the cutting-edge application of phase change materials(PCMs).To conquer this goal,herein,two-dimensional MoS_(2) nanosheets are grown in situ on the surface of one-dimensional CNTs to prepare core-sheath MoS_(2)@CNTs for the encapsulation of paraffin wax(PW).Benefiting from the synergistic enhancement photothermal effect of MoS_(2) and CNTs,MoS_(2)@CNTs is capable of efficiently trapping photons and quickly transporting phonons,thus yielding a high solar-thermal energy conversion and storage efficiency of 94.97%.Meanwhile,PW/MoS_(2)@CNTs composite PCMs exhibit a high phase change enthalpy of 101.60 J/g and excellent lo ng-term thermal storage durability after undergoing multiple heating-cooling cycles.More attractively,PW/MoS_(2)@CNTs composite PCMs realize thermal management functional microwave absorption in heat-related electronic application scenarios,which is superior to the single microwave absorption of traditional materials.The minimum reflection loss(RL) for PW/MoS_(2)@CNTs is-28 dB at 12.91 GHz with a 2.0 mm thickness.This functional integration design provides some insightful references on developing advanced microwave absorbing composite PCMs,holding great potential towards high-efficiency solar energy utilization and thermally managed microwave absorption fields. 展开更多
关键词 Phase change materials Core-sheath MoS_(2)@CNTs Solar-thermal energy conversion thermal energy storage Microwave absorption
下载PDF
Thermomechanical Energy Converters for Harvesting Thermal Energy:A Review
15
作者 Oleg P.Dimitriev 《Journal of Renewable Materials》 SCIE EI 2023年第4期1555-1600,共46页
Thermal energy,i.e.,the electromagnetic energy in the infrared range that originates from the direct solar radiation,outgoing terrestrial radiation,waste heat from combustion of fuels,heat-emitting electrical devices,... Thermal energy,i.e.,the electromagnetic energy in the infrared range that originates from the direct solar radiation,outgoing terrestrial radiation,waste heat from combustion of fuels,heat-emitting electrical devices,decay of radioactive isotopes,organic putrefaction and fermentation,human body heat,and so on,constitutes a huge energy flux circulating on the earth surface.However,most energy converters designed for the conversion of electromagnetic energy into electricity,such as photovoltaic cells,are mainly focused on using a narrow part of the solar energy lying in the visible spectrum,while thermomechanical engines that are fueled by heat in the broad energy range and then convert it into mechanical work or store it as mechanical deformation,are paid less attention.Although the efficiency of thermomechanical devices is relatively low,they can be applied to collect waste heat which otherwise contributes to negative climate changes.In this review,operational principles of thermomechanical energy converters and a description of basic devices and materials that utilize thermal energy are given.In addition to conventional macroscopic engines,based on thermoacoustic,thermomagnetic,thermoelastic,hydride heat converters,and shape memory alloys,the emergent devices are described which are classified as smart actuators,breathing frameworks,thermoacoustic micro-transducers,nanomechanical resonators,plasmomechanical systems,and optothermal walkers.The performance of the different types of thermomechanical energy converters is described and compared. 展开更多
关键词 thermal energy smart actuator thermomechanical converter thermoelastic engine molecular machines emergent devices
下载PDF
Packed Bed Thermocline Thermal Energy Storage for Medium-Temperature Concentrating Solar Systems: Numerical and Experimental Study
16
作者 Nikolaos Stathopoulos Nikolaos Papadimitriou +1 位作者 Vassilis Belessiotis Elias Papanicolaou 《Journal of Power and Energy Engineering》 2023年第5期1-23,共23页
Thermal Energy Storage is becoming a necessary component of sustainable energy production systems as it helps alleviate intrinsic limitations of Renewable Energy Sources, such as intermittent use and mismatch between ... Thermal Energy Storage is becoming a necessary component of sustainable energy production systems as it helps alleviate intrinsic limitations of Renewable Energy Sources, such as intermittent use and mismatch between power demand and supply. This paper discusses a packed bed thermocline tank as a thermal energy storage solution. Firstly, this paper presents the development of a numerical model calculating heat transfers within the tank, based on a discretization over several nodes and the nodal formulation of the heat balance equation. The model considers a filler material and a heat transferring fluid and uses the finite difference method to calculate the temperature evolution of the two media across the tank. The model was validated with two different packed bed systems from the literature during a discharging process, presenting a good fit with the experimental results. Secondly, the experimental packed bed is presented and characterized for a charging cycle from ambient temperature to approximately 180?C. The charging experiment was accurately reproduced with the numerical model requiring minimal computational time. Two additional charging modes were simulated with different inlet HTF conditions: constant temperature and varying temperature following the profile produced by a thermal solar collector field. The temperature profiles obtained from the three charging modes were analysed and compared to each other. The proposed numerical and experimental tools will be used in future studies for a better understanding of the design and operating conditions of packed bed thermal energy storage systems. 展开更多
关键词 thermal energy Storage Packed Bed NUMERICAL Model EXPERIMENTAL
下载PDF
Research progress on protective coatings against molten nitrate salts for thermal energy storage in concentrating solar power plants
17
作者 HOU Wenjie Maria Elena Navarro Rivero +4 位作者 PAN Jin ZOU Boyang Benjamin Grégoire Anabel Palacios DING Yulong 《Baosteel Technical Research》 CAS 2023年第4期1-16,共16页
Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten... Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications. 展开更多
关键词 anticorrosive coating high temperature molten salt concentrated solar power thermal energy storage
下载PDF
Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation
18
作者 Yosr Laatiri Habib Sammouda Fadhel Aloulou 《Journal of Renewable Materials》 EI CAS 2024年第4期771-798,共28页
This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insul... This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insulating composite panels made of bio-based phase change materials(bio-PCM is all from coconut oil),cement and renewable materials(treated wood fiber and organic clay).The inclusion of wood fibers improved the thermal properties;a simple 2%increase of wood fiber decreased the heat conductivity by approximately 23.42%.The issues of bio-PCM leakage in the cement mortar and a roughly 56.5%reduction in thermal conductivity with bio-PCM stability in composite panels can be resolved by treating wood fibers with an adjuvant by impregnating them in bio-PCM in the presence of the treated clay generated.Clay and wood fiber were treated with adjuvants that are both biological and environmentally acceptable,as confirmed by FTIR spectroscopy.The heat transfer bench(DIDATEK)showed a decrease in thermal conductivity.By using differential scanning calorimetric(DSC)analysis,the investigation of thermal stability and enthalpy during two heating cycles of pure bio-PCM and composite bio-PCM was validated.The novel renewable material was used to create composite panels for the trial prototype,which took the shape of a component attached to the solar heating system,33.57%less heat was lost,according to the heat transfer research.The outcomes demonstrated the possibility of replacing traditional electric water heating in residential buildings with solar water heating systems. 展开更多
关键词 CEMENT wood fiber PCM thermal conductivity thermal insulation solar energy
下载PDF
A holistic approach to improving safety for battery energy storage systems
19
作者 James Close Jonathan E.Barnard +1 位作者 Y.M.John Chew Semali Perera 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期422-439,共18页
The integration of battery energy storage systems(BESS)throughout our energy chain poses concerns regarding safety,especially since batteries have high energy density and numerous BESS failure events have occurred.Wid... The integration of battery energy storage systems(BESS)throughout our energy chain poses concerns regarding safety,especially since batteries have high energy density and numerous BESS failure events have occurred.Wider spread adoption will only increase the prevalence of these failure events unless there is a step change in the management and design of BESS.To understand the causes of failure,the main challenges of BESS safety are summarised.BESS consequences and failure events are discussed,including specific focus on the chain of events causing thermal runaway,and a case study of a BESS explosion in Surprise Arizona is analysed.Based on the technology and past events,a paradigm shift is required to improve BESS safety.In this review,a holistic approach is proposed.This combines currently adopted approaches including battery cell testing,lumped cell mathematical modelling,and calorimetry,alongside additional measures taken to ensure BESS safety including the requirement for computational fluid dynamics and kinetic modelling,assessment of installation level testing of the full BESS system and not simply a single cell battery test,hazard and layers of protection analysis,gas chromatography,and composition testing.The holistic approach proposed in this study aims to address challenges of BESS safety and form the basis of a paradigm shift in the safety management and design of these systems. 展开更多
关键词 energy storagesystems Process safety Battery safety thermal safety
下载PDF
A utility and easily fabricated dual-mode fiber film for efficient and comfortable thermal management
20
作者 Jiyuan Yu Jian Zheng +3 位作者 Wei Wang Zhijia Zhu Chunyan Hu Baojiang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期394-405,共12页
Nowadays, the global climate is constantly being destroyed and the fluctuations in ambient temperature are becoming more frequent. However, conventional single-mode thermal management strategies(heating or cooling) fa... Nowadays, the global climate is constantly being destroyed and the fluctuations in ambient temperature are becoming more frequent. However, conventional single-mode thermal management strategies(heating or cooling) failed to resolve such dynamic temperature changes. Moreover, developing thermal management devices capable of accommodating these temperature variations while remaining simple to fabricate and durable has remained a formidable obstacle. To address these bottlenecks, we design and successfully fabricate a novel dual-mode hierarchical(DMH) composite film featuring a micronanofiber network structure, achieved through a straightforward two-step continuous electrospinning process. In cooling mode, it presents a high solar reflectivity of up to 97.7% and an excellent atmospheric transparent window(ATW) infrared emissivity of up to 98.9%. Noted that this DMH film could realize a cooling of 8.1 ℃ compared to the ambient temperature outdoors. In heating mode, it also exhibits a high solar absorptivity of 94.7% and heats up to 11.9 ℃ higher than black cotton fabric when utilized by individuals. In practical application scenarios, a seamless transition between efficient cooling and heating is achieved by simply flipping the film. More importantly, the DMH film combining the benefits of composites demonstrates portability, durability, and easy-cleaning, promising to achieve large-scale production and use of thermally managed textiles in the future. The energy savings offered by film applications provide a viable solution for the early realization of carbon neutrality. 展开更多
关键词 Micro-nanofiber film DUAL-MODE Comfortable thermal management Simplified production UTILITY energy saving
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部