期刊文献+
共找到9,977篇文章
< 1 2 250 >
每页显示 20 50 100
More Than Lightening:A Self-Supervised Low-Light Image Enhancement Method Capable for Multiple Degradations
1
作者 Han Xu Jiayi Ma +3 位作者 Yixuan Yuan Hao Zhang Xin Tian Xiaojie Guo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期622-637,共16页
Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but ... Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but the collection of suitable normal-light images is difficult.In contrast,a self-supervised method breaks free from the reliance on normal-light data,resulting in more convenience and better generalization.Existing self-supervised methods primarily focus on illumination adjustment and design pixel-based adjustment methods,resulting in remnants of other degradations,uneven brightness and artifacts.In response,this paper proposes a self-supervised enhancement method,termed as SLIE.It can handle multiple degradations including illumination attenuation,noise pollution,and color shift,all in a self-supervised manner.Illumination attenuation is estimated based on physical principles and local neighborhood information.The removal and correction of noise and color shift removal are solely realized with noisy images and images with color shifts.Finally,the comprehensive and fully self-supervised approach can achieve better adaptability and generalization.It is applicable to various low light conditions,and can reproduce the original color of scenes in natural light.Extensive experiments conducted on four public datasets demonstrate the superiority of SLIE to thirteen state-of-the-art methods.Our code is available at https://github.com/hanna-xu/SLIE. 展开更多
关键词 Color correction low-light image enhancement self-supervised learning.
下载PDF
RF-Net: Unsupervised Low-Light Image Enhancement Based on Retinex and Exposure Fusion
2
作者 Tian Ma Chenhui Fu +2 位作者 Jiayi Yang Jiehui Zhang Chuyang Shang 《Computers, Materials & Continua》 SCIE EI 2023年第10期1103-1122,共20页
Low-light image enhancement methods have limitations in addressing issues such as color distortion,lack of vibrancy,and uneven light distribution and often require paired training data.To address these issues,we propo... Low-light image enhancement methods have limitations in addressing issues such as color distortion,lack of vibrancy,and uneven light distribution and often require paired training data.To address these issues,we propose a two-stage unsupervised low-light image enhancement algorithm called Retinex and Exposure Fusion Network(RFNet),which can overcome the problems of over-enhancement of the high dynamic range and under-enhancement of the low dynamic range in existing enhancement algorithms.This algorithm can better manage the challenges brought about by complex environments in real-world scenarios by training with unpaired low-light images and regular-light images.In the first stage,we design a multi-scale feature extraction module based on Retinex theory,capable of extracting details and structural information at different scales to generate high-quality illumination and reflection images.In the second stage,an exposure image generator is designed through the camera response mechanism function to acquire exposure images containing more dark features,and the generated images are fused with the original input images to complete the low-light image enhancement.Experiments show the effectiveness and rationality of each module designed in this paper.And the method reconstructs the details of contrast and color distribution,outperforms the current state-of-the-art methods in both qualitative and quantitative metrics,and shows excellent performance in the real world. 展开更多
关键词 low-light image enhancement multiscale feature extraction module exposure generator exposure fusion
下载PDF
DEANet: Decomposition Enhancement and Adjustment Network for Low-Light Image Enhancement 被引量:1
3
作者 Yonglong Jiang Liangliang Li +2 位作者 Jiahe Zhu Yuan Xue Hongbing Ma 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2023年第4期743-753,共11页
Poor illumination greatly affects the quality of obtained images.In this paper,a novel convolutional neural network named DEANet is proposed on the basis of Retinex for low-light image enhancement.DEANet combines the ... Poor illumination greatly affects the quality of obtained images.In this paper,a novel convolutional neural network named DEANet is proposed on the basis of Retinex for low-light image enhancement.DEANet combines the frequency and content information of images and is divided into three subnetworks:decomposition,enhancement,and adjustment networks,which perform image decomposition;denoising,contrast enhancement,and detail preservation;and image adjustment and generation,respectively.The model is trained on the public LOL dataset,and the experimental results show that it outperforms the existing state-of-the-art methods regarding visual effects and image quality. 展开更多
关键词 RETINEX low-light image enhancement image decomposition image adjustment
原文传递
Toward Robust and Efficient Low-Light Image Enhancement:Progressive Attentive Retinex Architecture Search
4
作者 Xiaoke Shang Nan An +1 位作者 Shaomin Zhang Nai Ding 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2023年第3期580-594,共15页
In recent years,learning-based low-light image enhancement methods have shown excellent performance,but the heuristic design adopted by most methods requires high engineering skills for developers,causing expensive in... In recent years,learning-based low-light image enhancement methods have shown excellent performance,but the heuristic design adopted by most methods requires high engineering skills for developers,causing expensive inference costs that are unfriendly to the hardware platform.To handle this issue,we propose to automatically discover an efficient architecture,called progressive attentive Retinex network(PAR-Net).We define a new attentive Retinex framework by introducing the attention mechanism to strengthen structural representation.A multi-level search space containing micro-level on the operation and macro-level on the cell is established to realize meticulous construction.To endow the searched architecture with the hardware-aware property,we develop a latency-constrained progressive search strategy that successfully improves the model capability by explicitly expressing the intrinsic relationship between different models defined in the attentive Retinex framework.Extensive quantitative and qualitative experimental results fully justify the superiority of our proposed approach against other state-of-the-art methods.A series of analytical evaluations is performed to illustrate the validity of our proposed algorithm. 展开更多
关键词 low-light image enhancement attentive Retinex framework multi-level search spacel progressive search strategy latency constraint
原文传递
Image enhancement with intensity transformation on embedding space
5
作者 Hanul Kim Yeji Jeon Yeong Jun Koh 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期101-115,共15页
In recent times,an image enhancement approach,which learns the global transformation function using deep neural networks,has gained attention.However,many existing methods based on this approach have a limitation:thei... In recent times,an image enhancement approach,which learns the global transformation function using deep neural networks,has gained attention.However,many existing methods based on this approach have a limitation:their transformation functions are too simple to imitate complex colour transformations between low-quality images and manually retouched high-quality images.In order to address this limitation,a simple yet effective approach for image enhancement is proposed.The proposed algorithm based on the channel-wise intensity transformation is designed.However,this transformation is applied to the learnt embedding space instead of specific colour spaces and then return enhanced features to colours.To this end,the authors define the continuous intensity transformation(CIT)to describe the mapping between input and output intensities on the embedding space.Then,the enhancement network is developed,which produces multi-scale feature maps from input images,derives the set of transformation functions,and performs the CIT to obtain enhanced images.Extensive experiments on the MIT-Adobe 5K dataset demonstrate that the authors’approach improves the performance of conventional intensity transforms on colour space metrics.Specifically,the authors achieved a 3.8%improvement in peak signal-to-noise ratio,a 1.8%improvement in structual similarity index measure,and a 27.5%improvement in learned perceptual image patch similarity.Also,the authors’algorithm outperforms state-of-the-art alternatives on three image enhancement datasets:MIT-Adobe 5K,Low-Light,and Google HDRþ. 展开更多
关键词 computer vision deep learning image enhancement image processing
下载PDF
A Novel Multi-Stream Fusion Network for Underwater Image Enhancement
6
作者 Guijin Tang Lian Duan +1 位作者 Haitao Zhao Feng Liu 《China Communications》 SCIE CSCD 2024年第2期166-182,共17页
Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color... Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color correction and detail restoration. However,the existing enhancement algorithms cannot achieve the desired results. In order to solve the above problems, this paper proposes a multi-stream feature fusion network. First, an underwater image is preprocessed to obtain potential information from the illumination stream, color stream and structure stream by histogram equalization with contrast limitation, gamma correction and white balance, respectively. Next, these three streams and the original raw stream are sent to the residual blocks to extract the features. The features will be subsequently fused. It can enhance feature representation in underwater images. In the meantime, a composite loss function including three terms is used to ensure the quality of the enhanced image from the three aspects of color balance, structure preservation and image smoothness. Therefore, the enhanced image is more in line with human visual perception.Finally, the effectiveness of the proposed method is verified by comparison experiments with many stateof-the-art underwater image enhancement algorithms. Experimental results show that the proposed method provides superior results over them in terms of MSE,PSNR, SSIM, UIQM and UCIQE, and the enhanced images are more similar to their ground truth images. 展开更多
关键词 image enhancement multi-stream fusion underwater image
下载PDF
A Modified CycleGAN for Multi-Organ Ultrasound Image Enhancement via Unpaired Pre-Training
7
作者 Haonan Han Bingyu Yang +2 位作者 Weihang Zhang Dongwei Li Huiqi Li 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期194-203,共10页
Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image qual... Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image quality of handheld ultrasound devices is not always satisfactory due to the limited equipment size,which hinders accurate diagnoses by doctors.At the same time,paired ultrasound images are difficult to obtain from the clinic because imaging process is complicated.Therefore,we propose a modified cycle generative adversarial network(cycleGAN) for ultrasound image enhancement from multiple organs via unpaired pre-training.We introduce an ultrasound image pre-training method that does not require paired images,alleviating the requirement for large-scale paired datasets.We also propose an enhanced block with different structures in the pre-training and fine-tuning phases,which can help achieve the goals of different training phases.To improve the robustness of the model,we add Gaussian noise to the training images as data augmentation.Our approach is effective in obtaining the best quantitative evaluation results using a small number of parameters and less training costs to improve the quality of handheld ultrasound devices. 展开更多
关键词 ultrasound image enhancement handheld devices unpaired images pre-train and finetune cycleGAN
下载PDF
Unsupervised Multi-Expert Learning Model for Underwater Image Enhancement
8
作者 Hongmin Liu Qi Zhang +2 位作者 Yufan Hu Hui Zeng Bin Fan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期708-722,共15页
Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ign... Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ignored that the R,G and B channels of underwater degraded images present varied degrees of degradation,due to the selective absorption for the light.To address this issue,we propose an unsupervised multi-expert learning model by considering the enhancement of each color channel.Specifically,an unsupervised architecture based on generative adversarial network is employed to alleviate the need for paired underwater images.Based on this,we design a generator,including a multi-expert encoder,a feature fusion module and a feature fusion-guided decoder,to generate the clear underwater image.Accordingly,a multi-expert discriminator is proposed to verify the authenticity of the R,G and B channels,respectively.In addition,content perceptual loss and edge loss are introduced into the loss function to further improve the content and details of the enhanced images.Extensive experiments on public datasets demonstrate that our method achieves more pleasing results in vision quality.Various metrics(PSNR,SSIM,UIQM and UCIQE) evaluated on our enhanced images have been improved obviously. 展开更多
关键词 Multi-expert learning underwater image enhancement unsupervised learning
下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
9
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement Generative adversarial network Multi-scale feature extraction Residual dense block
下载PDF
Enhancing the Quality of Low-Light Printed Circuit Board Images through Hue, Saturation, and Value Channel Processing and Improved Multi-Scale Retinex
10
作者 Huichao Shang Penglei Li Xiangqian Peng 《Journal of Computer and Communications》 2024年第1期1-10,共10页
To address the issue of deteriorated PCB image quality in the quality inspection process due to insufficient or uneven lighting, we proposed an image enhancement fusion algorithm based on different color spaces. First... To address the issue of deteriorated PCB image quality in the quality inspection process due to insufficient or uneven lighting, we proposed an image enhancement fusion algorithm based on different color spaces. Firstly, an improved MSRCR method was employed for brightness enhancement of the original image. Next, the color space of the original image was transformed from RGB to HSV, followed by processing the S-channel image using bilateral filtering and contrast stretching algorithms. The V-channel image was subjected to brightness enhancement using adaptive Gamma and CLAHE algorithms. Subsequently, the processed image was transformed back to the RGB color space from HSV. Finally, the images processed by the two algorithms were fused to create a new RGB image, and color restoration was performed on the fused image. Comparative experiments with other methods indicated that the contrast of the image was optimized, texture features were more abundantly preserved, brightness levels were significantly improved, and color distortion was prevented effectively, thus enhancing the quality of low-lit PCB images. 展开更多
关键词 Low-Lit PCB images Spatial Transformation image enhancement image Fusion HSV
下载PDF
Line Patterns Segmentation in Blurred Images Using Contrast Enhancement and Local Entropy Thresholding
11
作者 Marios Vlachos Evangelos Dermatas 《Journal of Computer and Communications》 2024年第2期116-141,共26页
Finger vein extraction and recognition hold significance in various applications due to the unique and reliable nature of finger vein patterns. While recently finger vein recognition has gained popularity, there are s... Finger vein extraction and recognition hold significance in various applications due to the unique and reliable nature of finger vein patterns. While recently finger vein recognition has gained popularity, there are still challenges associated with extracting and processing finger vein patterns related to image quality, positioning and alignment, skin conditions, security concerns and processing techniques applied. In this paper, a method for robust segmentation of line patterns in strongly blurred images is presented and evaluated in vessel network extraction from infrared images of human fingers. In a four-step process: local normalization of brightness, image enhancement, segmentation and cleaning were involved. A novel image enhancement method was used to re-establish the line patterns from the brightness sum of the independent close-form solutions of the adopted optimization criterion derived in small windows. In the proposed method, the computational resources were reduced significantly compared to the solution derived when the whole image was processed. In the enhanced image, where the concave structures have been sufficiently emphasized, accurate detection of line patterns was obtained by local entropy thresholding. Typical segmentation errors appearing in the binary image were removed using morphological dilation with a line structuring element and morphological filtering with a majority filter to eliminate isolated blobs. The proposed method performs accurate detection of the vessel network in human finger infrared images, as the experimental results show, applied both in real and artificial images and can readily be applied in many image enhancement and segmentation applications. 展开更多
关键词 Finger Vein Vessel enhancement Vessel Network Extraction Non-Uniform images BINARIZATION Morphological Post-Processing
下载PDF
Development and Validation of an Automatic Ultrawide-Field Fundus Imaging Enhancement System for Facilitating Clinical Diagnosis:A Cross-Sectional Multicenter Study
12
作者 Qiaoling Wei Zhuoyao Gu +19 位作者 Weimin Tan Hongyu Kong Hao Fu Qin Jiang Wenjuan Zhuang Shaochi Zhang Lixia Feng Yong Liu Suyan Li Bing Qin Peirong Lu Jiangyue Zhao Zhigang Li Songtao Yuan Hong Yan Shujie Zhang Xiangjia Zhu Jiaxu Hong Chen Zhao Bo Yan 《Engineering》 SCIE EI CAS CSCD 2024年第10期179-188,共10页
In ophthalmology,the quality of fundus images is critical for accurate diagnosis,both in clinical practice and in artificial intelligence(AI)-assisted diagnostics.Despite the broad view provided by ultrawide-field(UWF... In ophthalmology,the quality of fundus images is critical for accurate diagnosis,both in clinical practice and in artificial intelligence(AI)-assisted diagnostics.Despite the broad view provided by ultrawide-field(UWF)imaging,pseudocolor images may conceal critical lesions necessary for precise diagnosis.To address this,we introduce UWF-Net,a sophisticated image enhancement algorithm that takes disease characteristics into consideration.Using the Fudan University ultra-wide-field image(FDUWI)dataset,which includes 11294 Optos pseudocolor and 2415 Zeiss true-color UWF images,each of which is rigorously annotated,UWF-Net combines global style modeling with feature-level lesion enhancement.Pathological consistency loss is also applied to maintain fundus feature integrity,significantly improving image quality.Quantitative and qualitative evaluations demonstrated that UWF-Net outperforms existing methods such as contrast limited adaptive histogram equalization(CLAHE)and structure and illumination constrained generative adversarial network(StillGAN),delivering superior retinal image quality,higher quality scores,and preserved feature details after enhancement.In disease classification tasks,images enhanced by UWF-Net showed notable improvements when processed with existing classification systems over those enhanced by StillGAN,demonstrating a 4.62%increase in sensitivity(SEN)and a 3.97%increase in accuracy(ACC).In a multicenter clinical setting,UWF-Net-enhanced images were preferred by ophthalmologic technicians and doctors,and yielded a significant reduction in diagnostic time((13.17±8.40)s for UWF-Net enhanced images vs(19.54±12.40)s for original images)and an increase in diagnostic accuracy(87.71%for UWF-Net enhanced images vs 80.40%for original images).Our research verifies that UWF-Net markedly improves the quality of UWF imaging,facilitating better clinical outcomes and more reliable AI-assisted disease classification.The clinical integration of UWF-Net holds great promise for enhancing diagnostic processes and patient care in ophthalmology. 展开更多
关键词 Ultrawide-field imaging Fundus photography image enhancement algorithm Artificial intelligence Multicenter study Artificial intelligence-assisted diagnostics Diagnostic accuracy
下载PDF
Topic highlight on texture and color enhancement imaging in gastrointestinal diseases
13
作者 Osamu Toyoshima Toshihiro Nishizawa Keisuke Hata 《World Journal of Gastroenterology》 SCIE CAS 2024年第14期1934-1940,共7页
Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for ga... Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for gastrointestinal disease identification in the clinical setting.A randomized controlled trial demonstrated improvements in the colorectal adenoma detection rate(ADR)and the mean number of adenomas per procedure(MAP)of TXI compared with those of white-light imaging(WLI)observation(58.7%vs 42.7%,adjusted relative risk 1.35,95%CI:1.17-1.56;1.36 vs 0.89,adjusted incident risk ratio 1.48,95%CI:1.22-1.80,respectively).A cross-over study also showed that the colorectal MAP and ADR in TXI were higher than those in WLI(1.5 vs 1.0,adjusted odds ratio 1.4,95%CI:1.2-1.6;58.2%vs 46.8%,1.5,1.0-2.3,respectively).A randomized controlled trial demonstrated non-inferiority of TXI to narrow-band imaging in the colorectal mean number of adenomas and sessile serrated lesions per procedure(0.29 vs 0.30,difference for non-inferiority-0.01,95%CI:-0.10 to 0.08).A cohort study found that scoring for ulcerative colitis severity using TXI could predict relapse of ulcerative colitis.A cross-sectional study found that TXI improved the gastric cancer detection rate compared to WLI(0.71%vs 0.29%).A cross-sectional study revealed that the sensitivity and accuracy for active Helicobacter pylori gastritis in TXI were higher than those of WLI(69.2%vs 52.5%and 85.3%vs 78.7%,res-pectively).In conclusion,TXI can improve gastrointestinal lesion detection and qualitative diagnosis.Therefore,further studies on the efficacy of TXI in clinical practice are required. 展开更多
关键词 Endoscopy Texture and color enhancement imaging White-light imaging Narrow-band imaging Colorectal neoplasm Gastric cancer Adenoma Ulcerative colitis Helicobacter infections Colonoscopy
下载PDF
Is it a normal phenomenon for pediatric patients to have brain leptomeningeal contrast enhancement on 3-tesla magnetic resonance imaging?
14
作者 Min Ai Hang-Hang Zhang +1 位作者 Yi Guo Jun-Bang Feng 《World Journal of Radiology》 2024年第5期136-138,共3页
Determining whether sevoflurane sedation in children leads to“pseudo”prominent leptomeningeal contrast enhancement(pLMCE)on 3 Tesla magnetic resonance imaging will help reduce overdiagnosis by radiologists and clari... Determining whether sevoflurane sedation in children leads to“pseudo”prominent leptomeningeal contrast enhancement(pLMCE)on 3 Tesla magnetic resonance imaging will help reduce overdiagnosis by radiologists and clarify the pathophysiological changes of pLMCE. 展开更多
关键词 Pediatrics patients SEVOFLURANE BRAIN Prominent leptomeningeal contrast enhancement Magnetic resonance imaging
下载PDF
MAGAN:Unsupervised Low-Light Image Enhancement Guided by Mixed-Attention 被引量:6
15
作者 Renjun Wang Bin Jiang +2 位作者 Chao Yang Qiao Li Bolin Zhang 《Big Data Mining and Analytics》 EI 2022年第2期110-119,共10页
Most learning-based low-light image enhancement methods typically suffer from two problems.First,they require a large amount of paired data for training,which are difficult to acquire in most cases.Second,in the proce... Most learning-based low-light image enhancement methods typically suffer from two problems.First,they require a large amount of paired data for training,which are difficult to acquire in most cases.Second,in the process of enhancement,image noise is difficult to be removed and may even be amplified.In other words,performing denoising and illumination enhancement at the same time is difficult.As an alternative to supervised learning strategies that use a large amount of paired data,as presented in previous work,this paper presents an mixed-attention guided generative adversarial network called MAGAN for low-light image enhancement in a fully unsupervised fashion.We introduce a mixed-attention module layer,which can model the relationship between each pixel and feature of the image.In this way,our network can enhance a low-light image and remove its noise simultaneously.In addition,we conduct extensive experiments on paired and no-reference datasets to show the superiority of our method in enhancing low-light images. 展开更多
关键词 low-light image enhancement unsupervised learning Generative Adversarial Network(GAN) mixedattention
原文传递
Retinex based low-light image enhancement using guided filtering and variational framework 被引量:5
16
作者 张诗 唐贵进 +2 位作者 刘小花 罗苏淮 王大东 《Optoelectronics Letters》 EI 2018年第2期156-160,共5页
A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV col... A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization(CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods. 展开更多
关键词 RGB CLAHE Retinex based low-light image enhancement using guided filtering and variational framework HSV
原文传递
A Text Image Watermarking Algorithm Based on Image Enhancement 被引量:1
17
作者 Baowei Wang Luyao Shen +2 位作者 Junhao Zhang Zenghui Xu Neng Wang 《Computers, Materials & Continua》 SCIE EI 2023年第10期1183-1207,共25页
Digital watermarking technology is adequate for copyright protection and content authentication.There needs to be more research on the watermarking algorithm after printing and scanning.Aiming at the problem that exis... Digital watermarking technology is adequate for copyright protection and content authentication.There needs to be more research on the watermarking algorithm after printing and scanning.Aiming at the problem that existing anti-print scanning text image watermarking algorithms cannot take into account the invisibility and robustness of the watermark,an anti-print scanning watermarking algorithm suitable for text images is proposed.This algorithm first performs a series of image enhancement preprocessing operations on the printed scanned image to eliminate the interference of incorrect bit information on watermark embedding and then uses a combination of Discrete Wavelet Transform(DWT)-Singular Value Decomposition(SVD)to embed the watermark.Experiments show that the average Normalized Correlation(NC)of the watermark extracted by this algorithm against attacks such as Joint Photographic Experts Group(JPEG)compression,JPEG2000 compression,and print scanning is above 0.93.Especially,the average NC of the watermark extracted after print scanning attacks is greater than 0.964,and the average Bit Error Ratio(BER)is 5.15%.This indicates that this algorithm has strong resistance to various attacks and print scanning attacks and can better take into account the invisibility of the watermark. 展开更多
关键词 Print-resistant scanning image enhancement DWT SVD embedding intensity
下载PDF
Removal of Stripes in Remote Sensing Images Based on Statistics Combined with Image Enhancement 被引量:1
18
作者 Xiaofei QU Weiwei ZHAO +2 位作者 En LONG Meng SUN Guangling LAI 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第1期76-87,共12页
A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced t... A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced to provide a general baseline.Due to the differences in satellite sensors when producing images,subtle but inherent stripes can appear at the stitching positions between the sensors.These stitchingstripes cannot be eliminated by conventional relative radiometric calibration.The inherent stitching stripes cause difficulties in downstream tasks such as the segmentation,classification and interpretation of remote sensing images.Therefore,a method to remove the stripes based on statistics and a new image enhancement approach are proposed in this paper.First,the inconsistency in grayscales around stripes is eliminated with the statistical method.Second,the pixels within stripes are weighted and averaged based on updated pixel values to enhance the uniformity of the overall image radiation quality.Finally,the details of the images are highlighted by a new image enhancement method,which makes the whole image clearer.Comprehensive experiments are performed,and the results indicate that the proposed method outperforms the baseline approach in terms of visual quality and radiation correction accuracy. 展开更多
关键词 remote sensing images stripe removal STATISTICS image enhancement
下载PDF
Underwater Image Enhancement Based on IMSRCR and CLAHE-WGIF 被引量:2
19
作者 LI Ting ZHOU Xianchun +1 位作者 ZHANG Ying SHI Zhengting 《Instrumentation》 2023年第2期19-29,共11页
Aiming at the scattering and absorption of light in the water body,which causes the problems of color shift,uneven brightness,poor sharpness and missing details in the acquired underwater images,an underwater image en... Aiming at the scattering and absorption of light in the water body,which causes the problems of color shift,uneven brightness,poor sharpness and missing details in the acquired underwater images,an underwater image enhancement algorithm based on IMSRCR and CLAHE-WGIF is proposed.Firstly,the IMSRCR algorithm proposed in this paper is used to process the original underwater image with adaptive color shift correction;secondly,the image is converted to HSV color space,and the segmentation exponential algorithm is used to process the S component to enhance the image saturation;finally,multi-scale Retinex is used to decompose the V component image into detail layer and base layer,and adaptive two-dimensional gamma correction is made to the base layer to adjust the brightness unevenness,while the detail layer is processed by CLAHE-WGIF algorithm to enhance the image contrast and detail information.The experimental results show that our algorithm has some advantages over existing algorithms in both subjective and objective evaluations,and the information entropy of the image is improved by 6.3%on average,and the UIQM and UCIQE indexes are improved by 12.9%and 20.3%on average. 展开更多
关键词 Underwater image enhancement HSV Color Space MSRCR CLAHE WGIF
下载PDF
Pixel’s Quantum Image Enhancement Using Quantum Calculus
20
作者 Husam Yahya Dumitru Baleanu +1 位作者 Rabha W.Ibrahim Nadia M.G.Al-Saidi 《Computers, Materials & Continua》 SCIE EI 2023年第2期2531-2539,共9页
The current study provides a quantum calculus-based medical image enhancement technique that dynamically chooses the spatial distribution of image pixel intensity values.The technique focuses on boosting the edges and... The current study provides a quantum calculus-based medical image enhancement technique that dynamically chooses the spatial distribution of image pixel intensity values.The technique focuses on boosting the edges and texture of an image while leaving the smooth areas alone.The brain Magnetic Resonance Imaging(MRI)scans are used to visualize the tumors that have spread throughout the brain in order to gain a better understanding of the stage of brain cancer.Accurately detecting brain cancer is a complex challenge that the medical system faces when diagnosing the disease.To solve this issue,this research offers a quantum calculus-based MRI image enhancement as a pre-processing step for brain cancer diagnosis.The proposed image enhancement approach improves images with low gray level changes by estimating the pixel’s quantum probability.The suggested image enhancement technique is demonstrated to be robust and resistant to major quality changes on a variety ofMRIscan datasets of variable quality.ForMRI scans,the BRISQUE“blind/referenceless image spatial quality evaluator”and the NIQE“natural image quality evaluator”measures were 39.38 and 3.58,respectively.The proposed image enhancement model,according to the data,produces the best image quality ratings,and it may be able to aid medical experts in the diagnosis process.The experimental results were achieved using a publicly available collection of MRI scans. 展开更多
关键词 Quantum calculus MRI brain cancer image enhancement image processing BRISQUE NIQE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部