The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified...The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified as Pseudomonas sp. The flocculating activity of MMF1 isolated from the screening medium was 82.9%, which is remarkably higher than that of the bioflocculant produced by either of the strains under the same condition. Brewery wastewater was also used as the carbon source for MM1, and the cost-effective production medium for MM1 mainly comprised 1.0 L brewery water (chemical oxygen demand (COD) 5000 mg/L), 0.5 g/L urea, 0.5 g/L yeast extract, and 0.2 g/L (NH4)2SO4. The optimal conditions for the production of MMF1 was inoculum size 2%, initial pH 6.0, cultivating temperature 30℃, and shaking speed 160 r/min, under which the flocculating activity of the MMF1 reached 96.8%. Fifteen grams of purified bioflocculant could be recovered from 1.0 L of fermentation broth. MMF1 was identified as a macromolecular substance containing both protein and polysaccharide. It showed good flocculating performance in treating indigotin printing and dyeing wastewater, and the maximal removal efficiencies of COD and chroma were 79.2% and 86.5%, respectively.展开更多
The maximum specific methanogenic activity (SMA) of a sludge originating from a brewery wastewater treatment plant on the degradation of glucose was investigated at various levels of sulfate on a specific loading ba...The maximum specific methanogenic activity (SMA) of a sludge originating from a brewery wastewater treatment plant on the degradation of glucose was investigated at various levels of sulfate on a specific loading basis. Batch experiments were conducted in serum bottles at pH 7 and 35℃. A comparison of the values indicates that the SMA of this mixed culture was increased and reached its highest level of 0.128 g CH4 gas COD/(g VSS.d) when biomass was in contact with sulfate at a ratio of 1:0.114 by weight.展开更多
Performances of submerged membrane bioreactor (SMBR) treating brewery wastewater were investigated in this study. With little variation of COD:TN:TP ratio (100:5:1) in influent, SMBR showed high removal effici...Performances of submerged membrane bioreactor (SMBR) treating brewery wastewater were investigated in this study. With little variation of COD:TN:TP ratio (100:5:1) in influent, SMBR showed high removal efficiency ( 〉 90% ) for both COD and NH4^+ - N, and it also showed a strong resistive ability for shock organics loading rate, evidenced by no obvious fluctuation for COD in the effluent when the organics loading rate suddenly increased from 0. 27 g/( gMLSS · d) to 0. 54 g/( gMLSS · d). Comparatively different with the COD removal, TN and TP removal showed a strong correlation with the growth stage of the sludge in SMBR. When the sludge was in the multiplication stage, about 45% of TN was removed and an average removal efficiency of 30% for TP was also observed. However, when the activated sludge was in the steady stage, the removal efficiency for TN decreased to about 30% , whereas, the removal efficiency for TP was very low, and sometimes even below zero. The results of GC/MS indicated that the residual organic matters in the effluent were mainly alkyl hydrocarbon with high molecular weight, and coupling with the results of electroseopic scanning, it is speculated that biomass formed at external and internal membrane fibers played an important role for the removal of small organics.展开更多
An innovative internal circulation membrane bioreactor(ICMBR)treating traditional opaque beer brewery wastewater was introduced. Beer wastewater from Tianjin Huarun Brewhouse was taken as the influent. The removal e...An innovative internal circulation membrane bioreactor(ICMBR)treating traditional opaque beer brewery wastewater was introduced. Beer wastewater from Tianjin Huarun Brewhouse was taken as the influent. The removal efficiency of suspended solid, chemical oxygen demand, total nitrogen and ammonia nitrogen were studied with the changeable hard real time design method, organic loading rate and nutrition elements. The average percentage reduction in chemical oxygen demand achieved 90%. The total nitrogen and ammonia nitrogen were also reduced by 90% and 95%, respectively. The results indicate that the outlet of ICMBR meets the requirements of the environment landscape recycling use.展开更多
Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophi...Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophilic temperature. One reactor (R1) started up with anaerobic granular sludge in 12 weeks and obtained a continuously average organic loading rate (OLR) of 7.4 kg chemical oxygen demand (COD)/(m3.day), COD removal efficiency of 80%, and effluent COD of 450 mg/L. The other reactor (R2) started up with residual activated sludge in 30 weeks and granulation accomplished when the reactor reached an average OLR of 8.3 kg COD/(m^3·day), COD removal efficiency of 90%, and effluent COD of 240 mg/L. Differences in sludge characteristics,biogas compositions, and biogas- lift processes may be accounted for the superior efficiency of the treatment performance of R2 over R1. Grau second-order and modified StoverKincannon models based on influent and effluent concentrations as well as hydraulic retention time were successfully used to develop kinetic parameters of the experimental data with high correlation coefficients (R2 〉 0.95), which further showed that R2 had higher treatment performance than R1. These results demonstrated that residual activated sludge could be used effectively instead of anaerobic granular sludge despite the need for a longer time.展开更多
The production of polyhydroxyalkanoates(PHA) from wastewaters using microbial mixed cultures(MMC) has been attracting increased interest because of PHA's biodegradability characteristics. Production of PHA by an M...The production of polyhydroxyalkanoates(PHA) from wastewaters using microbial mixed cultures(MMC) has been attracting increased interest because of PHA's biodegradability characteristics. Production of PHA by an MMC enriched with PHA-accumulating bacteria was compared using anaerobically treated and acidified brewery wastewaters under various feeding strategies, namely pulse and batch feed addition. To obtain an enriched MMC, a sequencing batch reactor was inoculated with activated sludge fed with acetate and subjected to aerobic dynamic feeding. The enriched MMC was able to accumulate PHA up to 72.6% of cell dry weight(CDW) with pulse addition of acetate controlled by the dissolved oxygen(DO) concentration in the reactor. In a batch accumulation experiment with acetate,the PHA content achieved(28.5% CDW) was less than that of the pulse feeding strategy with the same amount of acetate(~2000 mg C/L). Using anaerobically treated and acidified brewery wastewater fed in pulses, the maximum PHA accumulated by the enriched MMC was similar for both wastewaters(45% CDW), in spite of the higher volatile fatty acid concentration in acidified brewery wastewater. The pulse feed addition controlled by the DO concentration was difficult to implement for wastewater as compared to acetate because the difference in DO concentration between substrate availability and depletion was low. For the batch addition of acidified wastewater, a slightly lower PHA content(39%CDW) was obtained. These results show that both brewery wastewaters can be utilized for PHA production with a similar maximum PHA storage capacity.展开更多
A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investi...A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was 14.7 h, a relatively high chemical oxygen demand (COD) removal efficiency of 91.7%-95.7% was achieved under long-term stable operation. The MFC displayed an open circuit voltage of 0.434 V and a maximum power density of 830 mW/m^3 at an external resistance of 300 0. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anode-cathode MFC constructed with bio-cathode in this experiment could provide a new approach for brewery wastewater treatment.展开更多
Evaluating the performance of a biotrickling filter for the treatment of wastewaters produced by a company manufacturing beer was the aim of this study.A pilot scale trickling filter filled with gravel was used as the...Evaluating the performance of a biotrickling filter for the treatment of wastewaters produced by a company manufacturing beer was the aim of this study.A pilot scale trickling filter filled with gravel was used as the experimental biofilter.Pilot scale plant experiments were made to evaluate the performance of the trickling filter aerobic and anaerobic biofilm systems for removal of chemical oxygen demand(COD) and nutrients from synthetic brewery wastewater.Performance evaluation data of the trickling filter were generated under different experimental conditions.The trickling filter had an average efficiency of(86.81±6.95)% as the hydraulic loading rate increased from 4.0 to 6.4 m3/(m2·d).Various COD concentrations were used to adjust organic loading rates from 1.5 to 4.5 kg COD/(m3·d).An average COD removal efficiency of(85.10±6.40)% was achieved in all wastewater concentrations at a hydraulic loading of 6.4 m3/(m2·d).The results lead to a design organic load of 1.5 kg COD/(m3·d) to reach an effluent COD in the range of 50–120 mg/L.As can be concluded from the results of this study,organic substances in brewery wastewater can be handled in a cost-effective and environmentally friendly manner using the gravel-filled trickling filter.展开更多
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20050247016)the Program forNew Century Excellent Talents in University(NCET-05-0387).
文摘The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified as Pseudomonas sp. The flocculating activity of MMF1 isolated from the screening medium was 82.9%, which is remarkably higher than that of the bioflocculant produced by either of the strains under the same condition. Brewery wastewater was also used as the carbon source for MM1, and the cost-effective production medium for MM1 mainly comprised 1.0 L brewery water (chemical oxygen demand (COD) 5000 mg/L), 0.5 g/L urea, 0.5 g/L yeast extract, and 0.2 g/L (NH4)2SO4. The optimal conditions for the production of MMF1 was inoculum size 2%, initial pH 6.0, cultivating temperature 30℃, and shaking speed 160 r/min, under which the flocculating activity of the MMF1 reached 96.8%. Fifteen grams of purified bioflocculant could be recovered from 1.0 L of fermentation broth. MMF1 was identified as a macromolecular substance containing both protein and polysaccharide. It showed good flocculating performance in treating indigotin printing and dyeing wastewater, and the maximal removal efficiencies of COD and chroma were 79.2% and 86.5%, respectively.
基金Project supported by the National Research Center of Environmental and Hazardous Waste Management(NRC-EHWM), Chulalongko1 University,Thailand.
文摘The maximum specific methanogenic activity (SMA) of a sludge originating from a brewery wastewater treatment plant on the degradation of glucose was investigated at various levels of sulfate on a specific loading basis. Batch experiments were conducted in serum bottles at pH 7 and 35℃. A comparison of the values indicates that the SMA of this mixed culture was increased and reached its highest level of 0.128 g CH4 gas COD/(g VSS.d) when biomass was in contact with sulfate at a ratio of 1:0.114 by weight.
文摘Performances of submerged membrane bioreactor (SMBR) treating brewery wastewater were investigated in this study. With little variation of COD:TN:TP ratio (100:5:1) in influent, SMBR showed high removal efficiency ( 〉 90% ) for both COD and NH4^+ - N, and it also showed a strong resistive ability for shock organics loading rate, evidenced by no obvious fluctuation for COD in the effluent when the organics loading rate suddenly increased from 0. 27 g/( gMLSS · d) to 0. 54 g/( gMLSS · d). Comparatively different with the COD removal, TN and TP removal showed a strong correlation with the growth stage of the sludge in SMBR. When the sludge was in the multiplication stage, about 45% of TN was removed and an average removal efficiency of 30% for TP was also observed. However, when the activated sludge was in the steady stage, the removal efficiency for TN decreased to about 30% , whereas, the removal efficiency for TP was very low, and sometimes even below zero. The results of GC/MS indicated that the residual organic matters in the effluent were mainly alkyl hydrocarbon with high molecular weight, and coupling with the results of electroseopic scanning, it is speculated that biomass formed at external and internal membrane fibers played an important role for the removal of small organics.
基金Supported by Liaoning Foundation for Science and Technology Cooperation Between Government and University.
文摘An innovative internal circulation membrane bioreactor(ICMBR)treating traditional opaque beer brewery wastewater was introduced. Beer wastewater from Tianjin Huarun Brewhouse was taken as the influent. The removal efficiency of suspended solid, chemical oxygen demand, total nitrogen and ammonia nitrogen were studied with the changeable hard real time design method, organic loading rate and nutrition elements. The average percentage reduction in chemical oxygen demand achieved 90%. The total nitrogen and ammonia nitrogen were also reduced by 90% and 95%, respectively. The results indicate that the outlet of ICMBR meets the requirements of the environment landscape recycling use.
基金supported by the National Natural Science Foundation of China (No.NSFC20976069)the Fundamental Research Funds for the Central Universities,China (No.JUSRP111A12)+1 种基金the Higher School Science and Technology Innovation Project of Cultivating the Capital Project,China (No.708048)the Selfdetermined Research Program of Jiangnan University (No.JUSRP11006)
文摘Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophilic temperature. One reactor (R1) started up with anaerobic granular sludge in 12 weeks and obtained a continuously average organic loading rate (OLR) of 7.4 kg chemical oxygen demand (COD)/(m3.day), COD removal efficiency of 80%, and effluent COD of 450 mg/L. The other reactor (R2) started up with residual activated sludge in 30 weeks and granulation accomplished when the reactor reached an average OLR of 8.3 kg COD/(m^3·day), COD removal efficiency of 90%, and effluent COD of 240 mg/L. Differences in sludge characteristics,biogas compositions, and biogas- lift processes may be accounted for the superior efficiency of the treatment performance of R2 over R1. Grau second-order and modified StoverKincannon models based on influent and effluent concentrations as well as hydraulic retention time were successfully used to develop kinetic parameters of the experimental data with high correlation coefficients (R2 〉 0.95), which further showed that R2 had higher treatment performance than R1. These results demonstrated that residual activated sludge could be used effectively instead of anaerobic granular sludge despite the need for a longer time.
基金the DAAD Sandwich Model Scholarships for Master's Students of the IITs and IIMs, 2016/17, who funded the research stay of Mr.Pravesh Tamang in Germany (Personal Ref No: 91635161)
文摘The production of polyhydroxyalkanoates(PHA) from wastewaters using microbial mixed cultures(MMC) has been attracting increased interest because of PHA's biodegradability characteristics. Production of PHA by an MMC enriched with PHA-accumulating bacteria was compared using anaerobically treated and acidified brewery wastewaters under various feeding strategies, namely pulse and batch feed addition. To obtain an enriched MMC, a sequencing batch reactor was inoculated with activated sludge fed with acetate and subjected to aerobic dynamic feeding. The enriched MMC was able to accumulate PHA up to 72.6% of cell dry weight(CDW) with pulse addition of acetate controlled by the dissolved oxygen(DO) concentration in the reactor. In a batch accumulation experiment with acetate,the PHA content achieved(28.5% CDW) was less than that of the pulse feeding strategy with the same amount of acetate(~2000 mg C/L). Using anaerobically treated and acidified brewery wastewater fed in pulses, the maximum PHA accumulated by the enriched MMC was similar for both wastewaters(45% CDW), in spite of the higher volatile fatty acid concentration in acidified brewery wastewater. The pulse feed addition controlled by the DO concentration was difficult to implement for wastewater as compared to acetate because the difference in DO concentration between substrate availability and depletion was low. For the batch addition of acidified wastewater, a slightly lower PHA content(39%CDW) was obtained. These results show that both brewery wastewaters can be utilized for PHA production with a similar maximum PHA storage capacity.
基金Project supported by the Heilongjiang Science and Technology Key Projects (No. GC07A305)the Fund of Harbin Engineering University (No. HEUFT08008)the Daqing Science and Technology Key Projects (No. SGG2008-029), Heilongjiang, China
文摘A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was 14.7 h, a relatively high chemical oxygen demand (COD) removal efficiency of 91.7%-95.7% was achieved under long-term stable operation. The MFC displayed an open circuit voltage of 0.434 V and a maximum power density of 830 mW/m^3 at an external resistance of 300 0. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anode-cathode MFC constructed with bio-cathode in this experiment could provide a new approach for brewery wastewater treatment.
基金Project(No.7117130553459)supported by the Landeszentralkasse M-V Stipendium,Germany
文摘Evaluating the performance of a biotrickling filter for the treatment of wastewaters produced by a company manufacturing beer was the aim of this study.A pilot scale trickling filter filled with gravel was used as the experimental biofilter.Pilot scale plant experiments were made to evaluate the performance of the trickling filter aerobic and anaerobic biofilm systems for removal of chemical oxygen demand(COD) and nutrients from synthetic brewery wastewater.Performance evaluation data of the trickling filter were generated under different experimental conditions.The trickling filter had an average efficiency of(86.81±6.95)% as the hydraulic loading rate increased from 4.0 to 6.4 m3/(m2·d).Various COD concentrations were used to adjust organic loading rates from 1.5 to 4.5 kg COD/(m3·d).An average COD removal efficiency of(85.10±6.40)% was achieved in all wastewater concentrations at a hydraulic loading of 6.4 m3/(m2·d).The results lead to a design organic load of 1.5 kg COD/(m3·d) to reach an effluent COD in the range of 50–120 mg/L.As can be concluded from the results of this study,organic substances in brewery wastewater can be handled in a cost-effective and environmentally friendly manner using the gravel-filled trickling filter.