Mercury (Hg) is one of the most toxic heavy metals to living organisms and its conspicuous effect is the inhibition of root growth. However, little is known about the molecular genetic basis for root growth under ex...Mercury (Hg) is one of the most toxic heavy metals to living organisms and its conspicuous effect is the inhibition of root growth. However, little is known about the molecular genetic basis for root growth under excess Hg2+ stress. To map quantitative trait loci (QTLs) in rice for Hg2+ tolerance, a population of 120 recombinant inbred lines derived from a cross between two japonica cultivars Yuefu and IRAT109 was grown in 0.5 mmol/L CaCI2 solution. Relative root length (RRL), percentage of the seminal root length in +HgCI2 to -HgCI2, was used for assessing Hg2+ tolerance. In a dose-response experiment, Yuefu had a higher RRL than IRAT109 and showed the most significant difference at the Hg2+ concentration of 1.5 tJmol/L. Three putative QTLs for RRL were detected on chromosomes 1, 2 and 5, and totally explained about 35.7% of the phenotypic variance in Hg2+ tolerance. The identified QTLs for RRL might be useful for improving Hg2+ tolerance of rice by molecular marker-assisted selection.展开更多
Cross combinations from six rapeseed cultivars and lines were evaluated under waterlogging stress condition in order to understand the genetic mechanism of waterlogging tolerance of Brassica napus L.and provide reason...Cross combinations from six rapeseed cultivars and lines were evaluated under waterlogging stress condition in order to understand the genetic mechanism of waterlogging tolerance of Brassica napus L.and provide reasonable improvement programs.There were six germination traits investigated on combining ability and heritability using complete diallel crossing method designed for 30 combinations from those six cultivars and lines.The traits included relative root length,stem length,fresh weight per plant,survival rate,electrical conductivity,and vigor index.After flooding treatment,the six traits of parents and F1 were analyzed.The general combining ability(GCA) and special combining ability(SCA) of germination traits were analyzed using Griffing I method.Among 30 cross combinations,the GCA was significantly different among six waterlogging resistance traits.The SCA of these traits was significantly different except the SCA of electrical conductivity.As a representative trait of waterlogging tolerance in rapeseed,relative vigor index had the highest narrow heritability and relatively low broad heritability.The cultivars Zhongshuang 9 and P79 had higher tolerance potential to waterlogging stress.It can be concluded that combining ability and genetic effects of relative vigor index during germination stage could be used to identify the waterlogging tolerance of rapeseed in breeding program.展开更多
To investigate the genetic basis of drought tolerance in soybean (Glycine max L. Merr.) a recombinant inbred population with 184 F2:7:11 lines developed from a cross between Kefengl (drought tolerant) and Nannon...To investigate the genetic basis of drought tolerance in soybean (Glycine max L. Merr.) a recombinant inbred population with 184 F2:7:11 lines developed from a cross between Kefengl (drought tolerant) and Nannong1138-2 (drought sensitive) were tested under water-stressed and well-watered conditions in field and greenhouse trials. Traits measured included leaf wilting coefficient, excised leaf water loss and relative water content as indicators of plant water status and seed yield. A total of 40 quantitative trait loci (QTLs) were identified: 17 for leaf water status traits under drought stress and 23 for seed yield under well-watered and drought-stressed conditions in both field and greenhouse trials. Two seed yield QTLs were detected under both well-watered and drought-stressed conditions in the field on molecular linkage group H and Dlb, while two seed yield QTLs on molecular linkage group C2 were found under greenhouse conditions. Several QTLs for traits associated with plant water status were identified in both field and greenhouse trials, including two leaf wilting coefficient QTLs on molecular linkage group A2 and one excised leaf water loss QTL on molecular linkage group H. Phenotypic correlations of traits suggested several QTLs had pleiotropic or location-linked associations. These results will help to elucidate the genetic basis of drought tolerance in soybean, and could be incorporated into a marker-assisted selection breeding program to develop high-yielding soybean cultivars with improved tolerance to drought stress.展开更多
通过对小麦耐低磷相关性状进行全基因组关联分析(GWAS,genome-wide association study),挖掘与小麦耐低磷性显著相关的单核苷酸多态性标记(SNP,single nucleotide polymorphism)位点及候选基因,为小麦耐低磷性状的遗传基础和分子机制研...通过对小麦耐低磷相关性状进行全基因组关联分析(GWAS,genome-wide association study),挖掘与小麦耐低磷性显著相关的单核苷酸多态性标记(SNP,single nucleotide polymorphism)位点及候选基因,为小麦耐低磷性状的遗传基础和分子机制研究提供理论参考。本试验以198份黄淮麦区小麦品种(系)为试验材料,设置低磷和正常磷营养液水培试验,利用小麦35K芯片对分布于小麦全基因组的11896个SNP,采用Q+K关联模型对小麦耐低磷性相关性状进行关联分析。结果表明,小麦耐低磷性状表现出广泛的表型变异,变异系数为15.65%~26.59%,多态性信息含量(PIC,polymorphic information content)为0.095~0.500。群体结构分析表明,试验所用自然群体可分为2个亚群,GWAS共检测到67个与小麦耐低磷相关性状显著关联的SNP位点(P≤0.001),这些位点分布在除3A、3B和3D以外的18条染色体上,单个SNP位点可解释5.826%~9.552%的表型变异。在这些显著位点中有4个SNP位点同时关联到了2个不同的耐低磷性状。对67个SNP位点进行发掘,筛选到7个可能与小麦耐低磷性有关的候选基因。TraesCS6A02G001000和TraesCS6A02G001100在锌指合成中有重要作用;TraesCS6A02G118100可能为低磷胁迫诱导基因;TraesCS5D02G536400、TraesCS1B02G154200和TraesCS5D02G536500与低磷胁迫相关酶类基因家族有关;TraesCS1D02G231200与植物DUF 538结构域蛋白有关,是植物胁迫相关调控蛋白候选基因。展开更多
基金funded by the National Natural Science Foundation of China(Grant No.30771330)the National Natural Science Foundation of Zhejiang Province,China(Grant No.Z306300)the Zhejiang Normal University Innovative Research Team Program of China
文摘Mercury (Hg) is one of the most toxic heavy metals to living organisms and its conspicuous effect is the inhibition of root growth. However, little is known about the molecular genetic basis for root growth under excess Hg2+ stress. To map quantitative trait loci (QTLs) in rice for Hg2+ tolerance, a population of 120 recombinant inbred lines derived from a cross between two japonica cultivars Yuefu and IRAT109 was grown in 0.5 mmol/L CaCI2 solution. Relative root length (RRL), percentage of the seminal root length in +HgCI2 to -HgCI2, was used for assessing Hg2+ tolerance. In a dose-response experiment, Yuefu had a higher RRL than IRAT109 and showed the most significant difference at the Hg2+ concentration of 1.5 tJmol/L. Three putative QTLs for RRL were detected on chromosomes 1, 2 and 5, and totally explained about 35.7% of the phenotypic variance in Hg2+ tolerance. The identified QTLs for RRL might be useful for improving Hg2+ tolerance of rice by molecular marker-assisted selection.
基金supported by the National High-Tech Research and Development Program of China (863 Program,2006AA10Z1C2)the Key Technologies R&D Program of China during the 10th Five-Year Plan period (2009BADA8B01,2110BAD01B09)the Natural Science Foundation of Hubei Province,China(2009CDA089)
文摘Cross combinations from six rapeseed cultivars and lines were evaluated under waterlogging stress condition in order to understand the genetic mechanism of waterlogging tolerance of Brassica napus L.and provide reasonable improvement programs.There were six germination traits investigated on combining ability and heritability using complete diallel crossing method designed for 30 combinations from those six cultivars and lines.The traits included relative root length,stem length,fresh weight per plant,survival rate,electrical conductivity,and vigor index.After flooding treatment,the six traits of parents and F1 were analyzed.The general combining ability(GCA) and special combining ability(SCA) of germination traits were analyzed using Griffing I method.Among 30 cross combinations,the GCA was significantly different among six waterlogging resistance traits.The SCA of these traits was significantly different except the SCA of electrical conductivity.As a representative trait of waterlogging tolerance in rapeseed,relative vigor index had the highest narrow heritability and relatively low broad heritability.The cultivars Zhongshuang 9 and P79 had higher tolerance potential to waterlogging stress.It can be concluded that combining ability and genetic effects of relative vigor index during germination stage could be used to identify the waterlogging tolerance of rapeseed in breeding program.
基金Supported by Grants from the International Atomic Energy Agency (CPR-12988)National Natural Science Foundation of China (30471094 and 30771362)+4 种基金State Basic Research and Development Plan (2004CB117206)National High-tech Research and Development Program (2006AA10Z1C1)the Talent Inducing Program from the Ministry of Education (B08025)the Key Program of Science and Technology of Shanxi Province (051017)the Scientific Research Foundation for Young Academic Leaders from University in Shanxi Province (200425)
文摘To investigate the genetic basis of drought tolerance in soybean (Glycine max L. Merr.) a recombinant inbred population with 184 F2:7:11 lines developed from a cross between Kefengl (drought tolerant) and Nannong1138-2 (drought sensitive) were tested under water-stressed and well-watered conditions in field and greenhouse trials. Traits measured included leaf wilting coefficient, excised leaf water loss and relative water content as indicators of plant water status and seed yield. A total of 40 quantitative trait loci (QTLs) were identified: 17 for leaf water status traits under drought stress and 23 for seed yield under well-watered and drought-stressed conditions in both field and greenhouse trials. Two seed yield QTLs were detected under both well-watered and drought-stressed conditions in the field on molecular linkage group H and Dlb, while two seed yield QTLs on molecular linkage group C2 were found under greenhouse conditions. Several QTLs for traits associated with plant water status were identified in both field and greenhouse trials, including two leaf wilting coefficient QTLs on molecular linkage group A2 and one excised leaf water loss QTL on molecular linkage group H. Phenotypic correlations of traits suggested several QTLs had pleiotropic or location-linked associations. These results will help to elucidate the genetic basis of drought tolerance in soybean, and could be incorporated into a marker-assisted selection breeding program to develop high-yielding soybean cultivars with improved tolerance to drought stress.
文摘通过对小麦耐低磷相关性状进行全基因组关联分析(GWAS,genome-wide association study),挖掘与小麦耐低磷性显著相关的单核苷酸多态性标记(SNP,single nucleotide polymorphism)位点及候选基因,为小麦耐低磷性状的遗传基础和分子机制研究提供理论参考。本试验以198份黄淮麦区小麦品种(系)为试验材料,设置低磷和正常磷营养液水培试验,利用小麦35K芯片对分布于小麦全基因组的11896个SNP,采用Q+K关联模型对小麦耐低磷性相关性状进行关联分析。结果表明,小麦耐低磷性状表现出广泛的表型变异,变异系数为15.65%~26.59%,多态性信息含量(PIC,polymorphic information content)为0.095~0.500。群体结构分析表明,试验所用自然群体可分为2个亚群,GWAS共检测到67个与小麦耐低磷相关性状显著关联的SNP位点(P≤0.001),这些位点分布在除3A、3B和3D以外的18条染色体上,单个SNP位点可解释5.826%~9.552%的表型变异。在这些显著位点中有4个SNP位点同时关联到了2个不同的耐低磷性状。对67个SNP位点进行发掘,筛选到7个可能与小麦耐低磷性有关的候选基因。TraesCS6A02G001000和TraesCS6A02G001100在锌指合成中有重要作用;TraesCS6A02G118100可能为低磷胁迫诱导基因;TraesCS5D02G536400、TraesCS1B02G154200和TraesCS5D02G536500与低磷胁迫相关酶类基因家族有关;TraesCS1D02G231200与植物DUF 538结构域蛋白有关,是植物胁迫相关调控蛋白候选基因。