The gas-phase synthesis of dimethyl carbonate (DMC) from methanol, carbon monoxide and oXygen has here Studied in a flow system at atomspheric Pressure. A series of Catalyst used in this reaCtion have been prepared an...The gas-phase synthesis of dimethyl carbonate (DMC) from methanol, carbon monoxide and oXygen has here Studied in a flow system at atomspheric Pressure. A series of Catalyst used in this reaCtion have been prepared and evaluated. The influence of trivared carbon supporters, alkaline metal Promoters and operation conditions on DMC opthesis reaction has been discussed. Under the conditions of 130℃, CO/O2=1 .96, SV=3340h-1, the space-time yield (STY) of DMC over PdCl2-CuCl2-CH3COOK/ac. catalyst is 217g/l-cat h,which is higher than what is published in the literatUre so far.展开更多
In order to develop the catalysts with low corrosiveness for the oxidative carbonylation of methanol to dimethyl carbonate(DMC), Cu Br2 was selected as the metal source to prepare Cu coordination compounds, Cu(phen)Br...In order to develop the catalysts with low corrosiveness for the oxidative carbonylation of methanol to dimethyl carbonate(DMC), Cu Br2 was selected as the metal source to prepare Cu coordination compounds, Cu(phen)Br2,[Cu(phen)2Br]Br and [Cu(phen)3]Br2(phen = 1,10-phenanthroline). These complexes were characterized by thermogravimetric analysis and temperature-programmed reduction. Their catalytic performances were investigated. It was found that the metal coordination environments and thermal stability of the complexes played an important role in their catalytic activities. Cu(phen)Br2exhibited the highest activity due to the lowest steric hindrance, the most positions occupied by the bromide ions and the highest thermal stability. The turnover number was up to 47.6 DMC mol·(Cu mol)-1with selectivity of 92.8% under conditions of 120 °C, ratio of partial pressure of CO to O2 of 19:1(below the explosion limit of CO) and catalyst concentration of 0.011 mol·L-1.Furthermore, a plausible reaction mechanism was suggested on the basis of the experimental data.展开更多
The direct carbonylation of methanol, without any halide in the feed as apromoter, is presented. A series of Mo catalysts supported on activated carbon, γ-Al_2O_3 and SiO_2were prepared. The results show that the sup...The direct carbonylation of methanol, without any halide in the feed as apromoter, is presented. A series of Mo catalysts supported on activated carbon, γ-Al_2O_3 and SiO_2were prepared. The results show that the support greatly affects the Mo catalyst in the directvapor-phase carbonylation of methanol, and activated carbon is the best supports of the investigatedsupports. In addition, the relationships between adsorptions of NH_3 and CO and carbonylation ofmethanol were investigated. A novel sulfided Mo/C catalyst had high activity and selectivity for thevapor phase carbonylation of methanol to methyl acetate without the addition of a CH_3I promoter tothe feed. The reaction conditions were optimized at a reaction temperature of 573 K, a methanolconcentration of 23 mol% and a carbon monoxide space velocity of 3,000 L/(kg·h). Under theseoptimal conditions a methanol conversion of 50%, carbonylation selectivity of 80 rnol%, andspace-time yield of 8.0 mol/(kg·h) were obtained. The active phase of this novel sulfided Mo/Ccatalyst is the non-crystalline phase, and the active component is present as MoS_(2.5) on thesurface of the activated carbon.展开更多
Kinetics of synthesis of methyl formate from carbon monoxide and methanol, using sodium methoxide as the catalyst and pyridine as the promoter in a batch reactor, was studied. Kinetic parameters such as the apparent r...Kinetics of synthesis of methyl formate from carbon monoxide and methanol, using sodium methoxide as the catalyst and pyridine as the promoter in a batch reactor, was studied. Kinetic parameters such as the apparent reaction orders, the rate constant and the apparent activation energies were obtained. The experimental results showed that both the reaction orders with respect to CO and methanol equal to 1, the general reaction kinetic equation is (-r)=-dp(CO)/dt=k, p(CO).[MeOH], and the rate constant is k=8.82×10~6exp [-61.19×10~3/(R·T)] in the presence of pyridine. The apparent activation energies had decreased 6.44 kJ/mol and the rate constant had increased more than 1.5 times when pyridine was used as the promoter in the catalyst system.展开更多
Copolymer of 2-vinylpyridine and vinylacetate coordinated with dicarbonylrhodium used as a catalyst for carbonylation of methanol to acetic acid and anhydride has been studied. The structural characteristics of the co...Copolymer of 2-vinylpyridine and vinylacetate coordinated with dicarbonylrhodium used as a catalyst for carbonylation of methanol to acetic acid and anhydride has been studied. The structural characteristics of the copolymer ligand and complex, and the influences of the reaction conditions on the carbonylation catalyzed by this polymer complex have been investigated. In comparison with small molecule catalyst of Rh complex, the bidentate copolymer coordinated complex has better thermal stability. The reaction mechanism of the carbonylation reaction is also illustrated.展开更多
A Nd promoted-Rh catalysts supported on polymer-derived carbon beads for vapor-phase methanol carbonylation was developed. Rh-Nd bimetallic catalysts obviously have higher activity than that of supported Rh catalyst...A Nd promoted-Rh catalysts supported on polymer-derived carbon beads for vapor-phase methanol carbonylation was developed. Rh-Nd bimetallic catalysts obviously have higher activity than that of supported Rh catalyst under similar reaction condition. The difference between the activity of above two catalyst systems is clearly caused by the intrinsic properties generated by the introduction of Nd.展开更多
The kinetic study of carbonylation of methanol-acetic acid mixture to acetic acid and acetic anhydride over a cis-dicarbonylrhodium complex (MVM' Rh) coordinated with the ethylene diacrylate (M') crosslinked c...The kinetic study of carbonylation of methanol-acetic acid mixture to acetic acid and acetic anhydride over a cis-dicarbonylrhodium complex (MVM' Rh) coordinated with the ethylene diacrylate (M') crosslinked copolymer of methyl acrylate (M) and 2-vinylpyddine (V)shows that the rate of reaction is zero order with respect to both reactants methanol and carbon monoxide, but first order in the concentrations of promoter methyl iodide and rhodium in the complex. Polar solvents can accelerate the reaction. Activation parameters were calculated from the experimental results, being comparable to that of the homogeneous system. A mechanism similar to that of soluble rhodium catalyst was proposed.展开更多
A series of porous microspheres of linear and ethylene diacrylate (M') cross-linked copolymers of 2-vinylpyridine (V) and methyl acrylate (M) reacted with tetracarbonyldichlorodirhodium to form a series of cis-dic...A series of porous microspheres of linear and ethylene diacrylate (M') cross-linked copolymers of 2-vinylpyridine (V) and methyl acrylate (M) reacted with tetracarbonyldichlorodirhodium to form a series of cis-dicarbonylrhodium chelate complex (MVRh and MVM 'Rh). They are thermally stable yet very reactive in the carbonylation of methanol to acetic acid, and of methanol-acetic acid mixture to acetic acid and acetic anhydride with a selectivity of 100% under relatively mild and anhydrous conditions.展开更多
Copper oxides(CuOx) nanoparticles dispersed on activated carbon(AC) were prepared by using vaporphase methanol as the reducing agent. The CuOx/AC as prepared exhibited an enhanced catalytic activity in oxidative c...Copper oxides(CuOx) nanoparticles dispersed on activated carbon(AC) were prepared by using vaporphase methanol as the reducing agent. The CuOx/AC as prepared exhibited an enhanced catalytic activity in oxidative carbonylation of methanol to dimethyl carbonate(DMC). The catalytic performance was significantly influenced by reduction conditions including temperature and time. With the similar selectivity of DMC, the space time yield(STY) under optimal reduction conditions reached up to 408 mg g^-1h^-1, which is superior to conventional methods such as thermolysis and solvothermal reduction. Based on the characterization results of XRD, TEM and XPS, the good copper dispersion and high Cu^+ content obtained by vapor-phase methanol reduction were mainly responsible for the high catalytic activity.展开更多
CuY zeolite is a promising catalyst in the field of manufacturing dimethyl carbonate(DMC) through oxidative carbonylation of methanol. Cu^+ exchanged with Br?nsted acid sites are supposed to be active for this reactio...CuY zeolite is a promising catalyst in the field of manufacturing dimethyl carbonate(DMC) through oxidative carbonylation of methanol. Cu^+ exchanged with Br?nsted acid sites are supposed to be active for this reaction. However, the location of Cu^+ in small cages can not interact with reactants because of steric hindrance, which lead to a waste of Cu species. In this work, NH_4F solution was used to modify the pore structure of zeolite Y by etching the framework T atoms. Physical and chemical adsorption of probe molecules with different size are used to determine the changes of porosity as well as the accessibility of Cu^+ sites. At an optimized etching time, the small cages were opened with maintained zeolitic framework. As a result, more Cu^+ species located in small cages become accessible to reactants, which contributes to the enhanced activity in this reaction.展开更多
文摘The gas-phase synthesis of dimethyl carbonate (DMC) from methanol, carbon monoxide and oXygen has here Studied in a flow system at atomspheric Pressure. A series of Catalyst used in this reaCtion have been prepared and evaluated. The influence of trivared carbon supporters, alkaline metal Promoters and operation conditions on DMC opthesis reaction has been discussed. Under the conditions of 130℃, CO/O2=1 .96, SV=3340h-1, the space-time yield (STY) of DMC over PdCl2-CuCl2-CH3COOK/ac. catalyst is 217g/l-cat h,which is higher than what is published in the literatUre so far.
基金Supported by the National Natural Science Foundation of China(20936003,21276201)
文摘In order to develop the catalysts with low corrosiveness for the oxidative carbonylation of methanol to dimethyl carbonate(DMC), Cu Br2 was selected as the metal source to prepare Cu coordination compounds, Cu(phen)Br2,[Cu(phen)2Br]Br and [Cu(phen)3]Br2(phen = 1,10-phenanthroline). These complexes were characterized by thermogravimetric analysis and temperature-programmed reduction. Their catalytic performances were investigated. It was found that the metal coordination environments and thermal stability of the complexes played an important role in their catalytic activities. Cu(phen)Br2exhibited the highest activity due to the lowest steric hindrance, the most positions occupied by the bromide ions and the highest thermal stability. The turnover number was up to 47.6 DMC mol·(Cu mol)-1with selectivity of 92.8% under conditions of 120 °C, ratio of partial pressure of CO to O2 of 19:1(below the explosion limit of CO) and catalyst concentration of 0.011 mol·L-1.Furthermore, a plausible reaction mechanism was suggested on the basis of the experimental data.
基金This work was supported by the National Nature Science Foundation of China (No.29903003).
文摘The direct carbonylation of methanol, without any halide in the feed as apromoter, is presented. A series of Mo catalysts supported on activated carbon, γ-Al_2O_3 and SiO_2were prepared. The results show that the support greatly affects the Mo catalyst in the directvapor-phase carbonylation of methanol, and activated carbon is the best supports of the investigatedsupports. In addition, the relationships between adsorptions of NH_3 and CO and carbonylation ofmethanol were investigated. A novel sulfided Mo/C catalyst had high activity and selectivity for thevapor phase carbonylation of methanol to methyl acetate without the addition of a CH_3I promoter tothe feed. The reaction conditions were optimized at a reaction temperature of 573 K, a methanolconcentration of 23 mol% and a carbon monoxide space velocity of 3,000 L/(kg·h). Under theseoptimal conditions a methanol conversion of 50%, carbonylation selectivity of 80 rnol%, andspace-time yield of 8.0 mol/(kg·h) were obtained. The active phase of this novel sulfided Mo/Ccatalyst is the non-crystalline phase, and the active component is present as MoS_(2.5) on thesurface of the activated carbon.
基金This project was supported by Yunnan Science and Technology Cooperate Plan Foundation(99YT002)Yunnan Nature Science Foundation(2003E0027M)
文摘Kinetics of synthesis of methyl formate from carbon monoxide and methanol, using sodium methoxide as the catalyst and pyridine as the promoter in a batch reactor, was studied. Kinetic parameters such as the apparent reaction orders, the rate constant and the apparent activation energies were obtained. The experimental results showed that both the reaction orders with respect to CO and methanol equal to 1, the general reaction kinetic equation is (-r)=-dp(CO)/dt=k, p(CO).[MeOH], and the rate constant is k=8.82×10~6exp [-61.19×10~3/(R·T)] in the presence of pyridine. The apparent activation energies had decreased 6.44 kJ/mol and the rate constant had increased more than 1.5 times when pyridine was used as the promoter in the catalyst system.
文摘Copolymer of 2-vinylpyridine and vinylacetate coordinated with dicarbonylrhodium used as a catalyst for carbonylation of methanol to acetic acid and anhydride has been studied. The structural characteristics of the copolymer ligand and complex, and the influences of the reaction conditions on the carbonylation catalyzed by this polymer complex have been investigated. In comparison with small molecule catalyst of Rh complex, the bidentate copolymer coordinated complex has better thermal stability. The reaction mechanism of the carbonylation reaction is also illustrated.
文摘A Nd promoted-Rh catalysts supported on polymer-derived carbon beads for vapor-phase methanol carbonylation was developed. Rh-Nd bimetallic catalysts obviously have higher activity than that of supported Rh catalyst under similar reaction condition. The difference between the activity of above two catalyst systems is clearly caused by the intrinsic properties generated by the introduction of Nd.
基金This work was supported by a Grant from the National Natural Science Foundation of China
文摘The kinetic study of carbonylation of methanol-acetic acid mixture to acetic acid and acetic anhydride over a cis-dicarbonylrhodium complex (MVM' Rh) coordinated with the ethylene diacrylate (M') crosslinked copolymer of methyl acrylate (M) and 2-vinylpyddine (V)shows that the rate of reaction is zero order with respect to both reactants methanol and carbon monoxide, but first order in the concentrations of promoter methyl iodide and rhodium in the complex. Polar solvents can accelerate the reaction. Activation parameters were calculated from the experimental results, being comparable to that of the homogeneous system. A mechanism similar to that of soluble rhodium catalyst was proposed.
基金This work was supported by a Grant from the National Natural Science Foundation of China
文摘A series of porous microspheres of linear and ethylene diacrylate (M') cross-linked copolymers of 2-vinylpyridine (V) and methyl acrylate (M) reacted with tetracarbonyldichlorodirhodium to form a series of cis-dicarbonylrhodium chelate complex (MVRh and MVM 'Rh). They are thermally stable yet very reactive in the carbonylation of methanol to acetic acid, and of methanol-acetic acid mixture to acetic acid and acetic anhydride with a selectivity of 100% under relatively mild and anhydrous conditions.
基金Financial support from the National Natural Science Foundation of China (Nos. 21325626, 21406120, U1510203)the Postdoctoral Science Foundation of China (Nos. 2014M560181, 2015T80214)
文摘Copper oxides(CuOx) nanoparticles dispersed on activated carbon(AC) were prepared by using vaporphase methanol as the reducing agent. The CuOx/AC as prepared exhibited an enhanced catalytic activity in oxidative carbonylation of methanol to dimethyl carbonate(DMC). The catalytic performance was significantly influenced by reduction conditions including temperature and time. With the similar selectivity of DMC, the space time yield(STY) under optimal reduction conditions reached up to 408 mg g^-1h^-1, which is superior to conventional methods such as thermolysis and solvothermal reduction. Based on the characterization results of XRD, TEM and XPS, the good copper dispersion and high Cu^+ content obtained by vapor-phase methanol reduction were mainly responsible for the high catalytic activity.
基金financial supports from the National Natural Science Foundation of China NSFC, Nos. U1510203, 21406120, 21325626
文摘CuY zeolite is a promising catalyst in the field of manufacturing dimethyl carbonate(DMC) through oxidative carbonylation of methanol. Cu^+ exchanged with Br?nsted acid sites are supposed to be active for this reaction. However, the location of Cu^+ in small cages can not interact with reactants because of steric hindrance, which lead to a waste of Cu species. In this work, NH_4F solution was used to modify the pore structure of zeolite Y by etching the framework T atoms. Physical and chemical adsorption of probe molecules with different size are used to determine the changes of porosity as well as the accessibility of Cu^+ sites. At an optimized etching time, the small cages were opened with maintained zeolitic framework. As a result, more Cu^+ species located in small cages become accessible to reactants, which contributes to the enhanced activity in this reaction.