期刊文献+
共找到53,189篇文章
< 1 2 250 >
每页显示 20 50 100
Thermal and mechanical behavior of casting copper alloy wheel during wheel and belt continuous casting process
1
作者 Kun Gao Yan Peng 《China Foundry》 SCIE EI CAS CSCD 2024年第1期82-90,共9页
To investigate the thermal and mechanical behavior of casting wheel,a two-dimensional thermoelastic-plastic finite element model was used to predict the temperature,stress and distortion distribution of the casting wh... To investigate the thermal and mechanical behavior of casting wheel,a two-dimensional thermoelastic-plastic finite element model was used to predict the temperature,stress and distortion distribution of the casting wheel during the wheel and belt continuous casting process.The effects of grinding thickness and casting speed on the thermal and mechanical behaviors of the center of the hot face of the casting wheel were discussed in detail.In each rotation,the casting wheel passes through four different spray zones.The results show that the temperature distribution of the casting wheel in different spray zones is similar,the temperature of the hot face is the highest and the temperature reaches the peak in the spray zoneⅢ.The stress and distortion depend on the temperature distribution,and the maximum stress and distortion of the hot face are 358.2 MPa and 1.82 mm,respectively.The temperature at the center of the hot face decreases with increasing grinding thickness and increases with increasing casting speed. 展开更多
关键词 casting wheel finite element model grinding thickness casting speed hot face spray zones
下载PDF
Data-driven casting defect prediction model for sand casting based on random forest classification algorithm
2
作者 Bang Guan Dong-hong Wang +3 位作者 Da Shu Shou-qin Zhu Xiao-yuan Ji Bao-de Sun 《China Foundry》 SCIE EI CAS CSCD 2024年第2期137-146,共10页
The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was p... The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%. 展开更多
关键词 sand casting process data-driven method classification model quality prediction feature importance
下载PDF
A Dual Closed-Loop Digital Twin Construction Method for Optimizing the Copper Disc Casting Process
3
作者 Zhaohui Jiang Chuan Xu +3 位作者 Jinshi Liu Weichao Luo Zhiwen Chen Weihua Gui 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期581-594,共14页
The copper disc casting machine is core equipment for producing copper anode plates in the copper metallurgy industry.The copper disc casting machine casting package motion curve(CPMC) is significant for precise casti... The copper disc casting machine is core equipment for producing copper anode plates in the copper metallurgy industry.The copper disc casting machine casting package motion curve(CPMC) is significant for precise casting and efficient production.However,the lack of exact casting modeling and real-time simulation information severely restricts dynamic CPMC optimization.To this end,a liquid copper droplet model describes the casting package copper flow pattern in the casting process.Furthermore,a CPMC optimization model is proposed for the first time.On top of this,a digital twin dual closed-loop self-optimization application framework(DT-DCS) is constructed for optimizing the copper disc casting process to achieve self-optimization of the CPMC and closed-loop feedback of manufacturing information during the casting process.Finally,a case study is carried out based on the proposed methods in the industrial field. 展开更多
关键词 Copper disc casting machine digital twin(DT) mechanism modeling SELF-OPTIMIZATION
下载PDF
Effect of phosphorus content on interfacial heat transfer and film deposition behavior during the high-temperature simulation of strip casting
4
作者 Wanlin Wang Cheng Lu +5 位作者 Liang Hao Jie Zeng Lejun Zhou Xinyuan Liu Xia Li Chenyang Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1016-1025,共10页
The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification ... The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification technique with the aims to reveal the effects of phosphorus content on interfacial wettability,deposited film,and interfacial heat transfer behavior.Results showed that when the phosphorus content increased from 0.014wt%to 0.406wt%,the mushy zone enlarged,the complete solidification temperature delayed from1518.3 to 1459.4°C,the final contact angle decreased from 118.4°to 102.8°,indicating improved interfacial contact,and the maximum heat flux increased from 6.9 to 9.2 MW/m2.Increasing the phosphorus content from 0.081wt%to 0.406wt%also accelerated the film deposition rate from 1.57 to 1.73μm per test,resulting in a thickened naturally deposited film with increased thermal resistance that advanced the transition point of heat transfer from the fifth experiment to the third experiment. 展开更多
关键词 strip casting interfacial heat transfer interfacial wettability naturally deposited film phosphorus content
下载PDF
Compression properties of cost-efficient porous expanded clay reinforced AA7075 syntactic foams fabricated by industrial-oriented die casting technology
5
作者 İsmail Cem Akgün Çağın Bolat Ali Gökşenli 《China Foundry》 SCIE EI CAS CSCD 2024年第1期60-70,共11页
In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollu... In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollution.At this point,aluminum syntactic foams(ASFs)are new-generation engineering composites and come into the upfront as a problem-solver.Owing to their features like low density,sufficient elongation,and perfect energy absorption ability,these advanced foams have been considerably seductive for many industrial sectors nowadays.In this study,an industrial-oriented automatic die casting technology was used for the first time to manufacture the combination of AA7075/porous expanded clay(PEC).Micro evaluations(optical and FESEM)reveal that there is a homogenous particle distribution in the foam samples,and inspections are compatible with the other ASF studies.Additionally,T6 aging heat treatment was operated on one half of the produced foams to explore the probable impact of aging on the compressive responses.Attained results show that PEC particles can be an alternative to expensive hollow spheres used in the previous works.Besides,a favorable relationship is ascertained between the aging treatment and mechanical properties such as compression strength and plateau strength. 展开更多
关键词 die casting porous materials metal matrix sytanctic foams expanded clay compressive deformation
下载PDF
Effect of casting process on the inner-wall band segregation of high-strength antisulfur pipes
6
作者 LUO Ming ZHANG Zhonghua 《Baosteel Technical Research》 CAS 2024年第1期27-36,共10页
Controlling inner-wall band segregation is one of the difficulties in the production of high-strength antisulfur pipes.Comparative tests were carried out on different casting processes(superheat,mold electromagnetic s... Controlling inner-wall band segregation is one of the difficulties in the production of high-strength antisulfur pipes.Comparative tests were carried out on different casting processes(superheat,mold electromagnetic stirring,end electromagnetic stirring,casting speed and soft reduction)for the smelting of high-strength antisulfur pipes.The microstructures of continuous-casting billets and hot-rolled or tempered pipes were analyzed using a metallographic microscope and scanning electron microscope.The mechanism and evolution law regarding the inner-wall band segregation of high-strength antisulfur pipes were studied,and the influence of different casting processes was explored. 展开更多
关键词 high strength antisulfur pipe casting process spot segregation band segregation
下载PDF
Effect of process parameters on density of magnesium alloy parts by low-pressure expendable pattern casting 被引量:1
7
作者 李继强 樊自田 董选普 《中国有色金属学会会刊:英文版》 CSCD 2007年第A01期358-362,共5页
The combination of magnesium alloys with the low-pressure expendable pattern casting(LP-EPC) process would bright future for application of magnesium alloys. The researches are focused on the effect of process paramet... The combination of magnesium alloys with the low-pressure expendable pattern casting(LP-EPC) process would bright future for application of magnesium alloys. The researches are focused on the effect of process parameters on the internal casting quality of magnesium alloy parts. AZ91D magnesium alloy castings were produced for different combinations of the LP-EPC process parameters. Specifically,pouring temperature,vacuum,filling velocity and coupling action of these factors were manipulated to observe their effect on the casting porosity and density distribution. The results indicate that the pouring temperature with LP-EPC process is lower than it in gravity casting. The selected process parameters,such as vacuum,filling velocity and coupled modes of them,must ensure melt metal flowing front profile exhibiting smooth and convex shape. The optimal process parameters for the castings are pouring temperature 983-1 023 K,vacuum 0.02-0.03 MPa,filling velocity 60-95 mm/s,and simultaneous filling with sucking. 展开更多
关键词 镁合金 压力 金属材料 物理特性
下载PDF
基于AnyCasting的磨辊辊皮铸造模拟与工艺优化
8
作者 杨根莲 谷常伟 《辽东学院学报(自然科学版)》 CAS 2023年第4期258-263,共6页
针对磨辊辊皮铸造过程中易出现缩孔等缺陷问题,运用AnyCasting软件对其充型、凝固过程进行模拟。首先,分析铸件金属液的凝固规律,预测缩孔缺陷产生的部位;其次,通过在型腔底部下方增设冷铁,对初始铸造工艺进行优化。结果表明,上移缩孔... 针对磨辊辊皮铸造过程中易出现缩孔等缺陷问题,运用AnyCasting软件对其充型、凝固过程进行模拟。首先,分析铸件金属液的凝固规律,预测缩孔缺陷产生的部位;其次,通过在型腔底部下方增设冷铁,对初始铸造工艺进行优化。结果表明,上移缩孔在冒口中的位置可有效防止在铸件上发生缩孔。按此工艺生产的辊皮铸件无缩孔、组织致密且硬度高。 展开更多
关键词 辊皮 铸造模拟 缩孔 工艺优化
下载PDF
Squeeze casting for metal alloys and composites:An overview of influence of process parameters on mechanical properties and microstructure 被引量:3
9
作者 Osarue Osaruene Edosa Francis Kunzi Tekweme Kapil Gupta 《China Foundry》 SCIE CAS CSCD 2023年第2期148-158,共11页
Squeeze casting is a well-established and reliable process for fabricating high-integrity metallic alloys,bimetals,and composites.The quality and high performance of squeeze cast components are dependent on optimum ca... Squeeze casting is a well-established and reliable process for fabricating high-integrity metallic alloys,bimetals,and composites.The quality and high performance of squeeze cast components are dependent on optimum casting conditions.Inappropriate selection of parameter values may adversely affect the quality of the casting.The squeeze cast components are generally subjected to secondary processing such as heat treatment,extrusion,and other bulk deformation processes to improve the microstructural features and mechanical properties.Heat treatment further refines the grains and reduces porosity,consequently improving tensile strength,and hardness;however,ductility decreases.This paper provides a comprehensive review on studies concerning the influence of processing parameters on porosity,density,percentage elongation,strength,hardness,wear,and fracture of squeeze casting alloys,aiming to provide sufficient information on the squeeze casting process and the effects of processing parameters on product quality. 展开更多
关键词 COMPOSITES MICROSTRUCTURE optimization POROSITY SOLIDIFICATION squeeze casting
下载PDF
A comparative study on Sn macrosegregation behavior of ternary Al-Sn-Cu alloys prepared by gravity casting and squeeze casting 被引量:2
10
作者 Ming Xu Yan-guo Yin +1 位作者 Cong-min Li Cong-chong Duan 《China Foundry》 SCIE CAS CSCD 2023年第1期63-70,共8页
A comprehensive study on Sn macrosegregation behavior in ternary Al-Sn-Cu alloys was carried out by comparative analysis between gravity casting and squeeze casting samples.The microstructure and Sn distribution of th... A comprehensive study on Sn macrosegregation behavior in ternary Al-Sn-Cu alloys was carried out by comparative analysis between gravity casting and squeeze casting samples.The microstructure and Sn distribution of the castings were characterized by metallography,scanning electron microscopy(SEM),energy-dispersive X-ray(EDX)spectroscopy,and a direct reading spectrometer.Results show that there are obvious differences in Sn morphology between gravity casting and squeeze casting alloys.Under squeeze casting condition,the grain size of the casting is smaller and the distribution ofβ(Sn)is uniform.This effectively reduces the segregation of triangular grain boundary as well as the segregation of Sn.The segregation types of Sn in gravity casting and squeeze casting samples are obviously different.The upper surfaces of gravity casting samples show severe negative segregation,while all the lower surfaces have positive segregation.Compared with gravity casting,squeeze casting solidifies under isostatic pressure.Due to the direct contact between the upper surface of the casting and the mold,the casting solidifies faster under higher undercooling degree and pressure.Consequently,the uniform distribution of Sn reduces the segregation phenomenon on the surface of the casting. 展开更多
关键词 ternary Al-Sn-Cu alloy squeeze casting MACROSEGREGATION mechanism
下载PDF
Elastic-viscoplastic constitutive equations of K439B superalloy and thermal stress simulation during casting process 被引量:1
11
作者 Da-shan Sui Yu Shan +5 位作者 Dong-xin Wang Jun-yi Li Yao Xie Yi-qun Yang An-ping Dong Bao-de Sun 《China Foundry》 SCIE CAS CSCD 2023年第5期403-413,共11页
K439B nickel-based superalloy is a new type of high-temperature material.There is insufficient research on its constitutive equations and numerical modeling of thermal stress.Isothermal tensile experiments of K439B su... K439B nickel-based superalloy is a new type of high-temperature material.There is insufficient research on its constitutive equations and numerical modeling of thermal stress.Isothermal tensile experiments of K439B superalloy at different temperatures(20°C-1,000°C)and strain rates(1.33×10^(-3)s^(-1)-5.33×10^(-3)s^(-1))were performed by using a Gleeble-3800 simulator.The elastic moduli at different temperatures(20°C-650°C)were measured by resonance method.Subsequently,stress-strain curves were measured for K439B superalloy under different conditions.The elastic-viscoplastic constitutive equations were established and the correspongding parameters were solved by employing the Perzyna model.The verification results indicate that the calculated values of the constitutive equations are in good agreement with the experimental values.On this basis,the influence of process parameters on thermal stress was investigated by numerical simulation and orthogonal experimental design.The results of orthogonal experimental design reveal that the cooling mode of casting has a significant influence on the thermal stress,while pouring temperature and preheating temperature of shell mold have minimal impact.The distribution of physical fields under optimal process parameters,determined based on the orthogonal experimental design results,was simulated.The simulation results determine separately the specific positions with maximum values for effective stress,plastic strain,and displacement within the casting.The maximum stress is about 1,000.0 MPa,the plastic strain is about 0.135,and the displacement is about 1.47 mm.Moreover,the distribution states of thermal stress,strain,and displacement are closely related to the distribution of the temperature gradient and cooling rate in the casting.The research would provide a theoretical reference for exploring the stress-strain behavior and numerical modeling of the effective stress of the alloy during the casting process. 展开更多
关键词 nickel-based superalloy investment casting Perzyna model elastic-viscoplastic thermal stress numerical simulation
下载PDF
Preparation, interfacial regulation and strengthening of Mg/Al bimetal fabricated by compound casting: A review 被引量:1
12
作者 Guangyu Li Wenming Jiang +4 位作者 Feng Guan Zheng Zhang Junlong Wang Yang Yu Zitian Fan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3059-3098,共40页
Mg/Al bimetal combines the advantages of both aluminum and magnesium and has broad application prospects in automotive, aerospace,weapons, digital products and so on. The compound casting has the characteristics of lo... Mg/Al bimetal combines the advantages of both aluminum and magnesium and has broad application prospects in automotive, aerospace,weapons, digital products and so on. The compound casting has the characteristics of low cost, easy to achieve metallurgical combination and suitable for the preparation of complex bimetallic parts. However, bimetallic joint strength is low due to differences of physical properties between Al and Mg, oxide film on metallic surface and interfacial Al-Mg IMCs, which is closely related to the interfacial microstructure and properties. Therefore, how to control the interface of the bimetal to achieve performance enhancement is the focus and difficulty in this field. At present, there are mainly the following strengthening methods. First, the “zincate galvanizing” and “electrolytic polishing+anodic oxidation” technology were exert on the surface of Al alloy to remove and break the oxide film, which improved the wettability between Al and Mg. Second, the undesirable Al-Mg IMCs were reduce or elimination by adding the interlayers(Zn, Ni and Ni-Cu). Thirdly, the evolution process of interfacial microstructure was changed and fine strengthening phases were formed by adding Si element to Al alloy or rare earth element to Mg alloy. Fourthly, mechanical vibration and ultrasonic vibration were applied in the process of the filling and solidification to refine and homogenize the interfacial structure. Finally, some other methods, including secondary rolling, thermal modification, heat treatment and constructing exterior 3D morphology, also can be used to regulate the interfacial microstructure and compositions. The above strengthening methods can be used alone or in combination to achieve bimetallic strengthening. Finally, the future development direction of the Mg/Al bimetal is prospected, which provides some new ideas for the development and application of the Mg/Al bimetal. 展开更多
关键词 Mg/Al bimetal PREPARATION Compound casting Interfacial regulation Interface strengthening Research progress
下载PDF
Effects of magnesium and copper additions on tensile properties of Al-Si-Cr die casting alloy under as-cast and T5 conditions 被引量:1
13
作者 Hong-yi Zhan Yi-wu Xu +3 位作者 Pan Wang Jian-feng Wang Jin-ping Li Le-peng Zhang 《China Foundry》 SCIE CAS CSCD 2023年第1期12-22,共11页
Aluminum high pressure die casting(HPDC)technology has evolved in the past decades,enabling stronger and larger one-piece casting with significant part consolidation.It also offers a higher design freedom for more mas... Aluminum high pressure die casting(HPDC)technology has evolved in the past decades,enabling stronger and larger one-piece casting with significant part consolidation.It also offers a higher design freedom for more mass-efficient thin-walled body structures.For body structures that require excellent ductility and fracture toughness to be joined with steel sheet via self-piercing riveting(for instance,shock towers and hinge pillars,etc.),a costly T7 heat treatment comprising a solution heat treatment at elevated temperatures(450℃-500℃)followed by an over-ageing heat treatment is needed to optimize microstructure for meeting product requirement.To enable cost-efficient mass production of HPDC body structures,it is important to eliminate the expensive T7 heat treatment without sacrificing mechanical properties.Optimizing die cast alloy chemistry is a potential solution to improve fracture toughness and ductility of the HPDC components.The present study intends to tailor the Mg and Cu additions for a new Al-Si-Cr type die casting alloy(registered as A379 with The Aluminum Association,USA)to achieve the desired tensile properties without using T7 heat treatment.It was found that Cu addition should be avoided,as it is not effective in enhancing strength while degrades tensile ductility.Mg addition is very effective in improving strength and has minor impact on tensile ductility.The investigated Al-Si-Cr alloy with a nominal composition of Al-8.5wt.%Si-0.3wt.%Cr-0.2wt.%Fe shows comparable tensile properties with the T7 treated AlSi10MnMg alloy which is currently used for manufacturing shock towers and hinge pillars. 展开更多
关键词 Al-Si alloy INTERMETALLICS high pressure die casting tensile property T7 heat treatment
下载PDF
Effect of HEA/Al composite interlayer on microstructure and mechanical property of Ti/Mg bimetal composite by solid-liquid compound casting 被引量:1
14
作者 Jin Cheng Jian-hua Zhao +3 位作者 Chun Wang Jing-jing Shangguan Cheng Gu Ya-jun Wang 《China Foundry》 SCIE CAS CSCD 2023年第1期1-11,共11页
In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HE... In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HEA layer was prepared by magnetron sputtering onto the Al layer.The influence of the HEA layer thickness and pouring temperature on interface evolution was investigated based on SEM observation and thermodynamic analysis.Results indicate that the sluggish diffusion effect of HEA can effectively inhibit the interfacial diffusion between Al and Mg,which is conducive to the formation of solid solution,especially when the thickness of HEA is 800 nm.With the increase of casting temperature from 720 ℃ to 730 ℃,740℃,and 750 ℃,α-Al(Mg),α-Al(Mg)+Al3Mg2,Al3Mg2+Al12Mg17,and Al12Mg17+δ-Mg are formed at the interface of Ti/Mg bimetal,respectively.When the thickness of the HEA layer is 800 nm and the pouring temperature is 720 ℃,the bonding strength of the Ti/Mg bimetal can reach the maximum of 93.6 MPa. 展开更多
关键词 Ti/Mg bimetal composite microstructure solid-liquid compound casting HEA/Al composite interlayer mechanical property
下载PDF
基于AnyCasting大型薄壁鞍座铸造工艺优化 被引量:1
15
作者 王海啸 丛建臣 +4 位作者 王进玲 朱玉麒 李浩 袁伟 郭前建 《铸造技术》 CAS 2023年第3期293-297,共5页
针对大型薄壁铸件鞍座铸造过程中易产生缩松、缩孔缺陷等问题,基于AnyCasting模拟软件对鞍座的充型和凝固过程进行了模拟。根据模拟结果分析缩松、缩孔缺陷的位置分布,发现铸件内部有缩松、缩孔现象产生,并通过实际浇注试验对比缺陷位... 针对大型薄壁铸件鞍座铸造过程中易产生缩松、缩孔缺陷等问题,基于AnyCasting模拟软件对鞍座的充型和凝固过程进行了模拟。根据模拟结果分析缩松、缩孔缺陷的位置分布,发现铸件内部有缩松、缩孔现象产生,并通过实际浇注试验对比缺陷位置以验证模拟结果的可信性。采用在热节位置添加内冷铁的改进方案,结果表明,原缺陷产生位置在凝固过程中优先凝固,消除了缩松、缩孔缺陷,为类似薄壁铸件实际生产提供相应指导。 展开更多
关键词 鞍座 数值模拟 工艺优化 铸造缺陷
下载PDF
Effect of melt-to-solid volume ratio and preheating temperature on Mg/Al bimetals interface by centrifugal casting
16
作者 Morteza Sarvari Mehdi Divandari +1 位作者 Hassan Saghafan Sina Ghaemi Khiavi 《China Foundry》 SCIE CAS CSCD 2023年第3期234-240,共7页
Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al... Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al/Mg dissimilar bimetals.Magnesium melt was poured at 700 °C,with melt-to-solid volume ratios(Vm/Vs) of 1.5 and 3,into a preheated hollow aluminum cylinder.The preheating temperatures of the solid part were 320,400,and 450 °C,and the constant rotational speed was 1,600 rpm.The cast parts were kept inside the casting machine until reaching the cooling temperature of 150 °C.The result showed that an increase in preheating temperature from 320 to 450 °C led to an enhanced reaction layer thickness.In addition,an increase in the Vm/Vs from 1.5 to 3 resulted in raising the interface thickness from 1.2 to 1.8 mm.Moreover,the interface was not continuously formed when a Vm/Vs of 3 was selected.In this case,the force of contraction overcame the resultant acting force on the interface.An interface formed at the volume ratio of 1.5 was examined using scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS),and the results demonstrated the formation of Al_(3)Mg_(2),Al_(12)Mg_(17) and(δ+Al_(12)Mg_(17)) eutectic structures in the interface. 展开更多
关键词 compound casting centrifugal casting Mg/Al bimetal preheating temperature melt-to-solid volume ratio INTERFACE
下载PDF
Microstructure characteristics and thermodynamic properties of A357-SiCp/A357 layered composites prepared by semi-solid vacuum stirring suction casting
17
作者 Zhen-lin Zhang Ying Xiao +3 位作者 Jun Xu Feng-liang Tan Li Wang Min He 《China Foundry》 SCIE CAS CSCD 2023年第2期108-114,共7页
A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under differe... A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under different suction casting processes were compared.Additionally,the microstructural evolution characteristics and performance enhancement mechanism of the A357-SiCp/A357 layered composites were discussed.The results demonstrate that suction casting at 610°C with a low solid phase ratio can significantly enhance the material density and reduce the agglomeration of SiCp.The A357-SiC_(p)/A357 interface is clear and straight with good bonding.With an increase in the suction casting temperature,the bending resistance and thermal conductivity of the A357-SiC_(p)/A357 layered composites exhibit a trend of significantly increase at first and then slowly decrease owing to casting defects,interface bonding,and SiCp distribution.Compared with SiCp/A357 composites,the bending strength,deflection,and thermal conductivity of the A357-SiCp/A357 layered composites increase from 257 MPa,1.07 mm,and 155.72 W·(m·K)^(-1) to 298 MPa,2.1 mm,and 169.86 W·(m·K)^(-1),respectively.This study provides a reference for improving the rheological casting of aluminum matrix layered composites. 展开更多
关键词 SEMI-SOLID vacuum stirring suction casting SiCp/A357 layered composites thermodynamic properties rheological casting
下载PDF
Analysis of inhomogeneity of solidified microstructure of continuous casting copper tubular billet based on factor analysis
18
作者 Jin-song Liu Chao-rui Shan +3 位作者 Da-yong Chen Hong-wu Song Chuan-lai Chen Yun-yue Chen 《China Foundry》 SCIE EI CAS CSCD 2023年第6期526-536,共11页
The horizontal continuous casting process,the initial step in TP2 copper tubular processing,directly determines the microstructure and properties of copper tubular.However,the process parameters of the continuous cast... The horizontal continuous casting process,the initial step in TP2 copper tubular processing,directly determines the microstructure and properties of copper tubular.However,the process parameters of the continuous casting characterize time variation,multiple disturbances and strong coupling.As a consequence,their influence on a casting billet is difficult to be determined.Due to the above issues,the common factor and special factor analysis of the factor analysis model were used in this study,and the casting experiment and billet metallographic experiment were carried out to diagnose and analyze the reason of the microstructure inhomogeneity.The multiple process parameters were studied and classified using common factor analysis,2 the cast billets with abnormal microstructures were identified by GT^(2) statistics,and the most important factors affecting the microstructural homogeneity were found by special factor analysis.The calculated and experimental results show that the principal parameters influencing the inhomogeneity of solidified microstructure are the primary inlet water pressure and the primary outlet water temperature.According to the consequence of the above investigation,the inhomogeneity of the copper billet microstructure can be effectively improved when the process parameters are controlled and adjusted. 展开更多
关键词 TP2 copper tubular billet horizontal continuous casting factor analysis microstructure inhomogeneity of casting billet quality diagnosis
下载PDF
Solidification microstructure of Ti-43Al alloy by twin-roll strip casting
19
作者 Yang Chen Guo-huai Liu +1 位作者 Ye Wang Zhao-dong Wang 《China Foundry》 SCIE CAS CSCD 2023年第2期99-107,共9页
As a near-net-shape technology,the twin-roll strip casting(TRC)process can be considered to apply to the fabrication of TiAl alloy sheets.However,the control of the grain distribution is very important in strip castin... As a near-net-shape technology,the twin-roll strip casting(TRC)process can be considered to apply to the fabrication of TiAl alloy sheets.However,the control of the grain distribution is very important in strip casting because the mechanical properties of strips are directly determined by the solidification microstructure.A three-dimensional(3D)cellular automation finite-element(CAFE)model based on ProCAST software was established to simulate the solidification microstructure of Ti-43Al alloy.Then,the influence of casting temperature and the maximum nucleation density(nmax)on the solidification microstructure was investigated in detail.The simulation results provide a good explanation and prediction for the solidification microstructure in the molten pool before leaving the kissing point.Experimental and simulated microstructure show the common texture<001>orientation in the columnar grains zone.Finally,the microstructure evolution of the Ti-43Al alloy was analyzed and the solidification phase transformation path during the TSC process was determined,i.e.,L→L+β→β→β+α→α+γ+β/B2 phase under a faster cooling rate and L→L+β→β→β+α→γ+lamellar(α_(2)+γ)+β/B2 phase under a slower cooling rate. 展开更多
关键词 TiAl alloy simulation MICROSTRUCTURE strip casting SOLIDIFICATION
下载PDF
Effects of macrosegregation on mechanical and tribological properties of squeeze casting immiscible bearing alloys
20
作者 Ming Xu Yan-guo Yin +2 位作者 Cong-min Li Guo-tao Zhang Cong-chong Duan 《China Foundry》 SCIE CAS CSCD 2023年第5期443-451,共9页
The macrosegregation behaviors of Al-Sn-Cu ternary immiscible alloy castings and their effects on mechanical and tribological properties were investigated.The results demonstrate that Sn and Cu segregate in the castin... The macrosegregation behaviors of Al-Sn-Cu ternary immiscible alloy castings and their effects on mechanical and tribological properties were investigated.The results demonstrate that Sn and Cu segregate in the casting simultaneously,and the mass fraction of the two elements has a"U"shaped distribution.Significantly,positive and negative segregation occur in the casting,with positive segregation appearing on the top and lower surfaces and negative segregation on the remaining surfaces,with the 1/2 surface(hot node location)having the highest degree of negative segregation.Furthermore,the results of Vickers hardness,tensile strength,and elongation show that Sn and Cu cooperatively affect the mechanical properties of castings.The higher the mass fraction of Sn and Cu elements,the higher the hardness,the greater the tensile strength,and the better the elongation.The findings of the step-by-step loading tests demonstrate that the segregation of Sn and Cu significantly impacts the tribological characteristics of the castings.The higher the mass fraction of Sn and Cu on the sample surface,the better the tribological characteristics. 展开更多
关键词 squeeze casting Al-Sn-Cu MACROSEGREGATION mechanical properties tribological property
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部