Control valves are widely used in industry to control fluid flow in several applications. In nuclear power systems they are crucial for the safe operation of plants. Therefore, the necessity of improvements in monitor...Control valves are widely used in industry to control fluid flow in several applications. In nuclear power systems they are crucial for the safe operation of plants. Therefore, the necessity of improvements in monitoring and diagnosis methods started to be of extreme relevance, establishing as main goal of the reliability and readiness of the system components. The main focus of this work is to study the development of a model of non-intrusive monitoring and diagnosis applied to process control valves using artificial intelligence by fuzzy logic technique, contributing to the development of predictive methodologies identifying faults in incipient state. Specially in nuclear power plants, the predictive maintenance contributes to the security factor in order to diagnose in advance the occurrence of a possible failure, preventing severs situations. The control valve analyzed belongs to a steam plant which simulates the secondary circuit of a PWR—Pressurized Water Reactor. The maintenance programs are being implemented based on the ability to diagnose modes of degradation and to take measures to prevent incipient failures, improving plant reliability and reducing maintenance costs. The approach described in this paper represents an alternative departure from the conventional qualitative techniques of system analysis. The methodology used in this project is based on signatures analysis, considering the pressure (psi) in the actuator and the stem displacement (mm) of the valve. Once the measurements baseline of the control valve is taken, it is possible to detect long-term deviations during valve lifetime, detecting in advance valve failures. This study makes use of MATLAB language through the “fuzzy logic toolbox” which uses the method of inference “Mamdani”, acting by fuzzy conjunction, through Triangular Norms (t-norm) and Triangular Conorms (t-conorm). The main goal is to obtain more detailed information contained in the measured data, correlating them to failure situations in the incipient stage.展开更多
文摘Control valves are widely used in industry to control fluid flow in several applications. In nuclear power systems they are crucial for the safe operation of plants. Therefore, the necessity of improvements in monitoring and diagnosis methods started to be of extreme relevance, establishing as main goal of the reliability and readiness of the system components. The main focus of this work is to study the development of a model of non-intrusive monitoring and diagnosis applied to process control valves using artificial intelligence by fuzzy logic technique, contributing to the development of predictive methodologies identifying faults in incipient state. Specially in nuclear power plants, the predictive maintenance contributes to the security factor in order to diagnose in advance the occurrence of a possible failure, preventing severs situations. The control valve analyzed belongs to a steam plant which simulates the secondary circuit of a PWR—Pressurized Water Reactor. The maintenance programs are being implemented based on the ability to diagnose modes of degradation and to take measures to prevent incipient failures, improving plant reliability and reducing maintenance costs. The approach described in this paper represents an alternative departure from the conventional qualitative techniques of system analysis. The methodology used in this project is based on signatures analysis, considering the pressure (psi) in the actuator and the stem displacement (mm) of the valve. Once the measurements baseline of the control valve is taken, it is possible to detect long-term deviations during valve lifetime, detecting in advance valve failures. This study makes use of MATLAB language through the “fuzzy logic toolbox” which uses the method of inference “Mamdani”, acting by fuzzy conjunction, through Triangular Norms (t-norm) and Triangular Conorms (t-conorm). The main goal is to obtain more detailed information contained in the measured data, correlating them to failure situations in the incipient stage.