Local scour around pipelines crossing rivers or in marine environments is a significant concern.It can lead to failure of the pipelines resulting in environmental side effects and economic losses.This study developed ...Local scour around pipelines crossing rivers or in marine environments is a significant concern.It can lead to failure of the pipelines resulting in environmental side effects and economic losses.This study developed an experimental method to reduce local scour around pipelines with a steady flow of clear water by installing cylindrical and cubical sacrificial piles.Three sizes of sacrificial piles were examined in a linear arrangement.Sacrificial piles were installed on the upstream side of the pipeline at three distances.Maximum scour depth reduction rates below the pipeline were computed.The results showed that sacrificial piles could protect a pipeline from local scour.A portion of scoured sediment around the sacrificial piles was deposited beneath the pipeline.This sediment accumulation reduced the scour depth beneath the pipeline.Analysis of the experimental results demonstrated that the size of piles(d),the spacing between piles,and the distance between the pipe and piles(Xp)were the variables that reduced the maximum scour beneath the pipeline with a diameter of D.For the piles with d=0.40D and 0.64D,X_(p)=4OD was the optimal distance to install a group of piles,and cubical piles could mitigate scour more effectively than cylindrical piles under similar conditions.For the piles with d=D,the greatest reduction in scour depth was achieved at X_(p)=50D with any desired spacings between piles,and cylindrical piles in this dimension could protect the pipeline against scour more effectively than cubical piles.展开更多
The most economical way to overcome flow assurance problems associated with transportation of heavy crude oil through offshore pipelines is by emulsifying it with water in the presence of a suitable surfactant.In this...The most economical way to overcome flow assurance problems associated with transportation of heavy crude oil through offshore pipelines is by emulsifying it with water in the presence of a suitable surfactant.In this research,a novel surfactant,tri-triethanolamine monosunflower ester,was synthesized in the laboratory by extracting fatty acids present in sunflower(Helianthus annuus)oil.Synthesized surfactant was used to prepare oil-in-water emulsions of a heavy crude oil from the western oil field of India.After emulsification,a dramatic decrease in pour point as well as viscosity was observed.All the prepared emulsions were found to be flowing even at 1°C.The emulsion developed with 60%oil content and 2wt%surfactant showed a decrease in viscosity of 96%.The stability of the emulsion was investigated at different temperatures,and it was found to be highly stable.The effectiveness of surfactant in emulsifying the heavy oil in water was investigated by measuring the equilibrium interfacial tension(IFT)between the crude oil(diluted)and the aqueous phase along with zeta potential of emulsions.2wt%surfactant decreased IFT by almost nine times that of no surfactant.These results suggested that the synthesized surfactant may be used to prepare a stable oil-in-water emulsion for its transportation through offshore pipelines efficiently.展开更多
文摘Local scour around pipelines crossing rivers or in marine environments is a significant concern.It can lead to failure of the pipelines resulting in environmental side effects and economic losses.This study developed an experimental method to reduce local scour around pipelines with a steady flow of clear water by installing cylindrical and cubical sacrificial piles.Three sizes of sacrificial piles were examined in a linear arrangement.Sacrificial piles were installed on the upstream side of the pipeline at three distances.Maximum scour depth reduction rates below the pipeline were computed.The results showed that sacrificial piles could protect a pipeline from local scour.A portion of scoured sediment around the sacrificial piles was deposited beneath the pipeline.This sediment accumulation reduced the scour depth beneath the pipeline.Analysis of the experimental results demonstrated that the size of piles(d),the spacing between piles,and the distance between the pipe and piles(Xp)were the variables that reduced the maximum scour beneath the pipeline with a diameter of D.For the piles with d=0.40D and 0.64D,X_(p)=4OD was the optimal distance to install a group of piles,and cubical piles could mitigate scour more effectively than cylindrical piles under similar conditions.For the piles with d=D,the greatest reduction in scour depth was achieved at X_(p)=50D with any desired spacings between piles,and cylindrical piles in this dimension could protect the pipeline against scour more effectively than cubical piles.
基金the Indian Institute of Technology (Indian School of Mines), Dhanbad for providing necessary laboratory facilities and financial support
文摘The most economical way to overcome flow assurance problems associated with transportation of heavy crude oil through offshore pipelines is by emulsifying it with water in the presence of a suitable surfactant.In this research,a novel surfactant,tri-triethanolamine monosunflower ester,was synthesized in the laboratory by extracting fatty acids present in sunflower(Helianthus annuus)oil.Synthesized surfactant was used to prepare oil-in-water emulsions of a heavy crude oil from the western oil field of India.After emulsification,a dramatic decrease in pour point as well as viscosity was observed.All the prepared emulsions were found to be flowing even at 1°C.The emulsion developed with 60%oil content and 2wt%surfactant showed a decrease in viscosity of 96%.The stability of the emulsion was investigated at different temperatures,and it was found to be highly stable.The effectiveness of surfactant in emulsifying the heavy oil in water was investigated by measuring the equilibrium interfacial tension(IFT)between the crude oil(diluted)and the aqueous phase along with zeta potential of emulsions.2wt%surfactant decreased IFT by almost nine times that of no surfactant.These results suggested that the synthesized surfactant may be used to prepare a stable oil-in-water emulsion for its transportation through offshore pipelines efficiently.