As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal...As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.展开更多
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ...The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed.展开更多
Non-metallic inclusions and zyglo indications frequently occur in the superalloy castings produced through the traditional vacuum gravity investment casting process,particularly in components with thin-walled and comp...Non-metallic inclusions and zyglo indications frequently occur in the superalloy castings produced through the traditional vacuum gravity investment casting process,particularly in components with thin-walled and complex structural features.The vacuum-assisted low-pressure casting(VLC),a type of counter-gravity casting(CGC)method,has been developed to minimize non-metallic inclusions and zyglo indications in superalloy castings.Rectifying frames for gas turbines made from K446 alloy were produced semi-continuously using the VLC process and subsequently evaluated through tensile testing,chemical composition analysis,X-ray diffraction,and zyglo penetrant inspection.The results indicate a roughly 10%improvement in tensile strength at 800℃ compared to gravity casting.Moreover,no significant changes are observed in the chemical composition of the alloys from the beginning to the end of a casting campaign,indicating that the developed VLC process is viable for the engineering-scale production of superalloy castings.Compared to traditional vacuum gravity casting(GC)method,the application of VLC can reduce the numbers of non-metallic inclusions and Zyglo indications in the castings by over 80%.At the same time,it significantly shortens the production time by 3 to 5 days.展开更多
During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity...During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity cross-section enlarges.This rapid increasement of liquid metal inlet velocity causes serious entrapment of gas and oxide films,and results in various casting defects such as the bifilm defects.These defects detrimentally deteriorate mechanical properties of the castings.To address this issue,an innovative nonlinear pressurization strategy timely matching to the casting structure was proposed.The pressurization rate decreases at sections where the cross-section widens,but it gradually increases as the liquid metal level rises.By this way,the inlet velocity remains below a critical threshold to prevent the entrapment of gas and oxide films.Comparative analyses involving numerical simulations and casting verification illustrate that the nonlinear pressurization technique,compared to the linear pressurization,effectively diminishes both the size and number of bifilm defects.Furthermore,the nonlinear pressurization method enhances the casting yield strength by 10%,tensile strength by 14%,and elongation by 10%.Examination through scanning electron microscopy highlights that the bifilm defects arising from the linear pressurization process result in the reduction of the castings’mechanical properties.These observations underscore the efficacy of nonlinear pressurization in enhancing the quality and reliability of gigantic castings,as exemplified by a 5.4-ton extra-large sized C95800 copper alloy propeller hub with complex structures in the current study.展开更多
Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This stud...Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks.Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality.The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes.The bacterial richness and diversity of bulk water decreased significantly after ice pigging.Furthermore,correlations were established between pipe service age,temperature,and chloride and total iron concentrations,and the 15 most abundant taxa in bulk water,which could be used to guide practical ice pigging operations.展开更多
To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design me...To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design method is proposed for the longitudinal and transverse wave control of fluid-conveying pipes,and a novel periodic structure unit model is constructed for vibration reduction.Based on the bandgap vibration reduction mechanism of the acoustic metamaterial periodic structure,the material parameters,structural parameters,and the arrangement interval of the periodic structure unit are optimized.The finite element method(FEM)is used to predict the vibration transmission characteristics of the fluid-conveying pipe installed with the vibration reduction periodic structure.Then,the wave/spectrum element method(WSEM)and experimental test are used to verify the calculated results above.Lastly,the vibration attenuation characteristics of the structure under different conditions,such as rubber material parameters,mass ring material,and fluid-structure coupling effect,are analyzed.The results show that the structure can produce a complete bandgap of 46 Hz-75 Hz in the low-frequency band below 100 Hz,which can effectively suppress the low broadband vibration of the fluidconveying pipe.In addition,a high damping rubber material is used in the design of the periodic structure unit,which realizes the effective suppression of each formant peak of the pipe,and improves the vibration reduction effect of the fluid-conveying pipe.Meanwhile,the structure has the effect of suppressing both bending vibration and longitudinal vibration,and effectively inhibits the transmission of transverse waves and longitudinal waves in the pipe.The research results provide a reference for the application of acoustic metamaterials in the multi-directional vibration control of fluid-conveying pipes.展开更多
Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based ...Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based on deep learning have been introduced to automatically identify potential defects.However,these models are insufficient in terms of dataset complexity,model versatility and performance.Our work addresses these issues with amulti-stage defect detection architecture using a composite backbone Swin Transformer.Themodel based on this architecture is trained using a more comprehensive dataset containingmore classes of defects.By ablation studies on the modules of combined backbone Swin Transformer,multi-stage detector,test-time data augmentation and model fusion,it is revealed that they all contribute to the improvement of detection accuracy from different aspects.The model incorporating all these modules achieves the mean Average Precision(mAP)of 78.6% at an Intersection over Union(IoU)threshold of 0.5.This represents an improvement of 14.1% over the ResNet50 Faster Region-based Convolutional Neural Network(R-CNN)model and a 6.7% improvement over You Only Look Once version 6(YOLOv6)-large,the highest in the YOLO methods.In addition,for other defect detection models for sewer pipes,although direct comparison with themis infeasible due to the unavailability of their private datasets,our results are obtained from a more comprehensive dataset and have superior generalization capabilities.展开更多
Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio...Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.展开更多
Controlling inner-wall band segregation is one of the difficulties in the production of high-strength antisulfur pipes.Comparative tests were carried out on different casting processes(superheat,mold electromagnetic s...Controlling inner-wall band segregation is one of the difficulties in the production of high-strength antisulfur pipes.Comparative tests were carried out on different casting processes(superheat,mold electromagnetic stirring,end electromagnetic stirring,casting speed and soft reduction)for the smelting of high-strength antisulfur pipes.The microstructures of continuous-casting billets and hot-rolled or tempered pipes were analyzed using a metallographic microscope and scanning electron microscope.The mechanism and evolution law regarding the inner-wall band segregation of high-strength antisulfur pipes were studied,and the influence of different casting processes was explored.展开更多
Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexib...Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexible pipes and further diffuse into the annular space,incurring annular pressure build-up and/or production of acidic environment,which poses serious challenges to the structure and integrity of the flexible pipes.Gas permeation in pipes is a complex phenomenon governed by various factors such as internal pressure and temperature,annular structure,external temperature.In a long-distance gas flexible pipe,moreover,gas permeation exhibits non-uniform features,and the gas permeated into the annular space flows along the metal gap.To assess the complex gas transport behavior in long-distance gas flexible pipes,a mathematical model is established in this paper considering the multiphase flow phenomena inside the flexible pipes,the diffusion of gas in the inner liner,and the gas seepage in the annular space under varying permeable properties of the annulus.In addition,the effect of a variable temperature is accounted.A numerical calculation method is accordingly constructed to solve the coupling mathematical equations.The annular permeability was shown to significantly influence the distribution of annular pressure.As permeability increases,the annular pressure tends to become more uniform,and the annular pressure at the wellhead rises more rapidly.After annular pressure relief followed by shut-in,the pressure increase follows a convex function.By simulating the pressure recovery pattern after pressure relief and comparing it with test results,we deduce that the annular permeability lies between 123 and 512 m D.The results help shed light upon assessing the annular pressure in long distance gas flexible pipes and thus ensure the security of gas transport in the emerging development of offshore resources.展开更多
This article discusses the design features of pipes in thermal insulation used in the construction of main and field pipelines in Arctic conditions.The defects that occur during the production,transportation and stora...This article discusses the design features of pipes in thermal insulation used in the construction of main and field pipelines in Arctic conditions.The defects that occur during the production,transportation and storage of pipes are given.Recommendations for repair or prevention of defects are given.The information may be useful to Chinese manufacturers and transport companies in order to ensure the possibility of supplying pipes to construction sites in Arctic conditions.展开更多
The industrial application of an exterior three-layer anticorrosive polypropylene coating system(3PP)on large-diameter(larger than Φ600 mm)steel pipes was developed using an experimental process simulation study and ...The industrial application of an exterior three-layer anticorrosive polypropylene coating system(3PP)on large-diameter(larger than Φ600 mm)steel pipes was developed using an experimental process simulation study and the optimization of raw materials inspection,steel pipe surface pretreatments,and water cooling control on a coating application process.The coating properties meet ISO standard 21809 on buried or submerged 3PP pipelines used in the petroleum and natural gas industries.Differential scanning calorimetry and X-ray diffraction were used to analyze the crystallinities and grain sizes of polypropylene(PP)top coats with different cooling rates.Increasing the melt cooling rate reduces the crystallinity and grain size of the PP top coat and enhances its strength and toughness.展开更多
Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomer...Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomers and polycyclic aromatic hydrocarbons, and measure their mole fraction profiles versus temperature. A low-pressure pyrolysis model of benzene was developed and validated by the experimental results. Rate of production analysis was performed to reveal the major reaction networks in both fuel decomposition and aromatic growth processes. It is concluded that benzene is mainly decomposed via H-abstraction reaction to produce phenyl and partly decomposed via unimolecular decomposition reac- tions to produce propargyl or phenyl. The decomposition process stops at the formation of acetylene and polyyne species like diacetylene and 1,3,5-hexatriyne due to their high thermal stabilities. Besides, the aromatic growth process in the low-pressure pyrolysis of benzene is concluded to initiate from benzene and phenyl, and is controlled by the even carbon growth mechanism due to the inhibited formation of C5 and C7 species which play important roles in the odd carbon growth mechanism.展开更多
The R F first order second moment method will produce more error for calculating the reliability of welded engineering pipe structures when the failure function is seriously nonlinear and the random variables don...The R F first order second moment method will produce more error for calculating the reliability of welded engineering pipe structures when the failure function is seriously nonlinear and the random variables don′t serve as normal distribution. In order to increase the computing accuracy of reliability, an improved FOSM method is used for calculating the failure probability of welded pipes with flaws in this paper. Because of solving the problems of the linear expansion of failure function at the failure point and constructing equivalent normal variables, the new algorithm can greatly improve the calculating accuracy of probability of the welded pipes with cracks. The examples show that this method is simple, efficient and accurate for reliability safety assessment of the welded pipes with cracks. It can save more time than the Monte Carlo method does, so that the improved FOSM method is recommended for engineering reliability safety assessment of the welded pipes with flaws.展开更多
The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic character...The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.展开更多
The simulation model of a valve control hydraulic system with long pipe isestablished in Simulink4.0, and then the step responses of the systems with difference pipeparameters are investigated by simulation. Simulatio...The simulation model of a valve control hydraulic system with long pipe isestablished in Simulink4.0, and then the step responses of the systems with difference pipeparameters are investigated by simulation. Simulation results show that the long pipes will slowdown the step response of system and make it fluctuate periodically. The results of simulationconform to the results of experiment on the whole, which proves the mathematic model is correct.展开更多
It is a new attempt to extend the differential quadrature method(DQM) to stability analysis of the straight and curved centerlinepipes conveying fluid. Emphasis is placed on the study of theinfluences of several param...It is a new attempt to extend the differential quadrature method(DQM) to stability analysis of the straight and curved centerlinepipes conveying fluid. Emphasis is placed on the study of theinfluences of several parameters on the critical flow velocity.Compared to other methods, this method can more easily deal with thepipe with spring support at its boundaries and asks for much lesscomputing effort while giving ac- ceptable precision in the numericalresults.展开更多
This paper deals with the three-dimensional dynamics and postbuckling behavior of flexible supported pipes conveying fluid, considering flow velocities lower and higher than the critical value at which the buckling in...This paper deals with the three-dimensional dynamics and postbuckling behavior of flexible supported pipes conveying fluid, considering flow velocities lower and higher than the critical value at which the buckling instability occurs. In the case of low flow velocity, the pipe is stable with a straight equilibrium position and the dynamics of the system can be examined using linear theory. When the flow velocity is beyond the critical value, any motions of the pipe could be around the postbuckling configuration(non-zero equilibrium position) rather than the straight equilibrium position, so nonlinear theory is required. The nonlinear equations of perturbed motions around the postbuckling configuration are derived and solved with the aid of Galerkin discretization. It is found, for a given flow velocity,that the first-mode frequency for in-plane motions is quite different from that for out-of-plane motions. However, the second-or third-mode frequencies for in-plane motions are approximately equal to their counterparts for out-of-plane motions, keeping almost constant values with increasing flow velocity. Moreover, the orientation angle of the postbuckling configuration plane for a buckled pipe can be significantly affected by initial conditions, displaying new features which have not been observed in the same pipe system factitiously supposed to deform in a single plane.展开更多
All-position robots are widely applied in the welding of complicated parts.Welding of intersecting pipes is one of the most typical tasks.The welding seam is a complicated saddle-like space curve,which puts a great ch...All-position robots are widely applied in the welding of complicated parts.Welding of intersecting pipes is one of the most typical tasks.The welding seam is a complicated saddle-like space curve,which puts a great challenge to the pose planning of end-effector.The special robots designed specifically for this kind of tasks are rare in China and lack sufficient theoretical research.In this paper,a systematic research on the pose planning for the end-effectors of robot in the welding of intersecting pipes is conducted. First,the intersecting curve of pipes is mathematically analyzed.The mathematical model of the most general intersecting curve of pipes is derived,and several special forms of this model in degraded situations are also discussed.A new pose planning approach of bisecting angle in main normal plane(BAMNP) for the welding-gun is proposed by using differential geometry and the comparison with the traditional bisecting angle in axial rotation plane(BAARP) method is also analytically conducted.The optimal pose of the welding-gun is to make the orientation posed at the center of the small space formed by the two cylinders and the intersecting curve to help the welding-pool run smoothly.The BAMNP method can make sure the pose vertical to the curve and center between the two cylinders at the same time,therefore its performance in welding-technique is superior to the BAARP method.By using the traditional BAARP method,the robot structure can become simpler and easier to be controlled,because one degree of freedom(DOF) of the robot can be reduced.For the special case of perpendicular intersecting,an index is constructed to evaluate the quality of welding technique in the process of welding.The effect of different combination of pipe size on this index is also discussed.On the basis of practical consideration,selection principle for BAARP and BAMNP is described.The simulations of those two methods for a serial joint-type robot are made in MATLAB,and the simulation results are consistent to the analysis.The mathematical model and the proposed new pose-planning method will lay a solid foundation for future researches on the control and design of all-position welding robots.展开更多
Fluidization processes based on experiments are reviewed to gain some useful insights and comparisons with those that occur in hydrothermal systems. Field and petrographic work, and microscope observation were carried...Fluidization processes based on experiments are reviewed to gain some useful insights and comparisons with those that occur in hydrothermal systems. Field and petrographic work, and microscope observation were carried out on samples from the Qiyugou Au-bearing breccia pipes from the East Qinling region, Henan Province. Evidence from macro- and micro-textures suggests that the style of breccias in the Qiyugou area can be grouped into three types: (1) jigsaw fit-stockwork texture, in which the interval between clasts is marked by fractures or filled with calcite or quartz veins; (2) larger breccias that are supported by smaller breccias, rock flour and alteration materials; in this type clasts moved over short distances, creating open spaces; (3) fluidized texture, where the clasts of different lithologies have rounded shapes. These observations are compared with those resulting from experiments on fluidization processes. The results of this comparison suggest that fluidization is an important geological process in the formation of the Qiyugou Au-bearing breccia pipes and gold mineralization. In addition, fluidization processes such as expansion, bubbling, slugging, channeling and spouting must have contributed to the formation of the pipes and were conducive to the development of gold mineralization. In the Qiyugou breccia pipes, gold mineralization occurs as disseminations, in stockwork veins, and open space infills. The ore zones form subparallel sheets that are nearly perpendicular to the walls of the pipes.展开更多
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2021EEEVL0204 and 2018A02。
文摘As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52088102,51879249)Fundamental Research Funds for the Central Universities(Grant No.202261055)。
文摘The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed.
基金financially supported by the National Key Research and Development Plan Project of the Ministry of Science and Technology:Intelligent Liquid Precision Casting Technology and Application of Large Complex Thin-Wall High-End Metal Components(No.2022YFB3706800).
文摘Non-metallic inclusions and zyglo indications frequently occur in the superalloy castings produced through the traditional vacuum gravity investment casting process,particularly in components with thin-walled and complex structural features.The vacuum-assisted low-pressure casting(VLC),a type of counter-gravity casting(CGC)method,has been developed to minimize non-metallic inclusions and zyglo indications in superalloy castings.Rectifying frames for gas turbines made from K446 alloy were produced semi-continuously using the VLC process and subsequently evaluated through tensile testing,chemical composition analysis,X-ray diffraction,and zyglo penetrant inspection.The results indicate a roughly 10%improvement in tensile strength at 800℃ compared to gravity casting.Moreover,no significant changes are observed in the chemical composition of the alloys from the beginning to the end of a casting campaign,indicating that the developed VLC process is viable for the engineering-scale production of superalloy castings.Compared to traditional vacuum gravity casting(GC)method,the application of VLC can reduce the numbers of non-metallic inclusions and Zyglo indications in the castings by over 80%.At the same time,it significantly shortens the production time by 3 to 5 days.
基金supported by the National Natural Science Foundation of China(Granted Nos.51827801,52371152)the Foundation of National Key Laboratory of Precision Hot Processing of Metals(Granted No.DCQQ2790100724).
文摘During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity cross-section enlarges.This rapid increasement of liquid metal inlet velocity causes serious entrapment of gas and oxide films,and results in various casting defects such as the bifilm defects.These defects detrimentally deteriorate mechanical properties of the castings.To address this issue,an innovative nonlinear pressurization strategy timely matching to the casting structure was proposed.The pressurization rate decreases at sections where the cross-section widens,but it gradually increases as the liquid metal level rises.By this way,the inlet velocity remains below a critical threshold to prevent the entrapment of gas and oxide films.Comparative analyses involving numerical simulations and casting verification illustrate that the nonlinear pressurization technique,compared to the linear pressurization,effectively diminishes both the size and number of bifilm defects.Furthermore,the nonlinear pressurization method enhances the casting yield strength by 10%,tensile strength by 14%,and elongation by 10%.Examination through scanning electron microscopy highlights that the bifilm defects arising from the linear pressurization process result in the reduction of the castings’mechanical properties.These observations underscore the efficacy of nonlinear pressurization in enhancing the quality and reliability of gigantic castings,as exemplified by a 5.4-ton extra-large sized C95800 copper alloy propeller hub with complex structures in the current study.
基金financially supported by the National Natural Science Foundation of China(52100015)the Zhejiang Provincial Natural Science Foundation of China(LQ22E080018)the China Postdoctoral Science Foundation(2021M692860).
文摘Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks.Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality.The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes.The bacterial richness and diversity of bulk water decreased significantly after ice pigging.Furthermore,correlations were established between pipe service age,temperature,and chloride and total iron concentrations,and the 15 most abundant taxa in bulk water,which could be used to guide practical ice pigging operations.
基金supported by the National Natural Science Foundation of China(Nos.11991032 and 52241103)。
文摘To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design method is proposed for the longitudinal and transverse wave control of fluid-conveying pipes,and a novel periodic structure unit model is constructed for vibration reduction.Based on the bandgap vibration reduction mechanism of the acoustic metamaterial periodic structure,the material parameters,structural parameters,and the arrangement interval of the periodic structure unit are optimized.The finite element method(FEM)is used to predict the vibration transmission characteristics of the fluid-conveying pipe installed with the vibration reduction periodic structure.Then,the wave/spectrum element method(WSEM)and experimental test are used to verify the calculated results above.Lastly,the vibration attenuation characteristics of the structure under different conditions,such as rubber material parameters,mass ring material,and fluid-structure coupling effect,are analyzed.The results show that the structure can produce a complete bandgap of 46 Hz-75 Hz in the low-frequency band below 100 Hz,which can effectively suppress the low broadband vibration of the fluidconveying pipe.In addition,a high damping rubber material is used in the design of the periodic structure unit,which realizes the effective suppression of each formant peak of the pipe,and improves the vibration reduction effect of the fluid-conveying pipe.Meanwhile,the structure has the effect of suppressing both bending vibration and longitudinal vibration,and effectively inhibits the transmission of transverse waves and longitudinal waves in the pipe.The research results provide a reference for the application of acoustic metamaterials in the multi-directional vibration control of fluid-conveying pipes.
基金supported by the Science and Technology Development Fund of Macao(Grant No.0079/2019/AMJ)the National Key R&D Program of China(No.2019YFE0111400).
文摘Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based on deep learning have been introduced to automatically identify potential defects.However,these models are insufficient in terms of dataset complexity,model versatility and performance.Our work addresses these issues with amulti-stage defect detection architecture using a composite backbone Swin Transformer.Themodel based on this architecture is trained using a more comprehensive dataset containingmore classes of defects.By ablation studies on the modules of combined backbone Swin Transformer,multi-stage detector,test-time data augmentation and model fusion,it is revealed that they all contribute to the improvement of detection accuracy from different aspects.The model incorporating all these modules achieves the mean Average Precision(mAP)of 78.6% at an Intersection over Union(IoU)threshold of 0.5.This represents an improvement of 14.1% over the ResNet50 Faster Region-based Convolutional Neural Network(R-CNN)model and a 6.7% improvement over You Only Look Once version 6(YOLOv6)-large,the highest in the YOLO methods.In addition,for other defect detection models for sewer pipes,although direct comparison with themis infeasible due to the unavailability of their private datasets,our results are obtained from a more comprehensive dataset and have superior generalization capabilities.
基金Project supported by the National Natural Science Foundation of China (Nos.12002195 and 12372015)the National Science Fund for Distinguished Young Scholars of China (No.12025204)the Program of Shanghai Municipal Education Commission of China (No.2019-01-07-00-09-E00018)。
文摘Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.
文摘Controlling inner-wall band segregation is one of the difficulties in the production of high-strength antisulfur pipes.Comparative tests were carried out on different casting processes(superheat,mold electromagnetic stirring,end electromagnetic stirring,casting speed and soft reduction)for the smelting of high-strength antisulfur pipes.The microstructures of continuous-casting billets and hot-rolled or tempered pipes were analyzed using a metallographic microscope and scanning electron microscope.The mechanism and evolution law regarding the inner-wall band segregation of high-strength antisulfur pipes were studied,and the influence of different casting processes was explored.
基金supported by the Natural Science Research Project of Guangling College of Yangzhou University,China (ZKZD18004)General Program of Natural Science Research in Higher Education Institutions of Jiangsu Province,China (20KJD430006)。
文摘Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexible pipes and further diffuse into the annular space,incurring annular pressure build-up and/or production of acidic environment,which poses serious challenges to the structure and integrity of the flexible pipes.Gas permeation in pipes is a complex phenomenon governed by various factors such as internal pressure and temperature,annular structure,external temperature.In a long-distance gas flexible pipe,moreover,gas permeation exhibits non-uniform features,and the gas permeated into the annular space flows along the metal gap.To assess the complex gas transport behavior in long-distance gas flexible pipes,a mathematical model is established in this paper considering the multiphase flow phenomena inside the flexible pipes,the diffusion of gas in the inner liner,and the gas seepage in the annular space under varying permeable properties of the annulus.In addition,the effect of a variable temperature is accounted.A numerical calculation method is accordingly constructed to solve the coupling mathematical equations.The annular permeability was shown to significantly influence the distribution of annular pressure.As permeability increases,the annular pressure tends to become more uniform,and the annular pressure at the wellhead rises more rapidly.After annular pressure relief followed by shut-in,the pressure increase follows a convex function.By simulating the pressure recovery pattern after pressure relief and comparing it with test results,we deduce that the annular permeability lies between 123 and 512 m D.The results help shed light upon assessing the annular pressure in long distance gas flexible pipes and thus ensure the security of gas transport in the emerging development of offshore resources.
文摘This article discusses the design features of pipes in thermal insulation used in the construction of main and field pipelines in Arctic conditions.The defects that occur during the production,transportation and storage of pipes are given.Recommendations for repair or prevention of defects are given.The information may be useful to Chinese manufacturers and transport companies in order to ensure the possibility of supplying pipes to construction sites in Arctic conditions.
文摘The industrial application of an exterior three-layer anticorrosive polypropylene coating system(3PP)on large-diameter(larger than Φ600 mm)steel pipes was developed using an experimental process simulation study and the optimization of raw materials inspection,steel pipe surface pretreatments,and water cooling control on a coating application process.The coating properties meet ISO standard 21809 on buried or submerged 3PP pipelines used in the petroleum and natural gas industries.Differential scanning calorimetry and X-ray diffraction were used to analyze the crystallinities and grain sizes of polypropylene(PP)top coats with different cooling rates.Increasing the melt cooling rate reduces the crystallinity and grain size of the PP top coat and enhances its strength and toughness.
基金This work is supported by the National Natu- ral Science Foundation of China (No.51106146 and No.51036007), China Postdoctoral Science Foundation (No.20100480047 and No.201104326), Chinese Univer- sities Scientific Fund (No.WK2310000010), and Chinese Academy of Sciences.
文摘Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomers and polycyclic aromatic hydrocarbons, and measure their mole fraction profiles versus temperature. A low-pressure pyrolysis model of benzene was developed and validated by the experimental results. Rate of production analysis was performed to reveal the major reaction networks in both fuel decomposition and aromatic growth processes. It is concluded that benzene is mainly decomposed via H-abstraction reaction to produce phenyl and partly decomposed via unimolecular decomposition reac- tions to produce propargyl or phenyl. The decomposition process stops at the formation of acetylene and polyyne species like diacetylene and 1,3,5-hexatriyne due to their high thermal stabilities. Besides, the aromatic growth process in the low-pressure pyrolysis of benzene is concluded to initiate from benzene and phenyl, and is controlled by the even carbon growth mechanism due to the inhibited formation of C5 and C7 species which play important roles in the odd carbon growth mechanism.
文摘The R F first order second moment method will produce more error for calculating the reliability of welded engineering pipe structures when the failure function is seriously nonlinear and the random variables don′t serve as normal distribution. In order to increase the computing accuracy of reliability, an improved FOSM method is used for calculating the failure probability of welded pipes with flaws in this paper. Because of solving the problems of the linear expansion of failure function at the failure point and constructing equivalent normal variables, the new algorithm can greatly improve the calculating accuracy of probability of the welded pipes with cracks. The examples show that this method is simple, efficient and accurate for reliability safety assessment of the welded pipes with cracks. It can save more time than the Monte Carlo method does, so that the improved FOSM method is recommended for engineering reliability safety assessment of the welded pipes with flaws.
基金supported by the "111" Project of China (Grant No. B07019)State Key Laboratory of Ocean Engineeringof Shanghai Jiao Tong University (Grant No. 1008)the Fundamental Research Funds for the Central University
文摘The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.
基金This project is supported by National Natural Science Foundation of China(No.59875076).
文摘The simulation model of a valve control hydraulic system with long pipe isestablished in Simulink4.0, and then the step responses of the systems with difference pipeparameters are investigated by simulation. Simulation results show that the long pipes will slowdown the step response of system and make it fluctuate periodically. The results of simulationconform to the results of experiment on the whole, which proves the mathematic model is correct.
基金National Key Project of China (No.PD9521907)the National Science Foundation of China (No.19872025).
文摘It is a new attempt to extend the differential quadrature method(DQM) to stability analysis of the straight and curved centerlinepipes conveying fluid. Emphasis is placed on the study of theinfluences of several parameters on the critical flow velocity.Compared to other methods, this method can more easily deal with thepipe with spring support at its boundaries and asks for much lesscomputing effort while giving ac- ceptable precision in the numericalresults.
基金supported by the National Natural Science Foundation of China (Grants 11602090, 11622216, and 11672115)
文摘This paper deals with the three-dimensional dynamics and postbuckling behavior of flexible supported pipes conveying fluid, considering flow velocities lower and higher than the critical value at which the buckling instability occurs. In the case of low flow velocity, the pipe is stable with a straight equilibrium position and the dynamics of the system can be examined using linear theory. When the flow velocity is beyond the critical value, any motions of the pipe could be around the postbuckling configuration(non-zero equilibrium position) rather than the straight equilibrium position, so nonlinear theory is required. The nonlinear equations of perturbed motions around the postbuckling configuration are derived and solved with the aid of Galerkin discretization. It is found, for a given flow velocity,that the first-mode frequency for in-plane motions is quite different from that for out-of-plane motions. However, the second-or third-mode frequencies for in-plane motions are approximately equal to their counterparts for out-of-plane motions, keeping almost constant values with increasing flow velocity. Moreover, the orientation angle of the postbuckling configuration plane for a buckled pipe can be significantly affected by initial conditions, displaying new features which have not been observed in the same pipe system factitiously supposed to deform in a single plane.
基金supported by National Nautural Science Foundation of China(Grant No.50775002)Key Science and Technology Research Program of Beijing Municipal Commission of Education of China(Grant No.KZ200910005003)
文摘All-position robots are widely applied in the welding of complicated parts.Welding of intersecting pipes is one of the most typical tasks.The welding seam is a complicated saddle-like space curve,which puts a great challenge to the pose planning of end-effector.The special robots designed specifically for this kind of tasks are rare in China and lack sufficient theoretical research.In this paper,a systematic research on the pose planning for the end-effectors of robot in the welding of intersecting pipes is conducted. First,the intersecting curve of pipes is mathematically analyzed.The mathematical model of the most general intersecting curve of pipes is derived,and several special forms of this model in degraded situations are also discussed.A new pose planning approach of bisecting angle in main normal plane(BAMNP) for the welding-gun is proposed by using differential geometry and the comparison with the traditional bisecting angle in axial rotation plane(BAARP) method is also analytically conducted.The optimal pose of the welding-gun is to make the orientation posed at the center of the small space formed by the two cylinders and the intersecting curve to help the welding-pool run smoothly.The BAMNP method can make sure the pose vertical to the curve and center between the two cylinders at the same time,therefore its performance in welding-technique is superior to the BAARP method.By using the traditional BAARP method,the robot structure can become simpler and easier to be controlled,because one degree of freedom(DOF) of the robot can be reduced.For the special case of perpendicular intersecting,an index is constructed to evaluate the quality of welding technique in the process of welding.The effect of different combination of pipe size on this index is also discussed.On the basis of practical consideration,selection principle for BAARP and BAMNP is described.The simulations of those two methods for a serial joint-type robot are made in MATLAB,and the simulation results are consistent to the analysis.The mathematical model and the proposed new pose-planning method will lay a solid foundation for future researches on the control and design of all-position welding robots.
基金the National Natural Science Foundation of China (grant No. 40032010B).
文摘Fluidization processes based on experiments are reviewed to gain some useful insights and comparisons with those that occur in hydrothermal systems. Field and petrographic work, and microscope observation were carried out on samples from the Qiyugou Au-bearing breccia pipes from the East Qinling region, Henan Province. Evidence from macro- and micro-textures suggests that the style of breccias in the Qiyugou area can be grouped into three types: (1) jigsaw fit-stockwork texture, in which the interval between clasts is marked by fractures or filled with calcite or quartz veins; (2) larger breccias that are supported by smaller breccias, rock flour and alteration materials; in this type clasts moved over short distances, creating open spaces; (3) fluidized texture, where the clasts of different lithologies have rounded shapes. These observations are compared with those resulting from experiments on fluidization processes. The results of this comparison suggest that fluidization is an important geological process in the formation of the Qiyugou Au-bearing breccia pipes and gold mineralization. In addition, fluidization processes such as expansion, bubbling, slugging, channeling and spouting must have contributed to the formation of the pipes and were conducive to the development of gold mineralization. In the Qiyugou breccia pipes, gold mineralization occurs as disseminations, in stockwork veins, and open space infills. The ore zones form subparallel sheets that are nearly perpendicular to the walls of the pipes.