期刊文献+
共找到413篇文章
< 1 2 21 >
每页显示 20 50 100
Transient simulation of a pump-turbine with misaligned guide vanes during turbine model start-up 被引量:9
1
作者 Ye-Xiang Xiao Ruo-Fu Xiao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第5期646-655,共10页
Experimental studies of a model pump-turbine S-curve characteristics and its improvement by misaligned guide vanes (MGV) were extended to prototype pump turbine through 3-D transient flow simulations. The unsteady R... Experimental studies of a model pump-turbine S-curve characteristics and its improvement by misaligned guide vanes (MGV) were extended to prototype pump turbine through 3-D transient flow simulations. The unsteady Reynolds-averaged Navier-Stokes equations with the SST turbulence model were used to model the transient flow within the entire flow passage of a reversible pump-turbine with and without misaligned guide vanes during turbine model start-up. The unstable S-curve and its improvement by using misaligned guide vane were verified by model test and simulation. The transient flow calculations were used to clarify the variations of pressure pulse and internal flow behavior in the entire flow passage. The use of misaligned guide vanes can eliminate the S-curve characteristics of a pump-turbine, and can significantly increase the pressure pulse amplitude in the entire flow passage and the runner radial forces during start-up. The MGV only decreased the pulse amplitude on the guide vane suction side when the rotating speed was less than 50% rated speed. The hydraulic reason is that the MGV dramatically changed the flow patterns inside the entire flow passage, and destroyed the symmetry of the flow distribution inside the guide vane and runner. 展开更多
关键词 Transient flow. Pump turbine. Misaligned guide vane Model test Pressure pulse
下载PDF
Influence of propagation direction on operation performance of rotating detonation combustor with turbine guide vane 被引量:8
2
作者 Wan-li Wei Yu-wen Wu +1 位作者 Chun-sheng Weng Quan Zheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1617-1624,共8页
Due to the pressure gain combustion characteristics,the rotating detonation combustor(RDC)can enhance thermodynamic cycle efficiency.Therefore,the performance of gas-turbine engine can be further improved with this co... Due to the pressure gain combustion characteristics,the rotating detonation combustor(RDC)can enhance thermodynamic cycle efficiency.Therefore,the performance of gas-turbine engine can be further improved with this combustion technology.In the present study,the RDC operation performance with a turbine guide vane(TGV)is experimentally investigated.Hydrogen and air are used as propellants while hydrogen and air mass flow rate are about 16.1 g/s and 500 g/s and the equivalence ratio is about 1.0.A pre-detonator is used to ignite the mixture.High-frequency dynamic pressure transducers and silicon pressure sensors are employed to measure pressure oscillations and static pressure in the combustion chamber.The experimental results show that the steady propagation of rotating detonation wave(RDW)is observed in the combustion chamber and the mean propagation velocity is above 1650 m/s,reaching over 84%of theoretical Chapman-Jouguet detonation velocity.Clockwise and counterclockwise propagation directions of RDW are obtained.For clockwise propagation direction,the static pressure is about 15%higher in the combustor compared with counterclockwise propagation direction,but the RDW dominant frequency is lower.When the oblique shock wave propagates across the TGV,the pressure oscillations reduces significantly.In addition,as the detonation products flow through the TGV,the static pressure drops up to 32%and 43%for clockwise and counterclockwise propagation process respectively. 展开更多
关键词 Rotating detonation combustor Propagation direction turbine guide vane Operation performance
下载PDF
Erosion Characteristics of Hydraulic Turbine Guide-Vane End Clearance in Sediment Water Flow: A Simplified Model Analysis 被引量:4
3
作者 Wei Han Jie Wang +2 位作者 Jingbo Kang Lianyuan Li Guoyi Peng 《Journal of Flow Control, Measurement & Visualization》 2017年第4期111-126,共16页
The effect of clearance flow on the erosion characteristics of a circular cylinder with a backward facing step in sediment-laden water flow is analyzed numerically with the mixture model and the re-normalization group... The effect of clearance flow on the erosion characteristics of a circular cylinder with a backward facing step in sediment-laden water flow is analyzed numerically with the mixture model and the re-normalization group (RNG) k-ε turbulence model. Thirty-six monitoring points are set up on different stream surfaces to collect information on the impact erosion under different flow conditions, where the Initial Sediment Volume Fraction (ISVF) is set to 0.05, 0.075, 0.1, 0.125, and 0.15;particle diameter is set to 0.05 mm, 0.15 mm, 0.25 mm, 0.35 mm, and 0.45 mm respectively. The distribution of particle velocity and Local Solid-Phase Volume Fraction (LSVF) along different stream surfaces are calculated, based on which the trend of erosion is qualitatively evaluated. ISVF and particle diameter play different roles on the impact erosion index parameter () on the different wetted walls. Relative wear rate of numerical estimation agrees well with the practical one under the same working condition. Numerical analysis demonstrates that guide vane with a negative curvature end surface (concave surface) can decrease erosion damage effectively, which may provide a reference for optimal design and maintenance of hydraulic turbine. 展开更多
关键词 EROSION Characteristics Hydraulic turbine guide vane SOLID-LIQUID Two Phase Flow Numerical Simulation
下载PDF
Guide Vane with Current Plate to Improve Efficiency of Cross Flow Turbine 被引量:1
4
作者 Kiyoshi Kokubu Toshiaki Kanemoto Keisuke Yamasaki 《Open Journal of Fluid Dynamics》 2013年第2期28-35,共8页
To get the sustainable society, the hydropower with not only the large but also the small/mini/micro capacities has been paid attention to in the power generation. The cross flow turbine can work effectively at the co... To get the sustainable society, the hydropower with not only the large but also the small/mini/micro capacities has been paid attention to in the power generation. The cross flow turbine can work effectively at the comparatively low head and/or low discharge, then the runner and the turbine profile has been optimizing. In this paper, the model turbine was prepared in accordance with the traditional design, and the performance and the flow condition were investigated experimentally at the various operating conditions. The hydraulic efficiency is doubtlessly maximal while the guide vane is at the normal/design position, and deteriorates in the lower discharges adjusted by the guide vane. Such deteriorations are brought from the unacceptable flow conditions in the inlet nozzle. To improve the efficiency dramatically in the lower discharge, the guide vane installed in the inlet nozzle was equipped with the current plate, and the fruitful effects of the plate on the efficiency were confirmed experimentally. 展开更多
关键词 HYDRAULIC turbine Cross Flow turbine guide vane INLET NOZZLE HYDRAULIC EFFICIENCY Discharge
下载PDF
2D Model of Guide Vane for Low Head Hydraulic Turbine: Analytical and Numerical Solution of Inverse Problem 被引量:2
5
作者 Romuald Puzyrewski Zbigniew Krzemianowski 《Journal of Mechanics Engineering and Automation》 2014年第3期195-202,共8页
Low-head hydraulic turbines are the subjects to individual approach of design. This comes from the fact that hydrological conditions are not of a standard character. Therefore, the design method of the hydraulic turbi... Low-head hydraulic turbines are the subjects to individual approach of design. This comes from the fact that hydrological conditions are not of a standard character. Therefore, the design method of the hydraulic turbine stage has a great importance for those who may be interested in such an investment. As a first task in a design procedure the guide vane is considered. The proposed method is based on the solution of the inverse problem within the flame of 2D model. By the inverse problem authors mean a design of the blade shapes for given flow conditions. In the paper analytical solution for the simple cylindrical shape of a guide vane is presented. For the more realistic cases numerical solutions according to the axis-symmetrical model of the flow are also presented. The influence of such parameters as the inclination of trailing edge, the blockage factor due to blade thickness, the influence of loss due to dissipation are shown for the chosen simple geometrical example. 展开更多
关键词 Hydraulic turbines inverse problem in a turbomachinery guide vanes design.
下载PDF
Two Concepts of Guide Vane Profile Design for a Low Head Hydraulic Turbine 被引量:1
6
作者 Romuald Puzyrewski Zbigniew Krzemianowski 《Journal of Mechanics Engineering and Automation》 2015年第4期201-209,共9页
Two concepts of the guide vanes channels design for a low head hydraulic turbine were investigated using 2D and 3D models. Model 2D was used to generate the geometry of profiles which form a blade channel. After that ... Two concepts of the guide vanes channels design for a low head hydraulic turbine were investigated using 2D and 3D models. Model 2D was used to generate the geometry of profiles which form a blade channel. After that by means of 3D commercial code (ANSYS/Fluent v. 15), the designed cascades were examined. The characteristic parameters of compared guide vanes have been presented. The problem of low head hydraulic turbine design is important from the technical point of view for usually not typical environmental circumstances, in which the hydropower plants are planned. 展开更多
关键词 Hydraulic turbine inverse problem TURBOMACHINERY guide vane design.
下载PDF
Influence of Endwall Contouring on the Secondary Flow in Turbine Nozzle Guide Vane
7
作者 孙大伟 乔渭阳 许开富 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第2期95-101,共7页
Numerical simulations are carried out to investigate the effect of the endwall contouring on the secondary flow in turbine nozzle guide vane.The three contoured cascades with the same contouring profile and the differ... Numerical simulations are carried out to investigate the effect of the endwall contouring on the secondary flow in turbine nozzle guide vane.The three contoured cascades with the same contouring profile and the different positions where the contoured profile locates at are researched.The results show that the contouring configuration can reduce the aerodynamic losses of the cascade.The flat side takes advantage of a stronger decrease of the losses,compared to the contoured side.The contouring configuration can also inhibit the secondary flow.The contoured cascade in which the contouring profile starts upstream of the airfoil,ends at the middle of the airfoil has the best effect of improving secondary flow. 展开更多
关键词 涡轮导叶 二次流 轮廓 喷嘴 端壁 配置文件 数值模拟 级联
下载PDF
Thermodynamic Performance Analysis of E/F/H-Class Gas Turbine Combined Cycle with Exhaust Gas Recirculation and Inlet/Variable Guide Vane Adjustment under Part-Load Conditions
8
作者 LI Keying CHI Jinling +1 位作者 WANG Bo ZHANG Shijie 《Journal of Thermal Science》 SCIE EI CSCD 2024年第1期348-367,共20页
Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effective... Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effectively improving the part-load(i.e.,off-design) performance of the gas turbine combined cycle(GTCC).In this study,the E-,F-,and H-Class EGR-GTCC design and off-design system models were established and validated to perform a comparative analysis of the part-load performance under the EGR-IGV-FFC and conventional IGV-FFC strategies in the E/F/H-Class GTCC.Results show that EGR-IGV-FFC has considerable potential for the part-load performance enhancement and can show a higher combined cycle efficiency than IGV-FFC in the E-,F-,and H-Class GTCCs.However,the part-load performance improvement in the corresponding GTCC was weakened for the higher class of the gas turbine because of the narrower load range of EGR action and the deterioration of the gas turbine performance.Furthermore,EGR-IGV-FFC was inferior to IGV-FFC in improving the performance at loads below 50% for the H-Class GTCC.The results obtained in this paper could help guide the application of EGR-IGV-FFC to enhance the part-load performance of various classes of GTCC systems. 展开更多
关键词 E/F/H-Class gas turbine combined cycle performance improvement part-load conditions exhaust gas recirculation inlet/variable guide vane
原文传递
Improving the Energy Performance of a High-Pressure Hydraulic Turbine by Researching the Flow in the Flow Part
9
作者 Konstantin Mironov Yuliia Oleksenko Aminjon Gulakhmadov 《Journal of Power and Energy Engineering》 2022年第4期27-37,共11页
In this study, the goal is to increase the efficiency of a high-pressure hydraulic turbine. The goal is achieved by numerical flow simulation using CFX-TASCflow. This approach reduces costs and time compared to the ex... In this study, the goal is to increase the efficiency of a high-pressure hydraulic turbine. The goal is achieved by numerical flow simulation using CFX-TASCflow. This approach reduces costs and time compared to the experimental approach and allows for improving the turbine productivity and its design. The analysis of energy losses in the flow part of the turbine Fr500, as well as the analysis of the influence of the opening of the guide vanes on changes in energy losses. The results showed that the greatest losses occur in the guide vane 3.02% based on the two-dimensional model and 2.5% based on the 3D model, which significantly affects the efficiency. The analysis was carried out using programs for calculating fluid flow in two-dimensional and three-dimensional formulations. With the help of the study, the main energy problem is solved—increasing efficiency. 展开更多
关键词 Francis turbine EFFICIENCY Spiral Case RUNNER guide vane Draft Tube
下载PDF
Numerical predictions of pressure pulses in a Francis pump turbine with misaligned guide vanes 被引量:13
10
作者 肖业祥 王正伟 +1 位作者 张瑾 罗永要 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第2期250-256,共7页
Previous experimental and numerical analyses of the pressure pulse characteristics in a Francis turbine are extended here by using the unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport... Previous experimental and numerical analyses of the pressure pulse characteristics in a Francis turbine are extended here by using the unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport (SST) turbulence model to model the unsteady flow within the entire flow passage of a large Francis pump turbine with misaligned guide vanes at the rated rotational speed. The S-curve characteristics are analyzed by a combined use of the model test and the steady state simulation with the aligned guide vane firstly. Four misaligned guide vanes with two different openings are chosen to analyze the influence of pressure pulses in the turbine. The characteristics of the dominant unsteady flow frequencies in different parts of the pump turbine for various misaligned guide vane openings are investigated in detail. The predicted hydraulic performance and the pressure fluctuations show that the misaligned guide vanes reduce the relative pressure fluctuation amplitudes in the stationary part of the flow passage, but not the runner blades. The misaligned guide vanes have changed the low frequencies in the entire flow passage with the change of the pulse amplitudes mainly due to changes in the rotor-stator interaction and the low frequency vortex rope flow behavior. 展开更多
关键词 pump turbine misaligned guide vanes pressure pulsation rotor stator interaction numerical simulation
原文传递
Multi-scale thermodynamic analysis method for 2D SiC/SiC composite turbine guide vanes 被引量:11
11
作者 Xin LIU Xiuli SHEN +1 位作者 Longdong GONG Peng LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第1期117-125,共9页
Ceramic Matrix Composite (CMC) turbine guide vanes possess multi-scale stress and strain with inhomogeneity at the microscopic scale. Given that the macroscopic distribution cannot reflect the microscopic stress flu... Ceramic Matrix Composite (CMC) turbine guide vanes possess multi-scale stress and strain with inhomogeneity at the microscopic scale. Given that the macroscopic distribution cannot reflect the microscopic stress fluctuation, the macroscopic method fails to meet the requirements of stress and strain analysis of CMC turbine guide vanes. Furthermore, the complete thermodynamic properties of 2D woven SiC/SiC-CMC cannot be obtained through experimentation, Accordingly, a method to calculate the thermodynamic properties of CMC and analyze multi-scale stress and strain of the turbine guide vanes should be established. In this study, the multi-scale thermodynamic analysis is investigated. The thermodynamic properties of Chemical Vapor Infiltration (CVI) pro- cessed SiC/SiC-CMC are predicted by a Representative Volume Element (RVE) model with porosity, leading to the result that the relative error between the calculated in-plane tensile modulus and the experimental value is 4.2%. The macroscopic response of a guide vane under given conditions is predicted. The relative error between the predicted strain on the trailing edge and the experimental value is 9.7%. The calculation of the stress distribution of micro-scale RVE shows that the maximum value of microscopic stress, which is located in the interlayer matrix, is more than 1.5 times that of macroscopic stress in the same direction and the microscopic stress distribution of the interlayer matrix is related to the pore distribution of the composite. 展开更多
关键词 Ceramic matrix composites Multi-scale Representative volume element Thermal-mechanical coupling turbine guide vane
原文传递
A Straight-bladed Vertical Axis Wind Turbine with a Directed Guide Vane Row-Effect of Guide Vane Geometry on the Performance- 被引量:14
12
作者 Manabu TAKAO Hideki KUMA +3 位作者 Takao MAEDA Yasunari KAMADA Michiaki OKI Atsushi MINODA 《Journal of Thermal Science》 SCIE EI CAS CSCD 2009年第1期54-57,共4页
The objective of this study is to show the effect of guide vane geometry on the performance. In order to overcome the disadvantages of vertical axis wind turbine, a straight-bladed vertical axis wind turbine (S-VAWT... The objective of this study is to show the effect of guide vane geometry on the performance. In order to overcome the disadvantages of vertical axis wind turbine, a straight-bladed vertical axis wind turbine (S-VAWT) with a directed guide vane row has been proposed and tested by the authors. According to previous studies, it was clarified that the performance of the turbine can be improved by means of the directed guide vane row. However, the guide vane geometry of S-VAWT has not been optimized so far. In order to clarify the effect of guide vanegeometry, the effects of setting angle and gap between rotor blade and guide vane on power coefticlent and start- ing characteristic were investigated in the experiments. The experimental study of the proposed wind turbine was carried out by a wind tunnel. The wind tunnel with a diameter of 1.8m is open jet type. The wind velocity is 8 m/s in the experiments. The rotor has three straight blades with a profile of NACA0018 and a chord length of 100 mm, a diameter of 0.6 m and a blade height of 0.7 m. The guide vane row consists of 3 arc plates. 展开更多
关键词 fluid machinery wind energy vertical axis wind turbine guide vane
原文传递
Experimental Investigation on the Effect of Mainstream Turbulence on Full Coverage Film Cooling Effectiveness for a Turbine Guide Vane 被引量:4
13
作者 FU Zhongyi ZHU Huiren +1 位作者 CHENG Lijian JIANG Ru 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第1期145-157,共13页
Experiments have been performed to investigate the effect of mainstream turbulence on the three-dimensional distribution of the full coverage film cooling effectiveness for two enlarged actual twisted vanes with cylin... Experiments have been performed to investigate the effect of mainstream turbulence on the three-dimensional distribution of the full coverage film cooling effectiveness for two enlarged actual twisted vanes with cylindrical or shaped holes. The film cooling effectiveness was measured by transient liquid crystal technique at mainstream turbulence intensities of 2%, 9% and 15%. The mass flow rate ratios range from 5.5% to 12.5%. There are 3, 8 and 7 rows of film holes on the suction side, leading edge and pressure side, respectively. Results show that for the cylindrical hole vane the high mainstream turbulence intensity decreases the film cooling effectiveness in the top region and down region of pressure side in the low mass flow rate ratio of 5.5%, while the effect is opposite in the high mass flow rate ratio of 12.5%. The film cooling effectiveness in the middle region of pressure side decreases obviously with the increase of the turbulence at the low mass flow rate ratio of 5.5%, while the influence of increasing turbulence weakens gradually with the increase of mass flow rate ratio. Moreover, the high mainstream turbulence improves the film cooling effectiveness in the further downstream of the holes on suction side at the high mass flow rate ratio of 12.5%. For the shaped hole vane, the increase of mainstream turbulence decreases the film cooling effectiveness at all mass flow rate ratios. This study reveals the influence rule of the mainstream turbulence on the film cooling effectiveness in the different regions of the three-dimensional vane surface. The results would guide the designs of engineering heat transfer with application in gas turbine blade/vane cooling. 展开更多
关键词 film cooling EFFECTIVENESS TURBULENCE INTENSITY mass flow rate ratio turbine guide vane
原文传递
A new method of dynamic mesh used in continuous guide vane closure of a reversible pump-turbine in generating mode 被引量:5
14
作者 Xiu-li Mao Yuan Zheng +1 位作者 Giorgio Pavesi Zhan-shan Xie 《Journal of Hydrodynamics》 SCIE EI CSCD 2019年第5期976-985,共10页
In this paper,a new method of dynamic mesh based on two functional controls is used in the continuous guide vane closure,and the three-dimensional numerical simulation is carried out to investigate the transient flow ... In this paper,a new method of dynamic mesh based on two functional controls is used in the continuous guide vane closure,and the three-dimensional numerical simulation is carried out to investigate the transient flow characteristics for a Francis-type reversible pump-turbine in the turbine mode in the load regulation scenario,with the detached eddy simulation(DES)turbulent model.The transient flow characteristics during the closure of the guide vanes are illustrated by analyzing the signals of the mass flow,the torque and the pressure fluctuations in the frequency and time-frequency domains.It is shown by the simulated results that a continuous assessment of the transient flow characteristics during the guide vane closure may be made by using the new method of the dynamic mesh.Furthermore,the flow field analysis involves both the onset and the development of the unsteady phenomena progressively based on an organized guide vane closure law.The flow pattern in the return channel maintains a relatively stable flow field before the last stage of the closure,as compared with the unstable flow field in other domains.To identify the unit variation under the fluid-dynamical conditions,the influence of the three-dimensional unsteady flow structures in the passage is analyzed and its evolution during this transient process is characterized by the fluid-dynamics and the spectral analysis. 展开更多
关键词 Francis-type REVERSIBLE turbine dynamic mesh guide vane CLOSURE flow characteristics
原文传递
Design and development of guide vane cascade for a low speed number Francis turbine 被引量:2
15
作者 Biraj Singh THAPA Chirag TRIVEDI Ole Gunnar DAHLHAUG 《Journal of Hydrodynamics》 SCIE EI CSCD 2016年第4期676-689,共14页
Guide vane cascade of a low speed number Francis turbine is developed for the experimental investigations. The test setup is able to produce similar velocity distributions at the runner inlet as that of a reference pr... Guide vane cascade of a low speed number Francis turbine is developed for the experimental investigations. The test setup is able to produce similar velocity distributions at the runner inlet as that of a reference prototype turbine. Standard analytical methods are used to design the reference turbine. Periodic walls of flow channel between guide vanes are identified as the starting profile for the boundary of the cascade. Two alternative designs with three guide vanes and two guide vanes, without runner, are studied. A new approach, for the hydraulic design and optimization of the cascade test setup layout, is proposed and investigated in details. CFD based optimization methods are used to define the final layout of the test setup. The optimum design is developed as a test setup and experimental validation is done with PIV methods. The optimized design of cascade with one guide vane between two flow channels is found to produce similar flow conditions to that in the runner inlet of a low speed number Francis turbine. 展开更多
关键词 guide vanes Francis turbine CASCADE OPTIMIZATION CFD PIV
原文传递
Artificial intelligence aided design of film cooling scheme on turbine guide vane 被引量:6
16
作者 Dike Li Lu Qiu +1 位作者 Kaihang Tao Jianqin Zhu 《Propulsion and Power Research》 SCIE 2020年第4期344-354,共11页
In recent years,artificial intelligence(AI)technologies have been widely applied in many different fields including in the design,maintenance,and control of aero-engines.The air-cooled turbine vane is one of the most ... In recent years,artificial intelligence(AI)technologies have been widely applied in many different fields including in the design,maintenance,and control of aero-engines.The air-cooled turbine vane is one of the most complex components in aero-engine design.Therefore,it is interesting to adopt the existing AI technologies in the design of the cooling passages.Given that the application of AI relies on a large amount of data,the primary task of this paper is to realize massive simulation automation in order to generate data for machine learning.It includes the parameterized three-dimensional(3-D)geometrical modeling,automatic meshing and computational fluid dynamics(CFD)batch automatic simulation of different film cooling structures through customized developments of UG,ICEM and Fluent.It is demonstrated that the trained artificial neural network(ANN)can predict the cooling effectiveness on the external surface of the turbine vane.The results also show that the design of the ANN architecture and the hyper-parameters have an impact on the prediction precision of the trained model.Using this established method,a multi-output model is constructed based on which a simple tool can be developed.It is able to make an instantaneous prediction of the temperature distribution along the vane surface once the arrangements of the film holes are adjusted. 展开更多
关键词 Film cooling Machine learning Fast prediction Massive simulation automation turbine guide vane
原文传递
Investigation on reversible pump turbine flow structures and associated pressure field characteristics under different guide vane openings 被引量:5
17
作者 BINAMA Maxime SU WenTao +5 位作者 CAI WeiHua LI FengChen WEI XianZhu MUHIRWA Alex GONG RuZhi WEKESA David W 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第11期2052-2074,共23页
The use of reversible pump turbines(RPT) within pumped storage power plants goes with prolonged periods of off-design operating conditions, which leads to the onset of operating mode-dependent instabilities. In order ... The use of reversible pump turbines(RPT) within pumped storage power plants goes with prolonged periods of off-design operating conditions, which leads to the onset of operating mode-dependent instabilities. In order to decrease the gravity of RPT flow instabilities and associated damages or even completely eliminate them, a deep understanding of its onset and development mechanism is needed. In line with this, the present study seeks to numerically investigate the onset and development mechanism of RPT unsteady flow structures as well as the evolutional characteristics of associated pressure pulsations throughout the RPT complete flow passage, under off-design conditions for three GVOs namely 17, 21, and 25 mm. The study results showed that low torque operating conditions and associated vaneless space back flow structures were the trigger of flow unsteadiness onset within the RPT vaneless space, the instabilities which grew to cause the S-shape characteristics appearance. Moreover, the runner flow unsteadiness was found to decrease with the GVO increase. On the other hand, the GVO increase worsened the pressure pulsation levels within RPT flow zones, where pressure pulsations within the vaneless space and flow zones in its vicinities were found to be the most sensitive to GVO changes. 展开更多
关键词 REVERSIBLE PUMP-turbine flow UNSTEADINESS pressure PULSATION guide vane OPENING numerical simulation
原文传递
Aero-thermal redesign of a high pressure turbine nozzle guide vane 被引量:2
18
作者 Hadi Yavari Ali Khavari +2 位作者 Mohammad Alizadeh Behrad Kashfi Hiwa Khaledi 《Propulsion and Power Research》 SCIE 2019年第4期310-319,共10页
The current article presents conceptual,preliminary and detailed aero-thermal redesign of a typical high pressure turbine nozzle guide vane.Design targets are lower coolant consumption,reduced manufacturing costs an... The current article presents conceptual,preliminary and detailed aero-thermal redesign of a typical high pressure turbine nozzle guide vane.Design targets are lower coolant consumption,reduced manufacturing costs and improved durability.These goals are sought by 25%reduction in vane count number and lower number of airfoils per segment.Design challenges such as higher airfoil loading,associate aerodynamic losses and higher thermal loads are discussed.In order to maximize coolant flow reduction and avoid higher aerodynamic losses,airfoil Mach distribution is carefully controlled.There has been an effort to limit design changes so that the proven design features of the original vane are used as much as possible.Accordingly,the same cooling concept is used with minor modifications of the internal structures in order to achieve desired coolant flow and internal heat transfer distribution.Platforms of the new design are quite similar to the original one except for cooling holes and application of thermal barrier coating(TBC).Detailed aerodynamics/heat transfer simulations reveals that the reduced trailing edge(T.E.)blockage and skin friction dominated the negative effect of increased secondary losses.As a result the reduced design performs acceptable in terms of total pressure loss and improving stage efficiency for a wide range of varying pressure ratio.Moreover,more than 20%cooling mass flow can be saved;while maximum and average metal temperatures as well as cross sectional temperature gradients have not been changed much. 展开更多
关键词 vane count number Aero-thermal redesign Cooling mass flow consumption High pressure nozzle guide vane turbine aerodynamics
原文传递
Numerical study of a guide-vane-augmented vertical darrieus tidal-currentturbine 被引量:1
19
作者 Zhen Liu Zhi-meng Wang +1 位作者 Hong-da Shi Heng-liang Qu 《Journal of Hydrodynamics》 SCIE EI CSCD 2019年第3期522-530,共9页
It is reported that the augmented vertical axis turbine (VAT) has a better operating performance. A guide-vane type augmentation is proposed in this study, with a simpler outline and a better adaptability to various d... It is reported that the augmented vertical axis turbine (VAT) has a better operating performance. A guide-vane type augmentation is proposed in this study, with a simpler outline and a better adaptability to various directions of the incident water flow, as compared to the duct-type diffuser. A 2?D numerical model based on the computational fluid dynamics software ANSYS-Fluent is established and validated by experimental data. It is found that the guide vanes could narrow the flow path together with the VAT rotor and increase the flow velocity around the blades. The fluctuation of the instantaneous torque output is significantly reduced by using the guide-vane stator. The numerical results indicate that a four blades setup is suitable for the stator and the chord length of the guide vane should be equal to that of the rotor blade. The gap between the stator and the rotor is suggested to be a quarter of the chord length of the rotor blades. The non-zero pitch angle of the guide vane is found to have negative effects on the torque and the power output. The averaged power and torque coefficients for three non-zero directional angles of the incident flow are approximately 30% lower than those for the zero-directional angle. 展开更多
关键词 Tidal current energy VERTICAL axis turbine AUGMENTED rotor guide vane numerical simulation
原文传递
Impulse Turbine with 3D Guide Vanes for Wave Energy Conversion 被引量:1
20
作者 Manabu TAKAO Toshiaki SETOGUCHI +1 位作者 Kenji KANEKO Shuichi NAGATA 《Journal of Thermal Science》 SCIE EI CAS CSCD 2006年第1期27-30,共4页
In this study, in order to achieve further improvement of the performance of an impulse turbine with fixed guide vanes for wave energy conversion, the effect of guide vane shape on the performance was investigated by ... In this study, in order to achieve further improvement of the performance of an impulse turbine with fixed guide vanes for wave energy conversion, the effect of guide vane shape on the performance was investigated by experiment. The investigation was performed by model testing under steady flow condition. As a result, it was found that the efficiency of the turbine with 3D guide vanes are slightly superior to that of the turbine with 2D guide vanes because of the increase of torque by means of 3D guide vane, though pressure drop across the turbine for the 3D case is slightly higher than that for the 2D case. 展开更多
关键词 fluid machinery impulse turbine guide vane wave energy conversion.
原文传递
上一页 1 2 21 下一页 到第
使用帮助 返回顶部