Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise ...Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise of land surface temperature(LST),which consequently have caused a variety of environmental issues and threated the sustainable development of urban areas.Greenbelts are employed as an urban planning containment policy to regulate urban expansion,safeguard natural open spaces,and serve adaptation and mitigation functions.And they are regarded as a powerful measure for enhancing urban environmental sustainability.Despite the fact that,the relation between landscape structure change and variation of LST has been examined thoroughly in many studies,but there is a limitation concerning this relation in semi-arid climate and in greenbelts as well,with the lacking of comprehensive research combing both aspects.Accordingly,this study investigated the spatiotemporal changes of landscape pattern of LULC and their relationship with variation of LST within an inner greenbelt in the semi-arid Erbil City of northern Iraq.The study utilized remote sensing data to retrieve LST,classified LULC,and calculated landscape metrics for analyzing spatial changes during the study period.The results indicated that both composition and configuration of LULC had an impact on the variation of LST in the study area.The Pearson's correlation showed the significant effect of Vegetation 1 type(VH),cultivated land(CU),and bare soil(BS)on LST,as increase of LST was related to the decrease of VH and the increases of CU and BS,while,neither Vegetation 2 type(VL)nor built-up(BU)had any effects.Additionally,the spatial distribution of LULC also exhibited significant effects on LST,as LST was strongly correlated with landscape indices for VH,CU,and BS.However,for BU,only aggregation index metric affected LST,while none of VL metrics had a relation.The study provides insights for landscape planners and policymakers to not only develop more green spaces in greenbelt but also optimize the spatial landscape patterns to reduce the influence of LST on the urban environment,and further promote sustainable development and enhance well-being in the cities with semi-arid climate.展开更多
Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Lan...Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Land cover identification, delineation and mapping is important for planning activities, resource management and global monitoring studies while baseline mapping and subsequent monitoring is done by application of land use to get timely information about quantity of land that has been used. The present study has been carried out in Dhund river watershed of Jaipur, Rajasthan which covers an area of about 1828 sq∙km. The minimum and maximum elevation of the area is found to be 214 m and 603 m respectively. Land use and land cover changes of three decades from 1991 to 2021 have been interpreted by using remotes sensing and GIS techniques. ArcGIS software (Arc map 10.2), SOI topographic map, Cartosat-1 DEM and satellite data of Landsat 5 and Landsat 8 have been used for interpretation of eleven classes. The study shows an increase in cultivated land, settlement, waterbody, open forest, plantation and mining due to urbanization because of increasing demands of food, shelter and water while a decrease in dense forest, river, open scrub, wasteland and uncultivated land has also been marked due to destruction of aforementioned by anthropogenic activities such as industrialization resulting in environmental degradation that leads to air, soil and water pollution.展开更多
Expanding the utilization of marginal land resources in rural areas is regarded as a significant supplement for the sustainable development of modern agriculture for its yield, economic and ecological good. Marginal a...Expanding the utilization of marginal land resources in rural areas is regarded as a significant supplement for the sustainable development of modern agriculture for its yield, economic and ecological good. Marginal areas, due to their natural limitations, are only productive for energy crops with strong resistance and tolerance. Cassava, in its longstanding cultivation practices, has marked its adaptability in tropical and subtropical regions. Farmers are allowed to improve reclaimed soils’ fertility, while plants’ canopy coverage could reduce soil erosion. Besides, cassava tubers to be produced as food or fodder can be counted as soil productivity. Breeding advanced cassava varieties on marginal land under proper intensification management and facilitating policies can indeed increase farmers’ income. Some of the projects implemented outside of China speak quite well on that. Additionally, intercropping modes for cassava bring higher incomes than monocropping mode, which simultaneously improves the ecosystem structure and soil conditions. The interspecific cooperation brought by the intercropping pattern has its buffering function and antagonistic effects to counter against plant diseases, pest attacks and weed infestations. It performs as a natural alternative for pesticides and fertilizers with minimal inputs and safe and productive outputs. Although a complete cassava industrial chain has been formed nationwide, there are still challenges like the inadequate use of marginal areas and risks triggered by unfavorable climate, changeable commodity markets, and the composition of the labor force. However, there will still be ample room for further growth of cassava, for recent years have witnessed the acceleration in the circulation of rural land management rights and the stratification of Chinese farmers, which gives an impetus to household management’s dominance as well as the improvements of rural social welfare systems for the overall agricultural efficiency.展开更多
Weihe River basin is of great significance to analyze the changes of land use pattern and landscape ecological risk and to improve the ecological basis of regional development.Based on land use data of the Weihe River...Weihe River basin is of great significance to analyze the changes of land use pattern and landscape ecological risk and to improve the ecological basis of regional development.Based on land use data of the Weihe River basin in 2000,2010,and 2020,with the support of Aeronautical Reconnaissance Coverage Geographic Information System(ArcGIS),GeoDa,and other technologies,this study analyzed the spatial-temporal characteristics and driving factors of land use pattern and landscape ecological risk.Results showed that land use structure of the Weihe River basin has changed significantly,with the decrease of cropland and the increase of forest land and construction land.In the past 20 a,cropland has decreased by 7347.70 km2,and cropland was mainly converted into forest land,grassland,and construction land.The fragmentation and dispersion of ecological landscape pattern in the Weihe River basin were improved,and land use pattern became more concentrated.Meanwhile,landscape ecological risk of the Weihe River basin has been improved.Severe landscape ecological risk area decreased by 19,177.87 km2,high landscape ecological risk area decreased by 3904.35 km2,and moderate and low landscape ecological risk areas continued to increase.It is worth noting that landscape ecological risks in the upper reaches of the Weihe River basin are still relatively serious,especially in the contiguous areas of high ecological risk,such as Tianshui,Pingliang,Dingxi areas and some areas of Ningxia Hui Autonomous Region.Landscape ecological risk showed obvious spatial dependence,and high ecological risk area was concentrated.Among the driving factors,population density,precipitation,normalized difference vegetation index(NDVI),and their interactions are the most important factors affecting the landscape ecological risk of the Weihe River basin.The findings significantly contribute to our understanding of the ecological dynamics in the Weihe River basin,providing crucial insights for sustainable management in the region.展开更多
The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are e...The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are extremely fragile and sensitive to external environmental changes.Land use and land cover(LULC)changes significantly impact soil structure and function,thus affecting the soil multifunctionality(SMF).However,the effect of LULC changes on the SMF in the drylands of China has rarely been reported.In this study,we investigated the characteristics of the SMF changes based on soil data in the 1980s from the National Tibetan Plateau Data Center.We explored the drivers of the SMF changes under different LULC types(including forest,grassland,shrubland,and desert)and used structural equation modeling to explore the main driver of the SMF changes.The results showed that the SMF under the four LULC types decreased in the following descending order:forest,grassland,shrubland,and desert.The main driver of the SMF changes under different LULC types was mean annual temperature(MAT).In addition to MAT,pH in forest,soil moisture(SM)and soil biodiversity index in grassland,SM in shrubland,and aridity index in desert are crucial factors for the SMF changes.Therefore,the SMF in the drylands of China is regulated mainly by MAT and pH,and comprehensive assessments of the SMF in drylands need to be performed regarding LULC changes.The results are beneficial for evaluating the SMF among different LULC types and predicting the SMF under global climate change.展开更多
Due to its abundant rainfall, the city of Libreville, which concentrates more than half of Gabon’s population, is frequently confronted with the impacts of natural disasters such as floods and landslides. This study ...Due to its abundant rainfall, the city of Libreville, which concentrates more than half of Gabon’s population, is frequently confronted with the impacts of natural disasters such as floods and landslides. This study attempts to identify the complex relationships between the dynamics of land use and the role of rainfall in the occurrence of landslides. On the one hand, it uses statistics on landslides compiled from information taken from general news bulletins and, on the other, daily rainfall data obtained from the National Meteorological Department. The study revealed that the Libreville East sector, dominated by Mount Nkol Ogoum, one of Libreville’s most prominent landforms, is affected by a land-use dynamic in which human settlement has been progressing for some thirty years, to the detriment of the original vegetation which, among other things, helped to stabilise the soil on the hillsides and the marshy areas at the foot of the slopes. The result is not only an uncontrolled occupation of the land, but also a major landslide every two years in this part of the city, causing significant loss of life and property. However, an analysis of the time series shows little rainfall variability, marked in particular by a predominance of negative anomalies, and the occurrence of a few exceptional daily rainfall peaks. Similarly, the period from 20 October to 20 November, which receives the most rainfall, also appears to be the most conducive to landslides.展开更多
The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evalu...The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.展开更多
Agriculture forms the backbone of a nation,and food security is essential for social stability and sustainable economic growth.In China,ensuring adequate food production is not only critical for national well-being bu...Agriculture forms the backbone of a nation,and food security is essential for social stability and sustainable economic growth.In China,ensuring adequate food production is not only critical for national well-being but also a strategic priority for maintaining self-sufficiency.To enhance food security,two key approaches are increasing yields from the existing agricultural lands and improving the productivity of low-and medium-yield farmland.One of China’s major underutilized resources is its extensive saline-alkali lands,which,despite historically low productivity due to poor soil conditions and scarce freshwater resources,hold immense potential for boosting grain output.Recognizing this,the Chinese Academy of Sciences,in collaboration with the Chinese Ministry of Science and Technology(MOST),initiated the“Bohai Granary Scientific and Technological Demonstration Project”(Bohai Granary Project for short)in partnership with three provinces and one municipality-Hebei,Shandong,Liaoning,and Tianjin.This project represents a landmark effort to rehabilitate saline-alkali lands and transform them into highly productive grain-producing regions,thereby contributing significantly to China’s food security strategy.In this article,the author revisits the key milestones,technological breakthroughs,and outlook on the future potential of this project.展开更多
Rainfall-induced landslides,exacerbated by climate change,require urgent attention to identify vulnerable regions and propose effective risk mitigation measures.Extensive research underscores the significant impact of...Rainfall-induced landslides,exacerbated by climate change,require urgent attention to identify vulnerable regions and propose effective risk mitigation measures.Extensive research underscores the significant impact of vegetation on soil properties and slope stability,emphasizing the necessity to incorporate vegetation effects into regional landslide susceptibility mapping.This review thoroughly examines research integrating vegetation into landslide susceptibility mapping,encompassing qualitative,semi-quantitative,and quantitative forecasting methods.It highlights the importance of incorporating vegetation aspects into these methods for comprehensive and accurate landslide susceptibility assessment.This review explores the diverse roles of vegetation in slope stability,covering both aggregated impacts and individual influences,including mechanical and hydrological effects on soil properties,as well as the implications of evapotranspiration and rainwater interception on slope stability.While aggregated roles are integrated into non-deterministic methods as input layers,individual roles are considered in deterministic methods.In the application of deterministic methods,it is noteworthy that a considerable number of studies primarily concentrate on the mechanical impact,particularly the reinforcement provided by root cohesion.The review also explores limitations and highlights future research prospects.In the context of mapping landslide susceptibility amid changing climatic conditions,data-driven techniques encounter challenges,while deterministic methods present their advantages.Stressing the significance of hydrological impacts,the paper recommends incorporating vegetation influences on unsaturated soil properties,including the soil water characteristic curve and soil permeability,along with pre-wetting suction due to evapotranspiration and potential rainwater interception.展开更多
“宝钢湛江项目”的实施对近十年湛江东海岛的地物分布产生剧烈影响,尤其是工业用地。本文基于2013年、2017年和2021年的陆地卫星8号(Landsat-8)数据对湛江东海岛进行地物分类,研究该区域近十年的用地变化趋势。以2013年数据为参照:采...“宝钢湛江项目”的实施对近十年湛江东海岛的地物分布产生剧烈影响,尤其是工业用地。本文基于2013年、2017年和2021年的陆地卫星8号(Landsat-8)数据对湛江东海岛进行地物分类,研究该区域近十年的用地变化趋势。以2013年数据为参照:采用归一化水体指数(Normalized Difference Water Index,NDWI)模型和谱间关系模型实现水陆分离,比对选择分离效果较优者以提取东海岛岸线;对比最大似然法、神经网络法和支持向量机法3种监督分类方法,选择提取地物效果最优者应用于其余数据。基于Google earth在线地图及无人机实测数据构建验证点集,使用混淆矩阵进行精度评价。结果表明:谱间关系模型的水陆分离效果较优,提取海岛岸线的精确度有明显提升;支持向量机法的分类总体精度和Kappa系数最高,分类结果能较好地反映研究区的真实地物分布;汇总三年数据的分类结果,发现用于发展工业的土地面积增长突出且处于持续增长趋势。谱间关系模型与支持向量机法分别实现了对东海岛岸线和地物类型的准确提取,得出近十年研究区的用地变化趋势,能为研究区的用地规划提供参考。展开更多
Taking advantage of remote sensing(RS) technology and geographic information system(GIS) technology to interpret the four periods' data of remote sensing images of Pearl River Estuary in the years of 1990,1995,200...Taking advantage of remote sensing(RS) technology and geographic information system(GIS) technology to interpret the four periods' data of remote sensing images of Pearl River Estuary in the years of 1990,1995,2000,and 2005,the changes in land utilization and landscape layout of Pearl River Estuary have been analyzed with reference to land utilization dynamic model and quantitative method in landscape ecology.Results indicate several points as followings.①Located in the region typical of high-speed economic development,Pearl River Estuary shows noticeable changes in land types and evident spatial temporal difference.During these 15 years,the areas of cultivated land and forests have experienced dramatic decline while the land for construction purposes shows the trend of powerful increase.②On the prospect of variation,landscape metrics have indicated great differences among other landscape pattern indices except for Area-Weighted Mean Patch Fractal Dimension(AWMPFD) especially during the period from 1990 to 1995 which experiences the most obvious changes.③On the prospect of landscape,landscape pattern indices also indicate great changes in the landscape layout of Pearl River Estuary from 1990 to 2005 as well as noticeable increase in the number of patches,and various landscape pattern indices show the increase in the degree of regional landscape fragmentation and increase in diversity.展开更多
文摘Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise of land surface temperature(LST),which consequently have caused a variety of environmental issues and threated the sustainable development of urban areas.Greenbelts are employed as an urban planning containment policy to regulate urban expansion,safeguard natural open spaces,and serve adaptation and mitigation functions.And they are regarded as a powerful measure for enhancing urban environmental sustainability.Despite the fact that,the relation between landscape structure change and variation of LST has been examined thoroughly in many studies,but there is a limitation concerning this relation in semi-arid climate and in greenbelts as well,with the lacking of comprehensive research combing both aspects.Accordingly,this study investigated the spatiotemporal changes of landscape pattern of LULC and their relationship with variation of LST within an inner greenbelt in the semi-arid Erbil City of northern Iraq.The study utilized remote sensing data to retrieve LST,classified LULC,and calculated landscape metrics for analyzing spatial changes during the study period.The results indicated that both composition and configuration of LULC had an impact on the variation of LST in the study area.The Pearson's correlation showed the significant effect of Vegetation 1 type(VH),cultivated land(CU),and bare soil(BS)on LST,as increase of LST was related to the decrease of VH and the increases of CU and BS,while,neither Vegetation 2 type(VL)nor built-up(BU)had any effects.Additionally,the spatial distribution of LULC also exhibited significant effects on LST,as LST was strongly correlated with landscape indices for VH,CU,and BS.However,for BU,only aggregation index metric affected LST,while none of VL metrics had a relation.The study provides insights for landscape planners and policymakers to not only develop more green spaces in greenbelt but also optimize the spatial landscape patterns to reduce the influence of LST on the urban environment,and further promote sustainable development and enhance well-being in the cities with semi-arid climate.
文摘Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Land cover identification, delineation and mapping is important for planning activities, resource management and global monitoring studies while baseline mapping and subsequent monitoring is done by application of land use to get timely information about quantity of land that has been used. The present study has been carried out in Dhund river watershed of Jaipur, Rajasthan which covers an area of about 1828 sq∙km. The minimum and maximum elevation of the area is found to be 214 m and 603 m respectively. Land use and land cover changes of three decades from 1991 to 2021 have been interpreted by using remotes sensing and GIS techniques. ArcGIS software (Arc map 10.2), SOI topographic map, Cartosat-1 DEM and satellite data of Landsat 5 and Landsat 8 have been used for interpretation of eleven classes. The study shows an increase in cultivated land, settlement, waterbody, open forest, plantation and mining due to urbanization because of increasing demands of food, shelter and water while a decrease in dense forest, river, open scrub, wasteland and uncultivated land has also been marked due to destruction of aforementioned by anthropogenic activities such as industrialization resulting in environmental degradation that leads to air, soil and water pollution.
文摘Expanding the utilization of marginal land resources in rural areas is regarded as a significant supplement for the sustainable development of modern agriculture for its yield, economic and ecological good. Marginal areas, due to their natural limitations, are only productive for energy crops with strong resistance and tolerance. Cassava, in its longstanding cultivation practices, has marked its adaptability in tropical and subtropical regions. Farmers are allowed to improve reclaimed soils’ fertility, while plants’ canopy coverage could reduce soil erosion. Besides, cassava tubers to be produced as food or fodder can be counted as soil productivity. Breeding advanced cassava varieties on marginal land under proper intensification management and facilitating policies can indeed increase farmers’ income. Some of the projects implemented outside of China speak quite well on that. Additionally, intercropping modes for cassava bring higher incomes than monocropping mode, which simultaneously improves the ecosystem structure and soil conditions. The interspecific cooperation brought by the intercropping pattern has its buffering function and antagonistic effects to counter against plant diseases, pest attacks and weed infestations. It performs as a natural alternative for pesticides and fertilizers with minimal inputs and safe and productive outputs. Although a complete cassava industrial chain has been formed nationwide, there are still challenges like the inadequate use of marginal areas and risks triggered by unfavorable climate, changeable commodity markets, and the composition of the labor force. However, there will still be ample room for further growth of cassava, for recent years have witnessed the acceleration in the circulation of rural land management rights and the stratification of Chinese farmers, which gives an impetus to household management’s dominance as well as the improvements of rural social welfare systems for the overall agricultural efficiency.
基金the National Natural Science Foundation of China(31971859)the Doctoral Research Start-up Fund of Northwest A&F University,China(Z1090121109)the Shaanxi Science and Technology Development Plan Project(2023-JC-QN-0197).
文摘Weihe River basin is of great significance to analyze the changes of land use pattern and landscape ecological risk and to improve the ecological basis of regional development.Based on land use data of the Weihe River basin in 2000,2010,and 2020,with the support of Aeronautical Reconnaissance Coverage Geographic Information System(ArcGIS),GeoDa,and other technologies,this study analyzed the spatial-temporal characteristics and driving factors of land use pattern and landscape ecological risk.Results showed that land use structure of the Weihe River basin has changed significantly,with the decrease of cropland and the increase of forest land and construction land.In the past 20 a,cropland has decreased by 7347.70 km2,and cropland was mainly converted into forest land,grassland,and construction land.The fragmentation and dispersion of ecological landscape pattern in the Weihe River basin were improved,and land use pattern became more concentrated.Meanwhile,landscape ecological risk of the Weihe River basin has been improved.Severe landscape ecological risk area decreased by 19,177.87 km2,high landscape ecological risk area decreased by 3904.35 km2,and moderate and low landscape ecological risk areas continued to increase.It is worth noting that landscape ecological risks in the upper reaches of the Weihe River basin are still relatively serious,especially in the contiguous areas of high ecological risk,such as Tianshui,Pingliang,Dingxi areas and some areas of Ningxia Hui Autonomous Region.Landscape ecological risk showed obvious spatial dependence,and high ecological risk area was concentrated.Among the driving factors,population density,precipitation,normalized difference vegetation index(NDVI),and their interactions are the most important factors affecting the landscape ecological risk of the Weihe River basin.The findings significantly contribute to our understanding of the ecological dynamics in the Weihe River basin,providing crucial insights for sustainable management in the region.
基金supported by the Tianshan Talent Training Plan of Xinjiang,China(2022TSYCLJ0058,2022TSYCCX0001)the National Natural Science Foundation of China(2022D01D83,42377358).
文摘The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are extremely fragile and sensitive to external environmental changes.Land use and land cover(LULC)changes significantly impact soil structure and function,thus affecting the soil multifunctionality(SMF).However,the effect of LULC changes on the SMF in the drylands of China has rarely been reported.In this study,we investigated the characteristics of the SMF changes based on soil data in the 1980s from the National Tibetan Plateau Data Center.We explored the drivers of the SMF changes under different LULC types(including forest,grassland,shrubland,and desert)and used structural equation modeling to explore the main driver of the SMF changes.The results showed that the SMF under the four LULC types decreased in the following descending order:forest,grassland,shrubland,and desert.The main driver of the SMF changes under different LULC types was mean annual temperature(MAT).In addition to MAT,pH in forest,soil moisture(SM)and soil biodiversity index in grassland,SM in shrubland,and aridity index in desert are crucial factors for the SMF changes.Therefore,the SMF in the drylands of China is regulated mainly by MAT and pH,and comprehensive assessments of the SMF in drylands need to be performed regarding LULC changes.The results are beneficial for evaluating the SMF among different LULC types and predicting the SMF under global climate change.
文摘Due to its abundant rainfall, the city of Libreville, which concentrates more than half of Gabon’s population, is frequently confronted with the impacts of natural disasters such as floods and landslides. This study attempts to identify the complex relationships between the dynamics of land use and the role of rainfall in the occurrence of landslides. On the one hand, it uses statistics on landslides compiled from information taken from general news bulletins and, on the other, daily rainfall data obtained from the National Meteorological Department. The study revealed that the Libreville East sector, dominated by Mount Nkol Ogoum, one of Libreville’s most prominent landforms, is affected by a land-use dynamic in which human settlement has been progressing for some thirty years, to the detriment of the original vegetation which, among other things, helped to stabilise the soil on the hillsides and the marshy areas at the foot of the slopes. The result is not only an uncontrolled occupation of the land, but also a major landslide every two years in this part of the city, causing significant loss of life and property. However, an analysis of the time series shows little rainfall variability, marked in particular by a predominance of negative anomalies, and the occurrence of a few exceptional daily rainfall peaks. Similarly, the period from 20 October to 20 November, which receives the most rainfall, also appears to be the most conducive to landslides.
基金supported by the National Natural Science Foundation of China(Grant Nos.42090054,41931295)the Natural Science Foundation of Hubei Province of China(2022CFA002)。
文摘The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.
文摘Agriculture forms the backbone of a nation,and food security is essential for social stability and sustainable economic growth.In China,ensuring adequate food production is not only critical for national well-being but also a strategic priority for maintaining self-sufficiency.To enhance food security,two key approaches are increasing yields from the existing agricultural lands and improving the productivity of low-and medium-yield farmland.One of China’s major underutilized resources is its extensive saline-alkali lands,which,despite historically low productivity due to poor soil conditions and scarce freshwater resources,hold immense potential for boosting grain output.Recognizing this,the Chinese Academy of Sciences,in collaboration with the Chinese Ministry of Science and Technology(MOST),initiated the“Bohai Granary Scientific and Technological Demonstration Project”(Bohai Granary Project for short)in partnership with three provinces and one municipality-Hebei,Shandong,Liaoning,and Tianjin.This project represents a landmark effort to rehabilitate saline-alkali lands and transform them into highly productive grain-producing regions,thereby contributing significantly to China’s food security strategy.In this article,the author revisits the key milestones,technological breakthroughs,and outlook on the future potential of this project.
文摘Rainfall-induced landslides,exacerbated by climate change,require urgent attention to identify vulnerable regions and propose effective risk mitigation measures.Extensive research underscores the significant impact of vegetation on soil properties and slope stability,emphasizing the necessity to incorporate vegetation effects into regional landslide susceptibility mapping.This review thoroughly examines research integrating vegetation into landslide susceptibility mapping,encompassing qualitative,semi-quantitative,and quantitative forecasting methods.It highlights the importance of incorporating vegetation aspects into these methods for comprehensive and accurate landslide susceptibility assessment.This review explores the diverse roles of vegetation in slope stability,covering both aggregated impacts and individual influences,including mechanical and hydrological effects on soil properties,as well as the implications of evapotranspiration and rainwater interception on slope stability.While aggregated roles are integrated into non-deterministic methods as input layers,individual roles are considered in deterministic methods.In the application of deterministic methods,it is noteworthy that a considerable number of studies primarily concentrate on the mechanical impact,particularly the reinforcement provided by root cohesion.The review also explores limitations and highlights future research prospects.In the context of mapping landslide susceptibility amid changing climatic conditions,data-driven techniques encounter challenges,while deterministic methods present their advantages.Stressing the significance of hydrological impacts,the paper recommends incorporating vegetation influences on unsaturated soil properties,including the soil water characteristic curve and soil permeability,along with pre-wetting suction due to evapotranspiration and potential rainwater interception.
文摘“宝钢湛江项目”的实施对近十年湛江东海岛的地物分布产生剧烈影响,尤其是工业用地。本文基于2013年、2017年和2021年的陆地卫星8号(Landsat-8)数据对湛江东海岛进行地物分类,研究该区域近十年的用地变化趋势。以2013年数据为参照:采用归一化水体指数(Normalized Difference Water Index,NDWI)模型和谱间关系模型实现水陆分离,比对选择分离效果较优者以提取东海岛岸线;对比最大似然法、神经网络法和支持向量机法3种监督分类方法,选择提取地物效果最优者应用于其余数据。基于Google earth在线地图及无人机实测数据构建验证点集,使用混淆矩阵进行精度评价。结果表明:谱间关系模型的水陆分离效果较优,提取海岛岸线的精确度有明显提升;支持向量机法的分类总体精度和Kappa系数最高,分类结果能较好地反映研究区的真实地物分布;汇总三年数据的分类结果,发现用于发展工业的土地面积增长突出且处于持续增长趋势。谱间关系模型与支持向量机法分别实现了对东海岛岸线和地物类型的准确提取,得出近十年研究区的用地变化趋势,能为研究区的用地规划提供参考。
基金Fundation project:National key R&D program(2017YFB0502705)Special funds for basic scientific research business expenses in central colleges and universities(2572018BA02)
文摘Taking advantage of remote sensing(RS) technology and geographic information system(GIS) technology to interpret the four periods' data of remote sensing images of Pearl River Estuary in the years of 1990,1995,2000,and 2005,the changes in land utilization and landscape layout of Pearl River Estuary have been analyzed with reference to land utilization dynamic model and quantitative method in landscape ecology.Results indicate several points as followings.①Located in the region typical of high-speed economic development,Pearl River Estuary shows noticeable changes in land types and evident spatial temporal difference.During these 15 years,the areas of cultivated land and forests have experienced dramatic decline while the land for construction purposes shows the trend of powerful increase.②On the prospect of variation,landscape metrics have indicated great differences among other landscape pattern indices except for Area-Weighted Mean Patch Fractal Dimension(AWMPFD) especially during the period from 1990 to 1995 which experiences the most obvious changes.③On the prospect of landscape,landscape pattern indices also indicate great changes in the landscape layout of Pearl River Estuary from 1990 to 2005 as well as noticeable increase in the number of patches,and various landscape pattern indices show the increase in the degree of regional landscape fragmentation and increase in diversity.