In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor anal...In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor analysis and locality preserving projection (LPP). LPDP can effectively use the speaker label information of speech data. Through optimization, LPDP can maintain the inherent manifold local structure of the speech data samples of the same speaker by reducing the distance between them. At the same time, LPDP can enhance the discriminability of the embedding space by expanding the distance between the speech data samples of different speakers. The proposed method is compared with LPP and total variability factor analysis on the NIST SRE 2010 telephone-telephone core condition. The experimental results indicate that the proposed LPDP can overcome the deficiency of LPP and total variability factor analysis and can further improve the system performance.展开更多
To separate each pattern class more strongly and deal with nonlinear ease, a new nonlinear manifold learning algorithm named supervised kernel uneorrelated diseriminant neighborhood preserving projections (SKUDNPP) ...To separate each pattern class more strongly and deal with nonlinear ease, a new nonlinear manifold learning algorithm named supervised kernel uneorrelated diseriminant neighborhood preserving projections (SKUDNPP) is proposed. The algorithm utilizes supervised weight and kernel technique which makes the algorithm cope with classifying and nonlinear problems competently. The within-class geometric structure is preserved, while maximizing the between-class distance. And the features extracted are statistically uneorrelated by introducing an uneorrelated constraint. Experiment results on millimeter wave (MMW) radar target recognition show that the method can give competitive results in comparison with current papular algorithms.展开更多
For the gray attributes of the equipment program and its difficulty to carry out the quantitative assessment of the equipment program information, the gray relation projection method is simply reviewed. Combining the ...For the gray attributes of the equipment program and its difficulty to carry out the quantitative assessment of the equipment program information, the gray relation projection method is simply reviewed. Combining the super-data envelopment analysis(DEA) model and the gray system theory, a new super-DEA for measuring the weight is proposed, and a gray relation projection model is established to rank the equipment programs. Finally, this approach is used to evaluate the equipment program. The results are verified valid and can provide a new way for evaluating the equipment program.展开更多
Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsi...Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly.展开更多
The bug tracking system is well known as the project support tool of open source software. There are many categorical data sets recorded on the bug tracking system. In the past, many reliability assessment methods hav...The bug tracking system is well known as the project support tool of open source software. There are many categorical data sets recorded on the bug tracking system. In the past, many reliability assessment methods have been proposed in the research area of software reliability. Also, there are several software project analyses based on the software effort data such as the earned value management. In particular, the software reliability growth models can </span><span style="font-family:Verdana;">apply to the system testing phase of software development. On the other</span><span style="font-family:Verdana;"> hand, the software effort analysis can apply to all development phase, because the fault data is only recorded on the testing phase. We focus on the big fault data and effort data of open source software. Then, it is difficult to assess by using the typical statistical assessment method, because the data recorded on the bug tracking system is large scale. Also, we discuss the jump diffusion process model based on the estimation method of jump parameters by using the discriminant analysis. Moreover, we analyze actual big fault data to show numerical examples of software effort assessment considering many categorical data set.展开更多
In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,r...In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range.展开更多
针对机械系统状态监测与故障诊断中存在的故障特征维数较高及模式识别导致的耗时较高问题,提出了一种基于自适应局部保持投影(Locality Preserving Projection,LPP)特征降维和改进多变量预测模型(Variable Predictive Model based Class...针对机械系统状态监测与故障诊断中存在的故障特征维数较高及模式识别导致的耗时较高问题,提出了一种基于自适应局部保持投影(Locality Preserving Projection,LPP)特征降维和改进多变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的故障诊断方法。首先,从滚动轴承振动信号中提取时频域特征、能量特征,以及复杂度特征组成高维故障特征数据集;其次,利用自适应LPP方法对高维故障特征数据集进行降维处理,得到低维敏感故障特征;最后,采用改进VPMCD方法对低维敏感故障特征进行分类识别,进而判断故障类型。通过滚动轴承故障诊断试验分析表明,自适应LPP方法克服了传统LPP方法需要人工选取参数的缺陷,在获得低维敏感故障特征的基础上具有较少计算时间,相比主成分分析(Principal Component Analysis,PCA)、局部切空间排列(Local Tangent Space Alignment,LTSA)、线性局部切空间排列(Linear Local Tangent Space Alignment,LLTSA)、等距特征映射(Isometric Mapping,Isomap),以及局部线性嵌入(Locally Linear Embedding,LLE)等算法具有明显的优势;改进VPMCD方法可克服人工选择模型的偶然性和片面性,在滚动轴承10种故障状态的识别中获得了99.4%的诊断精度,相比优化参数支持向量机方法提高了故障诊断效率,大大降低了识别时间,具有一定的优越性。展开更多
文摘In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor analysis and locality preserving projection (LPP). LPDP can effectively use the speaker label information of speech data. Through optimization, LPDP can maintain the inherent manifold local structure of the speech data samples of the same speaker by reducing the distance between them. At the same time, LPDP can enhance the discriminability of the embedding space by expanding the distance between the speech data samples of different speakers. The proposed method is compared with LPP and total variability factor analysis on the NIST SRE 2010 telephone-telephone core condition. The experimental results indicate that the proposed LPDP can overcome the deficiency of LPP and total variability factor analysis and can further improve the system performance.
基金Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 11KJB510020)National Natural Science Foundation of China (No. 61171077)College Industrialization Project of Jiangsu Province,China (No. JH09-24)
文摘To separate each pattern class more strongly and deal with nonlinear ease, a new nonlinear manifold learning algorithm named supervised kernel uneorrelated diseriminant neighborhood preserving projections (SKUDNPP) is proposed. The algorithm utilizes supervised weight and kernel technique which makes the algorithm cope with classifying and nonlinear problems competently. The within-class geometric structure is preserved, while maximizing the between-class distance. And the features extracted are statistically uneorrelated by introducing an uneorrelated constraint. Experiment results on millimeter wave (MMW) radar target recognition show that the method can give competitive results in comparison with current papular algorithms.
基金supported by the National Natural Science Foundation of China(7107307971222106+2 种基金70901069)the Research Foundation of the National Excellent Doctoral Dissertation of Chinathe Research Fund for the Doctoral Program of Higher Education(20133402110028)
文摘For the gray attributes of the equipment program and its difficulty to carry out the quantitative assessment of the equipment program information, the gray relation projection method is simply reviewed. Combining the super-data envelopment analysis(DEA) model and the gray system theory, a new super-DEA for measuring the weight is proposed, and a gray relation projection model is established to rank the equipment programs. Finally, this approach is used to evaluate the equipment program. The results are verified valid and can provide a new way for evaluating the equipment program.
基金supported by the National Natural Science Foundation of China(6177202062202433+4 种基金621723716227242262036010)the Natural Science Foundation of Henan Province(22100002)the Postdoctoral Research Grant in Henan Province(202103111)。
文摘Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly.
文摘The bug tracking system is well known as the project support tool of open source software. There are many categorical data sets recorded on the bug tracking system. In the past, many reliability assessment methods have been proposed in the research area of software reliability. Also, there are several software project analyses based on the software effort data such as the earned value management. In particular, the software reliability growth models can </span><span style="font-family:Verdana;">apply to the system testing phase of software development. On the other</span><span style="font-family:Verdana;"> hand, the software effort analysis can apply to all development phase, because the fault data is only recorded on the testing phase. We focus on the big fault data and effort data of open source software. Then, it is difficult to assess by using the typical statistical assessment method, because the data recorded on the bug tracking system is large scale. Also, we discuss the jump diffusion process model based on the estimation method of jump parameters by using the discriminant analysis. Moreover, we analyze actual big fault data to show numerical examples of software effort assessment considering many categorical data set.
基金supported by the National Natural Science Foundation of China(Nos.4210040255,U19A2086)the Sichuan Science and Technology Program(No.2021JDRC0108)。
文摘In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range.
文摘针对机械系统状态监测与故障诊断中存在的故障特征维数较高及模式识别导致的耗时较高问题,提出了一种基于自适应局部保持投影(Locality Preserving Projection,LPP)特征降维和改进多变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的故障诊断方法。首先,从滚动轴承振动信号中提取时频域特征、能量特征,以及复杂度特征组成高维故障特征数据集;其次,利用自适应LPP方法对高维故障特征数据集进行降维处理,得到低维敏感故障特征;最后,采用改进VPMCD方法对低维敏感故障特征进行分类识别,进而判断故障类型。通过滚动轴承故障诊断试验分析表明,自适应LPP方法克服了传统LPP方法需要人工选取参数的缺陷,在获得低维敏感故障特征的基础上具有较少计算时间,相比主成分分析(Principal Component Analysis,PCA)、局部切空间排列(Local Tangent Space Alignment,LTSA)、线性局部切空间排列(Linear Local Tangent Space Alignment,LLTSA)、等距特征映射(Isometric Mapping,Isomap),以及局部线性嵌入(Locally Linear Embedding,LLE)等算法具有明显的优势;改进VPMCD方法可克服人工选择模型的偶然性和片面性,在滚动轴承10种故障状态的识别中获得了99.4%的诊断精度,相比优化参数支持向量机方法提高了故障诊断效率,大大降低了识别时间,具有一定的优越性。