期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Randomized Generalized Singular Value Decomposition 被引量:1
1
作者 Wei Wei Hui Zhang +1 位作者 Xi Yang Xiaoping Chen 《Communications on Applied Mathematics and Computation》 2021年第1期137-156,共20页
The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memo... The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memory requirement when the scale of the matrices is quite large.In this paper,we use random projections to capture the most of the action of the matrices and propose randomized algorithms for computing a low-rank approximation of the GSVD.Serval error bounds of the approximation are also presented for the proposed randomized algorithms.Finally,some experimental results show that the proposed randomized algorithms can achieve a good accuracy with less computational cost and storage requirement. 展开更多
关键词 Generalized singular value decomposition Randomized algorithm low-rank approximation Error analysis
下载PDF
Electrical Data Matrix Decomposition in Smart Grid 被引量:1
2
作者 Qian Dang Huafeng Zhang +3 位作者 Bo Zhao Yanwen He Shiming He Hye-Jin Kim 《Journal on Internet of Things》 2019年第1期1-7,共7页
As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry ... As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry high-speed and real time data,data losses and data quality degradation may happen constantly. For this problem,according to the strong spatial and temporal correlation of electricity data which isgenerated by human’s actions and feelings, we build a low-rank electricity data matrixwhere the row is time and the column is user. Inspired by matrix decomposition, we dividethe low-rank electricity data matrix into the multiply of two small matrices and use theknown data to approximate the low-rank electricity data matrix and recover the missedelectrical data. Based on the real electricity data, we analyze the low-rankness of theelectricity data matrix and perform the Matrix Decomposition-based method on the realdata. The experimental results verify the efficiency and efficiency of the proposed scheme. 展开更多
关键词 Electrical data recovery matrix decomposition low-rankness smart grid
下载PDF
Parallel Active Subspace Decomposition for Tensor Robust Principal Component Analysis
3
作者 Michael K.Ng Xue-Zhong Wang 《Communications on Applied Mathematics and Computation》 2021年第2期221-241,共21页
Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computati... Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computational cost due to multiple singular value decompositions at each iteration.To overcome the drawback,we propose a scalable and efficient method,named parallel active subspace decomposition,which divides the unfolding along each mode of the tensor into a columnwise orthonormal matrix(active subspace)and another small-size matrix in parallel.Such a transformation leads to a nonconvex optimization problem in which the scale of nuclear norm minimization is generally much smaller than that in the original problem.We solve the optimization problem by an alternating direction method of multipliers and show that the iterates can be convergent within the given stopping criterion and the convergent solution is close to the global optimum solution within the prescribed bound.Experimental results are given to demonstrate that the performance of the proposed model is better than the state-of-the-art methods. 展开更多
关键词 Principal component analysis low-rank tensors Nuclear norm minimization Active subspace decomposition Matrix factorization
下载PDF
基于改进Croston方法的多需求模式零备件预测
4
作者 杨华强 熊坚 +4 位作者 张鹏 范宜静 韩冬阳 曹蕾 夏唐斌 《科学技术与工程》 北大核心 2024年第21期8987-8995,共9页
维修备件管理是提高产线可靠性、实现降本增效的关键。针对具备间歇性与随机性特征的维修备件需求预测问题,提出了基于改进Croston方法的备件需求预测模型。依据Syntetos准则基于间断性与波动性特征将备件需求划分为4类。针对含有波动... 维修备件管理是提高产线可靠性、实现降本增效的关键。针对具备间歇性与随机性特征的维修备件需求预测问题,提出了基于改进Croston方法的备件需求预测模型。依据Syntetos准则基于间断性与波动性特征将备件需求划分为4类。针对含有波动性特征的需求,基于Croston方法主要思想将备件需求预测分解为需求发生状态预测和需求量预测两类问题,设计了集合经验模态分解(ensemble empirical mode decomposition,EEMD)-长短期记忆网络集成(long short-term memory,LSTM)预测模型。EEMD方法将剧烈波动序列分解为若干相对平稳的分量,进而采用LSTM方法对各分量进行预测。针对含有间断性特征的需求,引入信号处理技术中的信号调制技术,将需求发生状态0-1二值序列进行连续化处理。所提方法解决了备件需求波动性强、间断性大的难题,已应用于湖北中烟武汉卷烟厂,证明了方法的优越性与可行性。 展开更多
关键词 备件需求预测 多需求模式 Croston方法 集合经验模态分解 长短期记忆网络
下载PDF
Accurate simulations of pure-viscoacoustic wave propagation in tilted transversely isotropic media 被引量:1
5
作者 Qiang Mao Jian-Ping Huang +2 位作者 Xin-Ru Mu Ji-Dong Yang Yu-Jian Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期866-884,共19页
Forward modeling of seismic wave propagation is crucial for the realization of reverse time migration(RTM) and full waveform inversion(FWI) in attenuating transversely isotropic media. To describe the attenuation and ... Forward modeling of seismic wave propagation is crucial for the realization of reverse time migration(RTM) and full waveform inversion(FWI) in attenuating transversely isotropic media. To describe the attenuation and anisotropy properties of subsurface media, the pure-viscoacoustic anisotropic wave equations are established for wavefield simulations, because they can provide clear and stable wavefields. However, due to the use of several approximations in deriving the wave equation and the introduction of a fractional Laplacian approximation in solving the derived equation, the wavefields simulated by the previous pure-viscoacoustic tilted transversely isotropic(TTI) wave equations has low accuracy. To accurately simulate wavefields in media with velocity anisotropy and attenuation anisotropy, we first derive a new pure-viscoacoustic TTI wave equation from the exact complex-valued dispersion formula in viscoelastic vertical transversely isotropic(VTI) media. Then, we present the hybrid finite-difference and low-rank decomposition(HFDLRD) method to accurately solve our proposed pure-viscoacoustic TTI wave equation. Theoretical analysis and numerical examples suggest that our pure-viscoacoustic TTI wave equation has higher accuracy than previous pure-viscoacoustic TTI wave equations in describing q P-wave kinematic and attenuation characteristics. Additionally, the numerical experiment in a simple two-layer model shows that the HFDLRD technique outperforms the hybrid finite-difference and pseudo-spectral(HFDPS) method in terms of accuracy of wavefield modeling. 展开更多
关键词 Pure-viscoacoustic TTI wave equation Attenuation anisotropy Seismic modeling low-rank decomposition method
下载PDF
Fast nonnegative tensor ring decomposition based on the modulus method and low-rank approximation
6
作者 YU YuYuan XIE Kan +2 位作者 YU JinShi JIANG Qi XIE ShengLi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第9期1843-1853,共11页
Nonnegative tensor ring(NTR) decomposition is a powerful tool for capturing the significant features of tensor objects while preserving the multi-linear structure of tensor data. The existing algorithms rely on freque... Nonnegative tensor ring(NTR) decomposition is a powerful tool for capturing the significant features of tensor objects while preserving the multi-linear structure of tensor data. The existing algorithms rely on frequent reshaping and permutation operations in the optimization process and use a shrinking step size or projection techniques to ensure core tensor nonnegativity, which leads to a slow convergence rate, especially for large-scale problems. In this paper, we first propose an NTR algorithm based on the modulus method(NTR-MM), which constrains core tensor nonnegativity by modulus transformation. Second, a low-rank approximation(LRA) is introduced to NTR-MM(named LRA-NTR-MM), which not only reduces the computational complexity of NTR-MM significantly but also suppresses the noise. The simulation results demonstrate that the proposed LRA-NTR-MM algorithm achieves higher computational efficiency than the state-of-the-art algorithms while preserving the effectiveness of feature extraction. 展开更多
关键词 nonnegative tensor ring decomposition modulus method low-rank approximation
原文传递
基于改进判别字典学习的故障诊断方法 被引量:2
7
作者 王维刚 刘占生 《振动与冲击》 EI CSCD 北大核心 2016年第4期110-114,共5页
近年来,基于稀疏表示的分类技术在模式识别中取得一定的成功。该框架中,字典的学习和分类器的训练通常是两个独立的模块,降低了方法的识别精度。针对以上问题,提出了一种特征提取和模式识别相融合的改进判别字典学习模型,将重构误差项... 近年来,基于稀疏表示的分类技术在模式识别中取得一定的成功。该框架中,字典的学习和分类器的训练通常是两个独立的模块,降低了方法的识别精度。针对以上问题,提出了一种特征提取和模式识别相融合的改进判别字典学习模型,将重构误差项、稀疏编码判别项及分类误差项进行了整合,并用K奇异值分解算法对目标函数进行优化,实现了字典和分类器的同步学习。该方法先对原始信号进行经验模态分解,并从分解的本征模态函数中提取时、频特征,形成故障样本;然后将训练样本输入改进模型用K奇异值分解优化;最后用习得字典及分类器权重对测试样本进行识别。实验结果表明:该算法不但适用于小样本故障问题,而且鲁棒性和分类性能都明显高于其它算法。 展开更多
关键词 稀疏编码 字典学习 经验模态分解 故障诊断
下载PDF
基于稀疏分解残差的氢气传感器故障探测与辨识方法
8
作者 韦宝泉 付智辉 +2 位作者 邓芳明 吴翔 谭畅 《传感器与微系统》 CSCD 2017年第8期32-34,38,共4页
针对传感器故障探测和诊断,提出了一种基于稀疏分解残差的氢气传感器故障探测和辨识方法。基于信号稀疏分解理论,对采集的传感器正常信号数据集,利用K奇异值分解(K-SVD)学习算法得到一超完备字典D;在字典上对非正常(故障)信号进行分解,... 针对传感器故障探测和诊断,提出了一种基于稀疏分解残差的氢气传感器故障探测和辨识方法。基于信号稀疏分解理论,对采集的传感器正常信号数据集,利用K奇异值分解(K-SVD)学习算法得到一超完备字典D;在字典上对非正常(故障)信号进行分解,根据稀疏分解的残差大小和范围完成对传感器故障的探测及辨识。实验结果表明:对氢气传感器的故障探测率和总辨识率分别达到98.75%和97.25%,可以有效地解决氢气传感器的故障探测和辨识。 展开更多
关键词 氢气传感器 故障探测 故障辨识 稀疏分解 K奇异值分解
下载PDF
具有部分备用服务员的M/M/c休假排队
9
作者 朱翼隽 凌婷婷 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2011年第5期612-616,共5页
顾客到达是泊松过程,模型具有c个服务员A和d个备用服务员B,1≤d<c.A服务员在岗工作时B服务员备用,上岗服务员若因某种原因休假,备用服务员立即替换上岗,B服务员不休假,A,B服务员的服务时间均服从负指数分布.用拟生灭过程和矩阵几何... 顾客到达是泊松过程,模型具有c个服务员A和d个备用服务员B,1≤d<c.A服务员在岗工作时B服务员备用,上岗服务员若因某种原因休假,备用服务员立即替换上岗,B服务员不休假,A,B服务员的服务时间均服从负指数分布.用拟生灭过程和矩阵几何解的方法得到了稳态队长的分布,在此基础上证明了在服务台全忙条件下的队长和等待时间的条件随机分解,给出了附加队长的母函数和附加延迟的拉普拉斯变换,通过数值例子分析了参数对平均附加队长和平均附加延迟的影响. 展开更多
关键词 多服务台 部分备用服务员 拟生灭过程 矩阵几何解 条件随机分解
下载PDF
基于低秩稀疏分解优化的图像标签完备 被引量:3
10
作者 孟磊 张素兰 +1 位作者 胡立华 张继福 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第1期36-44,共9页
大量上传的网络图像因用户语义标注的随意性,造成了图像标签的不完备,大大降低了图像检索的效率.低秩稀疏是一种有效降低数据噪声的方法.为提高图像语义标签完备的准确度,提出一种基于低秩稀疏分解优化(LRSDO)的图像标签完备方法.首先... 大量上传的网络图像因用户语义标注的随意性,造成了图像标签的不完备,大大降低了图像检索的效率.低秩稀疏是一种有效降低数据噪声的方法.为提高图像语义标签完备的准确度,提出一种基于低秩稀疏分解优化(LRSDO)的图像标签完备方法.首先结合待完备图像的视觉特征和语义搜索其近邻图像集;然后通过低秩稀疏分解模型获得其视觉特征与语义之间的映射关系,并以此预测该图像的候选标签;最后使用面向个体的标签共现频率方法对候选标签进行去噪优化,进而实现对其更加准确的自动图像标签完备.在基准数据集Corel5K和真实数据集Flickr30Concepts上进行了实验,结果表明,该方法在图像标签完备的平均准确率,平均召回率和覆盖率上均表现出更优的性能. 展开更多
关键词 图像标签完备 低秩稀疏分解 标签预测 标签优化 语义标注
下载PDF
基于变分模态分解的非稳态备件需求预测方法 被引量:3
11
作者 秦海峰 杨超 +2 位作者 侯兴明 徐庆尧 侯翔 《火力与指挥控制》 CSCD 北大核心 2021年第11期99-105,共7页
备件需求量的预测是备件配置的重要内容,针对当前装备备件需求非稳态的特点,提出一种基于变分模态分解的备件需求预测方法。运用变分模态分解将非稳态备件需求序列分解为若干模态分量,引入模糊熵的概念,将周期性、随机性和长期性特征明... 备件需求量的预测是备件配置的重要内容,针对当前装备备件需求非稳态的特点,提出一种基于变分模态分解的备件需求预测方法。运用变分模态分解将非稳态备件需求序列分解为若干模态分量,引入模糊熵的概念,将周期性、随机性和长期性特征明显的模态分量进行有效聚合,提高计算效率,进而运用预测效果较好的径向基神经网络预测法对聚合后的模态分量分别进行预测,将各分量预测结果进行整合形成最终的备件需求预测值。通过案例分析与实验对比,结果表明提出的方法能够有效挖掘非稳态备件需求序列的深层次信息,实现非稳态备件需求序列的较好拟合,并与其他非稳态时间序列预测方法对比具有较高的预测精度,为适应新时代实战实训背景下备件需求的特点提供了有效的方法支撑。 展开更多
关键词 变分模态分解 非稳态 备件 需求 预测
下载PDF
FAST ALGORITHMS FOR HIGHER-ORDER SINGULAR VALUE DECOMPOSITION FROM INCOMPLETE DATA 被引量:1
12
作者 Yangyang Xu 《Journal of Computational Mathematics》 SCIE CSCD 2017年第4期397-422,共26页
Higher-order singular value decomposition (HOSVD) is an efficient way for data reduction and also eliciting intrinsic structure of multi-dimensional array data. It has been used in many applications, and some of the... Higher-order singular value decomposition (HOSVD) is an efficient way for data reduction and also eliciting intrinsic structure of multi-dimensional array data. It has been used in many applications, and some of them involve incomplete data. To obtain HOSVD of the data with missing values, one can first impute the missing entries through a certain tensor completion method and then perform HOSVD to the reconstructed data. However, the two-step procedure can be inefficient and does not make reliable decomposition. In this paper, we formulate an incomplete HOSVD problem and combine the two steps into solving a single optimization problem, which simultaneously achieves imputation of missing values and also tensor decomposition. We also present one algorithm for solving the problem based on block coordinate update (BCU). Global convergence of the algorithm is shown under mild assumptions and implies that of the popular higher-order orthogonality iteration (HOOI) method, and thus we, for the first time, give global convergence of HOOI. In addition, we compare the proposed method to state-of-the-art ones for solving incom- plete HOSVD and also low-rank tensor completion problems and demonstrate the superior performance of our method over other compared ones. Furthermore, we apply it to face recognition and MRI image reconstruction to show its practical performance. 展开更多
关键词 multilinear data analysis higher-order singular value decomposition (HOSVD) low-rank tensor completion non-convex optimization higher-order orthogonality iteration(HOOI) global convergence.
原文传递
基于变分模态分解的备件需求组合预测模型研究
13
作者 陈桂明 魏增基 李惟 《兵器装备工程学报》 CAS CSCD 北大核心 2022年第S02期151-159,共9页
为提高备件需求预测的精确性和稳定性,将信号处理、时间序列分析以及神经网络学习等技术相结合,提出一种基于变分模态分解的备件需求组合预测模型,以未来的备件需求量预测设置测试集进行算法验证。以某型装备中的二极管为例,引入变分模... 为提高备件需求预测的精确性和稳定性,将信号处理、时间序列分析以及神经网络学习等技术相结合,提出一种基于变分模态分解的备件需求组合预测模型,以未来的备件需求量预测设置测试集进行算法验证。以某型装备中的二极管为例,引入变分模型对需求序列进行分解与重构,并对分解后的各模态分量应用备件组合预测模型(由差分自回归移动平均和长短时记忆神经网络以均方差最小为目标函数所构成)。确定组合模型的权重,得出各模态分量的预测值。本文对预测值进行求和以及重构,得到二极管备件需求序列的最终预测值。为确保预测精度,引入了回归移动平均、长短时记忆和变分模型等预测模型与所构建的模型进行比对,证明本文所提出的组合模型在备件需求序列预测方面具有更精准的预测精度和更稳定的预测性能。 展开更多
关键词 时间序列预测 变分模态分解 ARIMA、LSTM 组合模型 备件需求预测
下载PDF
民用飞机航材销售费用分解结构模型研究
14
作者 李波波 姜婷 +1 位作者 王秋男 李一丹 《航空工程进展》 CSCD 2021年第5期109-115,144,共8页
当前我国民用飞机缺乏合理、灵活的航材价格计算模型,而合适的航材销售费用分解结构模型可以降低运营成本、增加利润。本文综合多种因素的影响,从不同的维度对航材定价进行研究,阐述民用飞机航材成本费用的构成;从全寿命周期的角度对航... 当前我国民用飞机缺乏合理、灵活的航材价格计算模型,而合适的航材销售费用分解结构模型可以降低运营成本、增加利润。本文综合多种因素的影响,从不同的维度对航材定价进行研究,阐述民用飞机航材成本费用的构成;从全寿命周期的角度对航材价格影响因素进行分析,构建国产民用飞机全寿命周期不同航材在多种因素影响下的销售费用分解结构模型。结果表明:构建的分解结构模型合理、有效,能够指导国产民用飞机型号航材定价分析,航材销售价格影响因素分析能够结合不同部门维度或工作维度对全寿命周期内的航材成本进行结构分解,实现利润最大化。 展开更多
关键词 民用飞机 航材 定价 销售 费用分解
下载PDF
Linear low-rank approximation and nonlinear dimensionality reduction 被引量:2
15
作者 ZHANG Zhenyue & ZHA Hongyuan Department of Mathematics, Zhejiang University, Yuquan Campus, Hangzhou 310027, China Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, U.S.A. 《Science China Mathematics》 SCIE 2004年第6期908-920,共13页
We present our recent work on both linear and nonlinear data reduction methods and algorithms: for the linear case we discuss results on structure analysis of SVD of columnpartitioned matrices and sparse low-rank appr... We present our recent work on both linear and nonlinear data reduction methods and algorithms: for the linear case we discuss results on structure analysis of SVD of columnpartitioned matrices and sparse low-rank approximation; for the nonlinear case we investigate methods for nonlinear dimensionality reduction and manifold learning. The problems we address have attracted great deal of interest in data mining and machine learning. 展开更多
关键词 singular value decomposition low-rank approximation sparse matrix nonlinear dimensionality reduction principal manifold subspace alignment data mining
原文传递
基于不稳定时间序列分析的设备备件需求预测方法 被引量:11
16
作者 罗薇 符卓 伏爱兰 《系统工程》 CSSCI CSCD 北大核心 2016年第6期128-135,共8页
针对设备备件需求具有的非平稳性、多样性特征,提出一种基于集合经验模态分解(EEMD)和支持向量回归(SVR)的需求预测方法。首先运用EEMD将需求序列分解为一系列相对平稳的本征模函数(IMF),然后对各IMF分量采用基于RBF核函数的支持向量机... 针对设备备件需求具有的非平稳性、多样性特征,提出一种基于集合经验模态分解(EEMD)和支持向量回归(SVR)的需求预测方法。首先运用EEMD将需求序列分解为一系列相对平稳的本征模函数(IMF),然后对各IMF分量采用基于RBF核函数的支持向量机进行非线性回归,同时针对不同分量的预测模型采用遗传算法进行核参数优化,最后将各分量的预测结果合成为实际时间序列的预测值。实验数据表明:该方法能有效降低备件需求的不稳定性对预测结果造成的影响,对小样本、非平稳时间序列的预测问题,与通用的预测方法相比具有较高的预测精度。 展开更多
关键词 设备备件需求预测 不稳定时间序列 集合经验模态分解 支持向量机 遗传算法
原文传递
Modeling the Correlations of Relations for Knowledge Graph Embedding 被引量:7
17
作者 Ji-Zhao Zhu Yan-Tao Jia +2 位作者 Jun Xu Jian-Zhong Qiao Xue-Qi Cheng 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第2期323-334,共12页
Knowledge graph embedding, which maps the entities and relations into low-dimensional vector spaces, has demonstrated its effectiveness in many tasks such as link prediction and relation extraction. Typical methods in... Knowledge graph embedding, which maps the entities and relations into low-dimensional vector spaces, has demonstrated its effectiveness in many tasks such as link prediction and relation extraction. Typical methods include TransE, TransH, and TransR. All these methods map different relations into the vector space separately and the intrinsic correlations of these relations are ignored. It is obvious that there exist some correlations among relations because different relations may connect to a common entity. For example, the triples (Steve Jobs, PlaceOfBrith, California) and (Apple Inc., Location, California) share the same entity California as their tail entity. We analyze the embedded relation matrices learned by TransE/TransH/TransR, and find that the correlations of relations do exist and they are showed as low-rank structure over the embedded relation matrix. It is natural to ask whether we can leverage these correlations to learn better embeddings for the entities and relations in a knowledge graph. In this paper, we propose to learn the embedded relation matrix by decomposing it as a product of two low-dimensional matrices, for characterizing the low-rank structure. The proposed method, called TransCoRe (Translation-Based Method via Modeling the Correlations of Relations), learns the embeddings of entities and relations with translation-based framework. Experimental results based on the benchmark datasets of WordNet and Freebase demonstrate that our method outperforms the typical baselines on link prediction and triple classification tasks. 展开更多
关键词 knowledge graph embedding low-rank matrix decomposition
原文传递
Mobile phone recognition method based on bilinear convolutional neural network 被引量:3
18
作者 HAN HongGui ZHEN Qi +2 位作者 YANG HongYan DU YongPing QIAO JunFei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第11期2477-2484,共8页
Model recognition of second-hand mobile phones has been considered as an essential process to improve the efficiency of phone recycling. However, due to the diversity of mobile phone appearances, it is difficult to re... Model recognition of second-hand mobile phones has been considered as an essential process to improve the efficiency of phone recycling. However, due to the diversity of mobile phone appearances, it is difficult to realize accurate recognition. To solve this problem, a mobile phone recognition method based on bilinear-convolutional neural network(B-CNN) is proposed in this paper.First, a feature extraction model, based on B-CNN, is designed to adaptively extract local features from the images of secondhand mobile phones. Second, a joint loss function, constructed by center distance and softmax, is developed to reduce the interclass feature distance during the training process. Third, a parameter downscaling method, derived from the kernel discriminant analysis algorithm, is introduced to eliminate redundant features in B-CNN. Finally, the experimental results demonstrate that the B-CNN method can achieve higher accuracy than some existing methods. 展开更多
关键词 bilinear convolutional neural network low-rank decomposition joint loss fine-grained image recognition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部