In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detectio...In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detection algorithm of infrared small and dim target is proposed in this paper.Firstly,the original infrared images are changed into a new infrared patch tensor mode through data reconstruction.Then,the infrared small and dim target detection problems are converted to low-rank tensor recovery problems based on tensor nuclear norm in accordance with patch tensor characteristics,and inverse variance weighted entropy is defined for self-adaptive adjustment of sparseness.Finally,the low-rank tensor recovery problem with noise is solved by alternating the direction method to obtain the sparse target image,and the final small target is worked out by a simple partitioning algorithm.The test results in various spacebased downward-looking complex scenes show that such method can restrain complex background well by virtue of rapid arithmetic speed with high detection probability and low false alarm rate.It is a kind of infrared small and dim target detection method with good performance.展开更多
The quality of a multichannel audio signal may be reduced by missing data, which must be recovered before use. The data sets of multichannel audio can be quite large and have more than two axes of variation, such as c...The quality of a multichannel audio signal may be reduced by missing data, which must be recovered before use. The data sets of multichannel audio can be quite large and have more than two axes of variation, such as channel, frame, and feature. To recover missing audio data, we propose a low-rank tensor completion method that is a high-order generalization of matrix completion. First, a multichannel audio signal with missing data is modeled by a three-order tensor. Next, tensor completion is formulated as a convex optimization problem by defining the trace norm of the tensor, and then an augmented Lagrange multiplier method is used for solving the constrained optimization problem. Finally, the missing data is replaced by alternating iteration with a tensor computation. Experiments were conducted to evaluate the effectiveness on data of a 5.1-channel audio signal. The results show that the proposed method outperforms state-of-the-art methods. Moreover, subjective listening tests with MUSHRA(Multiple Stimuli with Hidden Reference and Anchor) indicate that better audio effects were obtained by tensor completion.展开更多
Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values ...Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values of large tensors.In this paper,we propose a double transformed tubal nuclear norm(DTTNN)to replace the rank norm penalty in low rank tensor completion(LRTC)tasks.DTTNN turns the original non-convex penalty of a large tensor into two convex penalties of much smaller tensors,and it is shown to be an equivalent transformation.Therefore,DTTNN could take advantage of non-convex envelopes while saving time.Experimental results on color image and video inpainting tasks verify the effectiveness of DTTNN compared with state-of-the-art methods.展开更多
The problem of low accuracy of POI(Points of Interest)recommendation in LBSN(Location-Based Social Networks)has not been effectively solved.In this paper,a POI recommendation algorithm based on non-convex regularized ...The problem of low accuracy of POI(Points of Interest)recommendation in LBSN(Location-Based Social Networks)has not been effectively solved.In this paper,a POI recommendation algorithm based on non-convex regularized tensor completion is proposed.The fourth-order tensor is constructed by using the current location category,the next location category,time and season,the regularizer is added to the objective function of tensor completion to prevent over-fitting and reduce the error of the model.The proximal algorithm is used to solve the objective function,and the adaptive momentum is introduced to improve the efficiency of the solution.The experimental results show that the algorithm can improve recommendation accuracy while reducing the time cost.展开更多
In this paper,an accelerated proximal gradient algorithm is proposed for Hankel tensor completion problems.In our method,the iterative completion tensors generated by the new algorithm keep Hankel structure based on p...In this paper,an accelerated proximal gradient algorithm is proposed for Hankel tensor completion problems.In our method,the iterative completion tensors generated by the new algorithm keep Hankel structure based on projection on the Hankel tensor set.Moreover,due to the special properties of Hankel structure,using the fast singular value thresholding operator of the mode-s unfolding of a Hankel tensor can decrease the computational cost.Meanwhile,the convergence of the new algorithm is discussed under some reasonable conditions.Finally,the numerical experiments show the effectiveness of the proposed algorithm.展开更多
This paper studies the problem of recovering low-rank tensors, and the tensors are corrupted by both impulse and Gaussian noise. The problem is well accomplished by integrating the tensor nuclear norm and the l1-norm ...This paper studies the problem of recovering low-rank tensors, and the tensors are corrupted by both impulse and Gaussian noise. The problem is well accomplished by integrating the tensor nuclear norm and the l1-norm in a unified convex relaxation framework. The nuclear norm is adopted to explore the low-rank components and the l1-norm is used to exploit the impulse noise. Then, this optimization problem is solved by some augmented-Lagrangian-based algorithms. Some preliminary numerical experiments verify that the proposed method can well recover the corrupted low-rank tensors.展开更多
In this study,a novel non-intrusive temperature rise fault-identification method for a distribution cabinet based on tensor block-matching is proposed.Two-stage data repair is used to reconstruct the temperature-field...In this study,a novel non-intrusive temperature rise fault-identification method for a distribution cabinet based on tensor block-matching is proposed.Two-stage data repair is used to reconstruct the temperature-field information to support the demand for temperature rise fault-identification of non-intrusive distribution cabinets.In the coarse-repair stage,this method is based on the outside temperature information of the distribution cabinet,using tensor block-matching technology to search for an appropriate tensor block in the temperature-field tensor dictionary,filling the target space area from the outside to the inside,and realizing the reconstruction of the three-dimensional temperature field inside the distribution cabinet.In the fine-repair stage,tensor super-resolution technology is used to fill the temperature field obtained from coarse repair to realize the smoothing of the temperature-field information inside the distribution cabinet.Non-intrusive temperature rise fault-identification is realized by setting clustering rules and temperature thresholds to compare the location of the heat source with the location of the distribution cabinet components.The simulation results show that the temperature-field reconstruction error is reduced by 82.42%compared with the traditional technology,and the temperature rise fault-identification accuracy is greater than 86%,verifying the feasibility and effectiveness of the temperature-field reconstruction and temperature rise fault-identification.展开更多
近年来,基于张量补全的频谱制图得到了广泛研究.目前用于频谱制图的张量补全算法大多隐含地假设张量具有平衡特性,而对于非平衡张量,难以利用其低秩性估计完整的张量信息,导致补全算法性能受损.本文提出基于重叠Ket增强(Overlapping Ket...近年来,基于张量补全的频谱制图得到了广泛研究.目前用于频谱制图的张量补全算法大多隐含地假设张量具有平衡特性,而对于非平衡张量,难以利用其低秩性估计完整的张量信息,导致补全算法性能受损.本文提出基于重叠Ket增强(Overlapping Ket Augmentation,OKA)和张量列车(Tensor Train,TT)的非平衡频谱制图算法,以解决非平衡张量在应用传统张量补全算法时性能下降的问题.首先使用OKA将低阶高维张量表示为高阶低维张量,在无信息损耗的情况下解决非平衡张量无法利用其低秩性进行张量补全的问题;然后使用TT矩阵化得到较平衡的矩阵,在维度较平衡条件下提高补全算法的精确度;最后利用高阶低维张量的低秩性,使用并行矩阵分解或基于F范数的无奇异值分解(Singular Value Decomposition Free,SVDFree)算法完成张量补全.仿真结果表明,针对非平衡张量,所提方案与现有的张量补全算法相比,可以获得更精确的无线电地图,同时所提SVDFree算法具有更低的计算复杂度.展开更多
高效准确的短期电力负荷预测对提升新型电力系统经济运行十分重要。针对极端天气场景下负荷预测数据量较少、随机性较强的特点,提出一种基于张量低秩补全算法的短期负荷预测模型,并选取极端高温场景展开研究。首先,给出极端天气定义,并...高效准确的短期电力负荷预测对提升新型电力系统经济运行十分重要。针对极端天气场景下负荷预测数据量较少、随机性较强的特点,提出一种基于张量低秩补全算法的短期负荷预测模型,并选取极端高温场景展开研究。首先,给出极端天气定义,并基于改进型炎热指数和气温两项指标进行数据筛选;其次,提出一种基于张量的负荷数据补全模型,补全缺失数据;然后,通过Pearson相关性分析筛选输入特征量,构建基于长短时记忆(long short term memory, LSTM)网络和粗糙集理论(rough set theory, RST)的LSTM-RST短期负荷预测模型;最后,以苏州某地实际负荷数据设置算例进行验证,仿真结果表明,所提短期负荷预测方法具有较高的准确性。展开更多
This paper addresses the problem of tensor completion from limited samplings.Generally speaking,in order to achieve good recovery result,many tensor completion methods employ alternative optimization or minimization w...This paper addresses the problem of tensor completion from limited samplings.Generally speaking,in order to achieve good recovery result,many tensor completion methods employ alternative optimization or minimization with SVD operations,leading to a high computational complexity.In this paper,we aim to propose algorithms with high recovery accuracy and moderate computational complexity.It is shown that the data to be recovered contains structure of Kronecker Tensor decomposition under multiple patterns,and therefore the tensor completion problem becomes a Kronecker rank optimization one,which can be further relaxed into tensor Frobenius-norm minimization with a constraint of a maximum number of rank-1 basis or tensors.Then the idea of orthogonal matching pursuit is employed to avoid the burdensome SVD operations.Based on these,two methods,namely iterative rank-1 tensor pursuit and joint rank-1 tensor pursuit are proposed.Their economic variants are also included to further reduce the computational and storage complexity,making them effective for large-scale data tensor recovery.To verify the proposed algorithms,both synthesis data and real world data,including SAR data and video data completion,are used.Comparing to the single pattern case,when multiple patterns are used,more stable performance can be achieved with higher complexity by the proposed methods.Furthermore,both results from synthesis and real world data shows the advantage of the proposed methods in term of recovery accuracy and/or computational complexity over the state-of-the-art methods.To conclude,the proposed tensor completion methods are suitable for large scale data completion with high recovery accuracy and moderate computational complexity.展开更多
文摘In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detection algorithm of infrared small and dim target is proposed in this paper.Firstly,the original infrared images are changed into a new infrared patch tensor mode through data reconstruction.Then,the infrared small and dim target detection problems are converted to low-rank tensor recovery problems based on tensor nuclear norm in accordance with patch tensor characteristics,and inverse variance weighted entropy is defined for self-adaptive adjustment of sparseness.Finally,the low-rank tensor recovery problem with noise is solved by alternating the direction method to obtain the sparse target image,and the final small target is worked out by a simple partitioning algorithm.The test results in various spacebased downward-looking complex scenes show that such method can restrain complex background well by virtue of rapid arithmetic speed with high detection probability and low false alarm rate.It is a kind of infrared small and dim target detection method with good performance.
基金partially supported by the National Natural Science Foundation of China under Grants No. 61571044, No.61620106002, No.61473041, No.11590772, No.61640012Inner Mongolia Natural Science Foundation under Grants No. 2017MS(LH)0602
文摘The quality of a multichannel audio signal may be reduced by missing data, which must be recovered before use. The data sets of multichannel audio can be quite large and have more than two axes of variation, such as channel, frame, and feature. To recover missing audio data, we propose a low-rank tensor completion method that is a high-order generalization of matrix completion. First, a multichannel audio signal with missing data is modeled by a three-order tensor. Next, tensor completion is formulated as a convex optimization problem by defining the trace norm of the tensor, and then an augmented Lagrange multiplier method is used for solving the constrained optimization problem. Finally, the missing data is replaced by alternating iteration with a tensor computation. Experiments were conducted to evaluate the effectiveness on data of a 5.1-channel audio signal. The results show that the proposed method outperforms state-of-the-art methods. Moreover, subjective listening tests with MUSHRA(Multiple Stimuli with Hidden Reference and Anchor) indicate that better audio effects were obtained by tensor completion.
基金financially supported by the National Nautral Science Foundation of China(No.61703206)
文摘Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values of large tensors.In this paper,we propose a double transformed tubal nuclear norm(DTTNN)to replace the rank norm penalty in low rank tensor completion(LRTC)tasks.DTTNN turns the original non-convex penalty of a large tensor into two convex penalties of much smaller tensors,and it is shown to be an equivalent transformation.Therefore,DTTNN could take advantage of non-convex envelopes while saving time.Experimental results on color image and video inpainting tasks verify the effectiveness of DTTNN compared with state-of-the-art methods.
文摘The problem of low accuracy of POI(Points of Interest)recommendation in LBSN(Location-Based Social Networks)has not been effectively solved.In this paper,a POI recommendation algorithm based on non-convex regularized tensor completion is proposed.The fourth-order tensor is constructed by using the current location category,the next location category,time and season,the regularizer is added to the objective function of tensor completion to prevent over-fitting and reduce the error of the model.The proximal algorithm is used to solve the objective function,and the adaptive momentum is introduced to improve the efficiency of the solution.The experimental results show that the algorithm can improve recommendation accuracy while reducing the time cost.
文摘In this paper,an accelerated proximal gradient algorithm is proposed for Hankel tensor completion problems.In our method,the iterative completion tensors generated by the new algorithm keep Hankel structure based on projection on the Hankel tensor set.Moreover,due to the special properties of Hankel structure,using the fast singular value thresholding operator of the mode-s unfolding of a Hankel tensor can decrease the computational cost.Meanwhile,the convergence of the new algorithm is discussed under some reasonable conditions.Finally,the numerical experiments show the effectiveness of the proposed algorithm.
文摘This paper studies the problem of recovering low-rank tensors, and the tensors are corrupted by both impulse and Gaussian noise. The problem is well accomplished by integrating the tensor nuclear norm and the l1-norm in a unified convex relaxation framework. The nuclear norm is adopted to explore the low-rank components and the l1-norm is used to exploit the impulse noise. Then, this optimization problem is solved by some augmented-Lagrangian-based algorithms. Some preliminary numerical experiments verify that the proposed method can well recover the corrupted low-rank tensors.
基金supported by the CEPRI project“Key Technologies for Sparse Acquisition of Power Equipment State Sensing Data”(AI83-21-004)National Key R&D Program of China(2020YFB0905900).
文摘In this study,a novel non-intrusive temperature rise fault-identification method for a distribution cabinet based on tensor block-matching is proposed.Two-stage data repair is used to reconstruct the temperature-field information to support the demand for temperature rise fault-identification of non-intrusive distribution cabinets.In the coarse-repair stage,this method is based on the outside temperature information of the distribution cabinet,using tensor block-matching technology to search for an appropriate tensor block in the temperature-field tensor dictionary,filling the target space area from the outside to the inside,and realizing the reconstruction of the three-dimensional temperature field inside the distribution cabinet.In the fine-repair stage,tensor super-resolution technology is used to fill the temperature field obtained from coarse repair to realize the smoothing of the temperature-field information inside the distribution cabinet.Non-intrusive temperature rise fault-identification is realized by setting clustering rules and temperature thresholds to compare the location of the heat source with the location of the distribution cabinet components.The simulation results show that the temperature-field reconstruction error is reduced by 82.42%compared with the traditional technology,and the temperature rise fault-identification accuracy is greater than 86%,verifying the feasibility and effectiveness of the temperature-field reconstruction and temperature rise fault-identification.
文摘近年来,基于张量补全的频谱制图得到了广泛研究.目前用于频谱制图的张量补全算法大多隐含地假设张量具有平衡特性,而对于非平衡张量,难以利用其低秩性估计完整的张量信息,导致补全算法性能受损.本文提出基于重叠Ket增强(Overlapping Ket Augmentation,OKA)和张量列车(Tensor Train,TT)的非平衡频谱制图算法,以解决非平衡张量在应用传统张量补全算法时性能下降的问题.首先使用OKA将低阶高维张量表示为高阶低维张量,在无信息损耗的情况下解决非平衡张量无法利用其低秩性进行张量补全的问题;然后使用TT矩阵化得到较平衡的矩阵,在维度较平衡条件下提高补全算法的精确度;最后利用高阶低维张量的低秩性,使用并行矩阵分解或基于F范数的无奇异值分解(Singular Value Decomposition Free,SVDFree)算法完成张量补全.仿真结果表明,针对非平衡张量,所提方案与现有的张量补全算法相比,可以获得更精确的无线电地图,同时所提SVDFree算法具有更低的计算复杂度.
文摘高效准确的短期电力负荷预测对提升新型电力系统经济运行十分重要。针对极端天气场景下负荷预测数据量较少、随机性较强的特点,提出一种基于张量低秩补全算法的短期负荷预测模型,并选取极端高温场景展开研究。首先,给出极端天气定义,并基于改进型炎热指数和气温两项指标进行数据筛选;其次,提出一种基于张量的负荷数据补全模型,补全缺失数据;然后,通过Pearson相关性分析筛选输入特征量,构建基于长短时记忆(long short term memory, LSTM)网络和粗糙集理论(rough set theory, RST)的LSTM-RST短期负荷预测模型;最后,以苏州某地实际负荷数据设置算例进行验证,仿真结果表明,所提短期负荷预测方法具有较高的准确性。
基金supported in part by the Foundation of Shenzhen under Grant JCYJ20190808122005605in part by National Science Fund for Distinguished Young Scholars under grant 61925108in part by the National Natural Science Foundation of China(NSFC)under Grant U1713217 and U1913203.
文摘This paper addresses the problem of tensor completion from limited samplings.Generally speaking,in order to achieve good recovery result,many tensor completion methods employ alternative optimization or minimization with SVD operations,leading to a high computational complexity.In this paper,we aim to propose algorithms with high recovery accuracy and moderate computational complexity.It is shown that the data to be recovered contains structure of Kronecker Tensor decomposition under multiple patterns,and therefore the tensor completion problem becomes a Kronecker rank optimization one,which can be further relaxed into tensor Frobenius-norm minimization with a constraint of a maximum number of rank-1 basis or tensors.Then the idea of orthogonal matching pursuit is employed to avoid the burdensome SVD operations.Based on these,two methods,namely iterative rank-1 tensor pursuit and joint rank-1 tensor pursuit are proposed.Their economic variants are also included to further reduce the computational and storage complexity,making them effective for large-scale data tensor recovery.To verify the proposed algorithms,both synthesis data and real world data,including SAR data and video data completion,are used.Comparing to the single pattern case,when multiple patterns are used,more stable performance can be achieved with higher complexity by the proposed methods.Furthermore,both results from synthesis and real world data shows the advantage of the proposed methods in term of recovery accuracy and/or computational complexity over the state-of-the-art methods.To conclude,the proposed tensor completion methods are suitable for large scale data completion with high recovery accuracy and moderate computational complexity.