期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
Research on infrared dim and small target detection algorithm based on low-rank tensor recovery
1
作者 LIU Chuntong WANG Hao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期861-872,共12页
In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detectio... In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detection algorithm of infrared small and dim target is proposed in this paper.Firstly,the original infrared images are changed into a new infrared patch tensor mode through data reconstruction.Then,the infrared small and dim target detection problems are converted to low-rank tensor recovery problems based on tensor nuclear norm in accordance with patch tensor characteristics,and inverse variance weighted entropy is defined for self-adaptive adjustment of sparseness.Finally,the low-rank tensor recovery problem with noise is solved by alternating the direction method to obtain the sparse target image,and the final small target is worked out by a simple partitioning algorithm.The test results in various spacebased downward-looking complex scenes show that such method can restrain complex background well by virtue of rapid arithmetic speed with high detection probability and low false alarm rate.It is a kind of infrared small and dim target detection method with good performance. 展开更多
关键词 complex scene infrared block tensor tensor kernel norm low-rank tensor restoration weighted inverse entropy alternating direction method
下载PDF
Tensor Completion for Recovering Multichannel Audio Signal with Missing Data
2
作者 Lidong Yang Min Liu +2 位作者 Jing Wang Xiang Xie Jingming Kuang 《China Communications》 SCIE CSCD 2019年第4期186-195,共10页
The quality of a multichannel audio signal may be reduced by missing data, which must be recovered before use. The data sets of multichannel audio can be quite large and have more than two axes of variation, such as c... The quality of a multichannel audio signal may be reduced by missing data, which must be recovered before use. The data sets of multichannel audio can be quite large and have more than two axes of variation, such as channel, frame, and feature. To recover missing audio data, we propose a low-rank tensor completion method that is a high-order generalization of matrix completion. First, a multichannel audio signal with missing data is modeled by a three-order tensor. Next, tensor completion is formulated as a convex optimization problem by defining the trace norm of the tensor, and then an augmented Lagrange multiplier method is used for solving the constrained optimization problem. Finally, the missing data is replaced by alternating iteration with a tensor computation. Experiments were conducted to evaluate the effectiveness on data of a 5.1-channel audio signal. The results show that the proposed method outperforms state-of-the-art methods. Moreover, subjective listening tests with MUSHRA(Multiple Stimuli with Hidden Reference and Anchor) indicate that better audio effects were obtained by tensor completion. 展开更多
关键词 tensor completion MISSING data MULTICHANNEL AUDIO CONVEX optimization
下载PDF
Double Transformed Tubal Nuclear Norm Minimization for Tensor Completion
3
作者 TIAN Jialue ZHU Yulian LIU Jiahui 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第S01期166-174,共9页
Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values ... Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values of large tensors.In this paper,we propose a double transformed tubal nuclear norm(DTTNN)to replace the rank norm penalty in low rank tensor completion(LRTC)tasks.DTTNN turns the original non-convex penalty of a large tensor into two convex penalties of much smaller tensors,and it is shown to be an equivalent transformation.Therefore,DTTNN could take advantage of non-convex envelopes while saving time.Experimental results on color image and video inpainting tasks verify the effectiveness of DTTNN compared with state-of-the-art methods. 展开更多
关键词 double transformed tubal nuclear norm low tubal-rank non-convex optimization tensor factorization tensor completion
下载PDF
Improving POI Recommendation via Non-Convex Regularized Tensor Completion
4
作者 Ming Zhao Tao Liu 《Journal of Information Hiding and Privacy Protection》 2020年第3期125-134,共10页
The problem of low accuracy of POI(Points of Interest)recommendation in LBSN(Location-Based Social Networks)has not been effectively solved.In this paper,a POI recommendation algorithm based on non-convex regularized ... The problem of low accuracy of POI(Points of Interest)recommendation in LBSN(Location-Based Social Networks)has not been effectively solved.In this paper,a POI recommendation algorithm based on non-convex regularized tensor completion is proposed.The fourth-order tensor is constructed by using the current location category,the next location category,time and season,the regularizer is added to the objective function of tensor completion to prevent over-fitting and reduce the error of the model.The proximal algorithm is used to solve the objective function,and the adaptive momentum is introduced to improve the efficiency of the solution.The experimental results show that the algorithm can improve recommendation accuracy while reducing the time cost. 展开更多
关键词 POI recommendation tensor completion proximal algorithm adaptive momentum
下载PDF
An Accelerated Proximal Gradient Algorithm for Hankel Tensor Completion
5
作者 Chuan-Long Wang Xiong-Wei Guo Xi-Hong Yan 《Journal of the Operations Research Society of China》 EI CSCD 2024年第2期461-477,共17页
In this paper,an accelerated proximal gradient algorithm is proposed for Hankel tensor completion problems.In our method,the iterative completion tensors generated by the new algorithm keep Hankel structure based on p... In this paper,an accelerated proximal gradient algorithm is proposed for Hankel tensor completion problems.In our method,the iterative completion tensors generated by the new algorithm keep Hankel structure based on projection on the Hankel tensor set.Moreover,due to the special properties of Hankel structure,using the fast singular value thresholding operator of the mode-s unfolding of a Hankel tensor can decrease the computational cost.Meanwhile,the convergence of the new algorithm is discussed under some reasonable conditions.Finally,the numerical experiments show the effectiveness of the proposed algorithm. 展开更多
关键词 Hankel tensor tensor completion Accelerated proximal gradient algorithm
原文传递
Recovery of Corrupted Low-Rank Tensors
6
作者 Haiyan Fan Gangyao Kuang 《Applied Mathematics》 2017年第2期229-244,共16页
This paper studies the problem of recovering low-rank tensors, and the tensors are corrupted by both impulse and Gaussian noise. The problem is well accomplished by integrating the tensor nuclear norm and the l1-norm ... This paper studies the problem of recovering low-rank tensors, and the tensors are corrupted by both impulse and Gaussian noise. The problem is well accomplished by integrating the tensor nuclear norm and the l1-norm in a unified convex relaxation framework. The nuclear norm is adopted to explore the low-rank components and the l1-norm is used to exploit the impulse noise. Then, this optimization problem is solved by some augmented-Lagrangian-based algorithms. Some preliminary numerical experiments verify that the proposed method can well recover the corrupted low-rank tensors. 展开更多
关键词 low-rank tensor tensor RECOVERY Augmented Lagrangian Method IMPULSIVE Noise Mixed Noise
下载PDF
Non-intrusive temperature rise fault-identification of distribution cabinet based on tensor block-matching
7
作者 Jie Tong Yuanpeng Tan +4 位作者 Zhonghao Zhang Qizhe Zhang Wenhao Mo Yingqiang Zhang Zihao Qi 《Global Energy Interconnection》 EI CSCD 2023年第3期324-333,共10页
In this study,a novel non-intrusive temperature rise fault-identification method for a distribution cabinet based on tensor block-matching is proposed.Two-stage data repair is used to reconstruct the temperature-field... In this study,a novel non-intrusive temperature rise fault-identification method for a distribution cabinet based on tensor block-matching is proposed.Two-stage data repair is used to reconstruct the temperature-field information to support the demand for temperature rise fault-identification of non-intrusive distribution cabinets.In the coarse-repair stage,this method is based on the outside temperature information of the distribution cabinet,using tensor block-matching technology to search for an appropriate tensor block in the temperature-field tensor dictionary,filling the target space area from the outside to the inside,and realizing the reconstruction of the three-dimensional temperature field inside the distribution cabinet.In the fine-repair stage,tensor super-resolution technology is used to fill the temperature field obtained from coarse repair to realize the smoothing of the temperature-field information inside the distribution cabinet.Non-intrusive temperature rise fault-identification is realized by setting clustering rules and temperature thresholds to compare the location of the heat source with the location of the distribution cabinet components.The simulation results show that the temperature-field reconstruction error is reduced by 82.42%compared with the traditional technology,and the temperature rise fault-identification accuracy is greater than 86%,verifying the feasibility and effectiveness of the temperature-field reconstruction and temperature rise fault-identification. 展开更多
关键词 Power distribution cabinet Temperature-field reconstruction Non-intrusive fault-identification Compressed sensing low-rank tensor
下载PDF
联合张量补全与循环神经网络的时间序列插补法
8
作者 何军 赖赵远 时勘 《数据采集与处理》 CSCD 北大核心 2024年第3期598-608,共11页
现存的插补方法大致分为基于统计的插补法和基于深度学习的插补法。基于统计的插补法只能捕捉线性时间关系,导致无法精准建模时间序列的非线性关系;基于深度学习的插补法往往没有考虑到不同时间序列之间的相关性。针对现有方法的问题,... 现存的插补方法大致分为基于统计的插补法和基于深度学习的插补法。基于统计的插补法只能捕捉线性时间关系,导致无法精准建模时间序列的非线性关系;基于深度学习的插补法往往没有考虑到不同时间序列之间的相关性。针对现有方法的问题,本文提出了联合张量补全与循环神经网络的时间序列插补法。首先,将多元时间序列建模成张量,通过张量的低秩补全捕获不同时间序列之间的关系。其次,提出了一个基于时间的动态权重,将张量插补结果和循环神经网络的预测结果进行融合,避免因为连续缺失导致的预测误差累积。最后,在多个真实的时间序列数据集上对所提方法进行了实验评估,结果显示该模型优于已有相关模型,且基于插补后的时间序列可以提升时间序列预测效果。 展开更多
关键词 张量补全 时间序列插补 循环神经网络
下载PDF
基于双通道生成对抗网络的城市用电负荷缺失数据补全方法
9
作者 刘志坚 陶韵旭 +2 位作者 刘航 罗灵琳 李明 《电力系统自动化》 EI CSCD 北大核心 2024年第17期161-170,共10页
用电负荷数据的完整性与有效性在负荷预测等应用中具有重要意义。传统的缺失数据补全方法缺乏对用电负荷和多种外部时空关联信息的挖掘,难以获得高精度的补全结果。文中提出了一种双通道生成对抗网络,对缺失的负荷数据进行补全。首先,... 用电负荷数据的完整性与有效性在负荷预测等应用中具有重要意义。传统的缺失数据补全方法缺乏对用电负荷和多种外部时空关联信息的挖掘,难以获得高精度的补全结果。文中提出了一种双通道生成对抗网络,对缺失的负荷数据进行补全。首先,根据负荷的周期性变化特征和时空关联性构建三阶负荷张量,并将影响负荷变化的多种外部因素构建为三阶辅助信息张量。然后,为满足两种张量的双输入需求,在生成对抗网络的输入层引入双通道机制,通过卷积与反卷积运算提取张量的特征;为提升网络对张量数据的训练效果和补全精度,将张量分解损失引入原始损失函数,并采用改进的混沌映射粒子群优化算法联合优化超参数和网络。最后,在真实负荷数据集上开展数据补全实验。结果表明,所提方法能够对随机缺失率不超过50%、连续缺失不超过3天的负荷数据进行准确补全。 展开更多
关键词 负荷数据缺失 负荷预测 三阶张量 生成对抗网络 分解损失 混沌映射粒子群优化算法 补全方法
下载PDF
知识图谱补全方法研究综述 被引量:1
10
作者 张文豪 徐贞顺 +3 位作者 刘纳 王振彪 唐增金 王正安 《计算机工程与应用》 CSCD 北大核心 2024年第12期61-73,共13页
知识图谱是用来描述世界中存在的各种实体和概念以及他们之间的关系的一种语义网络,近年来被广泛应用于智能问答、智能推荐和信息检索等领域。目前,大多数知识图谱都具有不完整性,因此,知识图谱补全成为一项重要的任务。根据模型构造方... 知识图谱是用来描述世界中存在的各种实体和概念以及他们之间的关系的一种语义网络,近年来被广泛应用于智能问答、智能推荐和信息检索等领域。目前,大多数知识图谱都具有不完整性,因此,知识图谱补全成为一项重要的任务。根据模型构造方法的不同,将知识图谱补全模型分为传统知识图谱补全模型、基于神经网络的知识图谱补全模型和基于元学习的知识图谱补全模型三类,对这三种知识图谱补全模型的分类情况进行介绍;总结知识图谱补全方法所使用的数据集和评价指标,并从各个模型优点和不足等方面对各类模型进行详细的对比分析。最后,对知识图谱补全进行归纳与总结,并展望未来的研究方向。 展开更多
关键词 知识图谱 翻译模型 张量分解 神经网络 元学习 知识图谱补全
下载PDF
基于重叠Ket增强和张量列车的非平衡频谱制图算法
11
作者 王欣 申滨 黄晓舸 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2468-2476,共9页
近年来,基于张量补全的频谱制图得到了广泛研究.目前用于频谱制图的张量补全算法大多隐含地假设张量具有平衡特性,而对于非平衡张量,难以利用其低秩性估计完整的张量信息,导致补全算法性能受损.本文提出基于重叠Ket增强(Overlapping Ket... 近年来,基于张量补全的频谱制图得到了广泛研究.目前用于频谱制图的张量补全算法大多隐含地假设张量具有平衡特性,而对于非平衡张量,难以利用其低秩性估计完整的张量信息,导致补全算法性能受损.本文提出基于重叠Ket增强(Overlapping Ket Augmentation,OKA)和张量列车(Tensor Train,TT)的非平衡频谱制图算法,以解决非平衡张量在应用传统张量补全算法时性能下降的问题.首先使用OKA将低阶高维张量表示为高阶低维张量,在无信息损耗的情况下解决非平衡张量无法利用其低秩性进行张量补全的问题;然后使用TT矩阵化得到较平衡的矩阵,在维度较平衡条件下提高补全算法的精确度;最后利用高阶低维张量的低秩性,使用并行矩阵分解或基于F范数的无奇异值分解(Singular Value Decomposition Free,SVDFree)算法完成张量补全.仿真结果表明,针对非平衡张量,所提方案与现有的张量补全算法相比,可以获得更精确的无线电地图,同时所提SVDFree算法具有更低的计算复杂度. 展开更多
关键词 频谱制图 张量补全 张量列车 重叠Ket增强 并行矩阵分解 奇异值分解
下载PDF
低秩张量填充的循环算法
12
作者 王俊霞 郭雄伟 王川龙 《工程数学学报》 CSCD 北大核心 2024年第1期111-126,共16页
针对张量填充问题,提出一种低秩张量填充的循环算法。以交替方向乘子法为基础,对子问题循环更新,有效地减少了算法在迭代过程中张量展开、矩阵折叠以及奇异值分解的计算花费。同时,在合理的假设条件下,给出了算法的收敛性分析。最后,通... 针对张量填充问题,提出一种低秩张量填充的循环算法。以交替方向乘子法为基础,对子问题循环更新,有效地减少了算法在迭代过程中张量展开、矩阵折叠以及奇异值分解的计算花费。同时,在合理的假设条件下,给出了算法的收敛性分析。最后,通过数值实验与HaLRTC算法、DR-TR算法及LRTC-Logdet算法的对比,验证了算法相对其它方法的有效性。 展开更多
关键词 张量填充 循环更新 交替方向乘子法
下载PDF
基于对数全变分极小化的张量补全
13
作者 卢丹 王建军 《宁夏大学学报(自然科学版)》 CAS 2024年第1期1-8,共8页
在张量补全问题中,低秩性与局部光滑性是被高频使用的先验信息,因此有许多与其相关的研究.而且为了更精确地恢复图像,低秩性正则与编码局部光滑性的全变分正则往往会被以简单加权组合的方式引入相关模型.但许多真实图像往往同时具有低... 在张量补全问题中,低秩性与局部光滑性是被高频使用的先验信息,因此有许多与其相关的研究.而且为了更精确地恢复图像,低秩性正则与编码局部光滑性的全变分正则往往会被以简单加权组合的方式引入相关模型.但许多真实图像往往同时具有低秩性与局部光滑性先验信息.此外,在这些模型中张量核范数常被用于挖掘低秩性先验,但它平均地缩小所有奇异值,从而不能很好地保留图像信息.为此,提出了张量对数相关全变分(TLOGCTV)正则,其中使用了张量对数范数而不是核范数,从而更好地挖掘低秩先验信息,同时,使用全变分刻画局部光滑性先验信息.而且相较于简单加权组合方式引入正则的模型,所提出的模型仅需要一个平衡参数.随后基于该正则项建立了相应的张量补全模型,并且给出该模型的优化求解算法.在多光谱与高光谱上的一系列实验验证了模型的有效性. 展开更多
关键词 张量补全 张量对数范数 非凸全变分
下载PDF
自适应变换结合非凸松弛的张量补全
14
作者 刘佳慧 朱玉莲 《计算机科学与探索》 CSCD 北大核心 2024年第8期2034-2048,共15页
许多张量补全方法的共同点是首先通过预定义的变换将张量投影至变换域中,然后刻画变换域中张量(简记为变换张量)的低秩性或稀疏性,但是预定义的变换并不具备一般性。针对这一问题,提出了一个基于自适应变换的张量均秩,该秩的定义是基于... 许多张量补全方法的共同点是首先通过预定义的变换将张量投影至变换域中,然后刻画变换域中张量(简记为变换张量)的低秩性或稀疏性,但是预定义的变换并不具备一般性。针对这一问题,提出了一个基于自适应变换的张量均秩,该秩的定义是基于可逆线性变换的张量均秩的一个扩展;提出了一种自适应变换结合非凸松弛的张量补全模型。自适应体现在变换张量是未知的待求解张量,它可以基于观测张量在最小化目标函数的过程中不断进行自身的调整,直至成为目标函数的最优解。该模型使用非凸替代近似估计基于自适应变换的张量均秩,并采用l1范数衡量变换张量的稀疏性。在通过近端交替最小化的框架求解最优解的过程中,该模型根据观测的张量自适应地学习变换低秩张量和变换稀疏张量,再通过学习到的变换矩阵分别将变换低秩张量和变换稀疏张量转化到原始空间,最终得到补全后的张量。在灰度视频、多光谱图像和高光谱图像上进行了实验,将该方法与其他代表性的张量补全方法相比较,实验结果表明该方法进一步提升了补全的性能。 展开更多
关键词 自适应变换 非凸松弛 近端交替最小化 张量补全
下载PDF
基于低秩张量完备的电磁大数据标注补全算法
15
作者 孙国敏 张伟 +2 位作者 邵怀宗 方旖 李鹏飞 《系统工程与电子技术》 EI CSCD 北大核心 2024年第2期381-390,共10页
全面、准确的电磁数据标注是电磁大数据智能分析的前提和基础。针对战场博弈强对抗条件下电磁感知数据存在的标注率低、标注信息错误冗余等问题,提出基于张量完备理论的标注补全方案。理论上,同一场景下的同一目标,利用不同感知平台观... 全面、准确的电磁数据标注是电磁大数据智能分析的前提和基础。针对战场博弈强对抗条件下电磁感知数据存在的标注率低、标注信息错误冗余等问题,提出基于张量完备理论的标注补全方案。理论上,同一场景下的同一目标,利用不同感知平台观测提取的特征参数(如雷达脉冲参数)是相似(低秩)的,且在一段观测时间内的测量结果是分段连续光滑的。故跨平台接收的目标数据标注补全可以建模为基于低秩张量完备的特征复原模型,并引入全变分正则来刻画一段时间内特征参数的分段连续光滑属性。由于模型非凸,使用基于矩阵最大秩分解的非凸近似算法进行迭代求解。通过仿真数据以及雷达脉冲描述字实侦数据并对模型的性能进行测试。实验结果表明,所提方法在目标特征标注信息严重缺失的情况下能够很好地实现标注补全,同时具有一定的标注纠错功能。 展开更多
关键词 标注补全 电磁大数据 低秩矩阵恢复
下载PDF
一种基于数据补全的大象流检测方法
16
作者 许艺凡 李宜铮 +3 位作者 王光耀 段靖海 王科翔 陶军 《小型微型计算机系统》 CSCD 北大核心 2024年第1期139-144,共6页
由于在网络测量中存在不可避免的数据损失,网络监测数据通常是不完备的甚至是稀疏的,这使得大象流的精确检测成为一个具有挑战性的问题.本文提出了一种基于数据补全的离线大象流检测方法.为实现对于大象流的精准检测,首先实现了一个基... 由于在网络测量中存在不可避免的数据损失,网络监测数据通常是不完备的甚至是稀疏的,这使得大象流的精确检测成为一个具有挑战性的问题.本文提出了一种基于数据补全的离线大象流检测方法.为实现对于大象流的精准检测,首先实现了一个基于矩阵分解的数据补全算法,将流量数据补全问题转化为一个低秩矩阵奇异值分解问题.其次,在此基础上进行高阶扩展,引申出张量补全模型,利用张量CP分解实现数据补全,将原问题转化为通过最小化张量秩来恢复缺失条目的张量补全问题.最后对上面使用的矩阵补全算法和张量补全算法进行了仿真实验,对比了各算法精准度,评估了超参数,并展示了张量补全算法的时间开销.实验结果证明该方法取得了较好的效果. 展开更多
关键词 大象流检测 数据补全 矩阵分解 张量
下载PDF
一个新的正则化张量补全算法及其在图像处理与超光谱数据分析中的应用
17
作者 谢亚君 《数学年刊(A辑)》 CSCD 北大核心 2024年第2期229-248,共20页
非负张量补全问题是在已知特定区域的张量数据集前提下,对部分受干扰、破坏的数据进行修复或补全以达到还原数据集和揭示事物本质的目的.本文引入一种修正的交替方向多乘子算法并结合正则化策略来求解非负张量补全问题,同时给出算法的... 非负张量补全问题是在已知特定区域的张量数据集前提下,对部分受干扰、破坏的数据进行修复或补全以达到还原数据集和揭示事物本质的目的.本文引入一种修正的交替方向多乘子算法并结合正则化策略来求解非负张量补全问题,同时给出算法的收敛性定理和结论.最后,将该算法应用于超光谱图像处理及其数据分析中.数值结果表明所提出算法的有效性. 展开更多
关键词 张量补全问题 正则化 修正交替方向乘子法 超光谱图像处理 数值实验
下载PDF
基于VAR-LRTC-TNN的交通流量数据补全框架模型
18
作者 孙秋霞 王淇 +2 位作者 李勍 孙璐 贾秀燕 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期47-53,86,共8页
从各类传感系统收集到的交通流数据往往会因探测器或通信故障等缘故出现数据连续性的缺失,故准确补全缺失的交通流数据对制定合理的交通管理策略至关重要。鉴于交通流数据具有低秩的特性,通过低秩张量补全模型可较好地刻画出交通流数据... 从各类传感系统收集到的交通流数据往往会因探测器或通信故障等缘故出现数据连续性的缺失,故准确补全缺失的交通流数据对制定合理的交通管理策略至关重要。鉴于交通流数据具有低秩的特性,通过低秩张量补全模型可较好地刻画出交通流数据的全局一致性,但却无法很好地捕捉数据的局部变化趋势,一定程度上影响了效果。基于此,提出了将VAR模型和基于残差序列的LRTC-TNN模型相结合的交通流补全框架模型;采用VAR模型对缺失数据进行粗略估计,移除平均趋势,利用LRTC-TNN模型对残差时间序列进行补全,再将平均趋势还原,从而完成对交通流量数据的高精度补全;该方法不仅保留了交通流数据的全局结构,还考虑了数据局部变化的特征。研究结果表明:与基于原始交通流量数据的填充方法相比,该模型框架对单传感器和多传感器数据的连续性缺失均具有更高的补全精度。 展开更多
关键词 交通工程 智能交通 交通流量填充 向量自回归模型 张量补全 缺失数据
下载PDF
基于张量低秩补全算法的极端天气短期负荷预测
19
作者 冯家欢 史雪晨 +5 位作者 张赟 胡涛 封钰 洪晨威 洪奕 吴越涛 《分布式能源》 2024年第4期51-59,共9页
高效准确的短期电力负荷预测对提升新型电力系统经济运行十分重要。针对极端天气场景下负荷预测数据量较少、随机性较强的特点,提出一种基于张量低秩补全算法的短期负荷预测模型,并选取极端高温场景展开研究。首先,给出极端天气定义,并... 高效准确的短期电力负荷预测对提升新型电力系统经济运行十分重要。针对极端天气场景下负荷预测数据量较少、随机性较强的特点,提出一种基于张量低秩补全算法的短期负荷预测模型,并选取极端高温场景展开研究。首先,给出极端天气定义,并基于改进型炎热指数和气温两项指标进行数据筛选;其次,提出一种基于张量的负荷数据补全模型,补全缺失数据;然后,通过Pearson相关性分析筛选输入特征量,构建基于长短时记忆(long short term memory, LSTM)网络和粗糙集理论(rough set theory, RST)的LSTM-RST短期负荷预测模型;最后,以苏州某地实际负荷数据设置算例进行验证,仿真结果表明,所提短期负荷预测方法具有较高的准确性。 展开更多
关键词 极端天气 高温场景 炎热指数 短期负荷预测 张量低秩补全 长短时记忆(LSTM)网络 粗糙集理论(RST)
下载PDF
Accurate and Computational Efficient Joint Multiple Kronecker Pursuit for Tensor Data Recovery
20
作者 Weize Sun Peng Zhang +1 位作者 Jingxin Xu Huochao Tan 《Computers, Materials & Continua》 SCIE EI 2021年第8期2111-2126,共16页
This paper addresses the problem of tensor completion from limited samplings.Generally speaking,in order to achieve good recovery result,many tensor completion methods employ alternative optimization or minimization w... This paper addresses the problem of tensor completion from limited samplings.Generally speaking,in order to achieve good recovery result,many tensor completion methods employ alternative optimization or minimization with SVD operations,leading to a high computational complexity.In this paper,we aim to propose algorithms with high recovery accuracy and moderate computational complexity.It is shown that the data to be recovered contains structure of Kronecker Tensor decomposition under multiple patterns,and therefore the tensor completion problem becomes a Kronecker rank optimization one,which can be further relaxed into tensor Frobenius-norm minimization with a constraint of a maximum number of rank-1 basis or tensors.Then the idea of orthogonal matching pursuit is employed to avoid the burdensome SVD operations.Based on these,two methods,namely iterative rank-1 tensor pursuit and joint rank-1 tensor pursuit are proposed.Their economic variants are also included to further reduce the computational and storage complexity,making them effective for large-scale data tensor recovery.To verify the proposed algorithms,both synthesis data and real world data,including SAR data and video data completion,are used.Comparing to the single pattern case,when multiple patterns are used,more stable performance can be achieved with higher complexity by the proposed methods.Furthermore,both results from synthesis and real world data shows the advantage of the proposed methods in term of recovery accuracy and/or computational complexity over the state-of-the-art methods.To conclude,the proposed tensor completion methods are suitable for large scale data completion with high recovery accuracy and moderate computational complexity. 展开更多
关键词 tensor completion tensor Kronecker decomposition Kronecker rank-1 decomposition
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部