The aims of the present study is to develop a powder based steel used as backing plate for heavy duty brake pad applications. Three powder based back plate steel compositions namely B1 (C- 0.3, Cu – 1.5, P -0.3, Fe ...The aims of the present study is to develop a powder based steel used as backing plate for heavy duty brake pad applications. Three powder based back plate steel compositions namely B1 (C- 0.3, Cu – 1.5, P -0.3, Fe – 97.9), B2 (C- 0.1, Cu – 2.5, SiC-1, Fe – 96.4) and B3(C- 0.5, Cu – 2.5, SiC-1, Fe – 96.0) were prepared using a hot powder preform forging technique. The forged samples are of (25× 50×10 mm3) dimensions. These samples were hot rolled and annealed to relieve the residual stresses. These samples were characterized in terms of microstructure, porosity content/densification, hardness and tensile properties. Densification as high near to theoretical density has been realized. Hot powder preform forging using closed die showed better densification. Rolled and annealed microstructure showed lesser porosity content than the forged one. Phosphorous causes hardening of ferrite in solid solution with iron. Compositions B1, showed reasonable elongation and it improved further on annealing. It was observed in this present investigation that, the addition, such as SiC and Cu caused increase in strength. Steel developed in the investigation are used as powder based backing plate in Manufacturing of iron based brake pads used in heavy duty applications.展开更多
文摘The aims of the present study is to develop a powder based steel used as backing plate for heavy duty brake pad applications. Three powder based back plate steel compositions namely B1 (C- 0.3, Cu – 1.5, P -0.3, Fe – 97.9), B2 (C- 0.1, Cu – 2.5, SiC-1, Fe – 96.4) and B3(C- 0.5, Cu – 2.5, SiC-1, Fe – 96.0) were prepared using a hot powder preform forging technique. The forged samples are of (25× 50×10 mm3) dimensions. These samples were hot rolled and annealed to relieve the residual stresses. These samples were characterized in terms of microstructure, porosity content/densification, hardness and tensile properties. Densification as high near to theoretical density has been realized. Hot powder preform forging using closed die showed better densification. Rolled and annealed microstructure showed lesser porosity content than the forged one. Phosphorous causes hardening of ferrite in solid solution with iron. Compositions B1, showed reasonable elongation and it improved further on annealing. It was observed in this present investigation that, the addition, such as SiC and Cu caused increase in strength. Steel developed in the investigation are used as powder based backing plate in Manufacturing of iron based brake pads used in heavy duty applications.
基金supported by the National Natural Science Foundation of China(No.51804272)High-end Talent Support Program of Yangzhou University(China)+3 种基金Qinglan Project of Yangzhou University(China)Yangzhou City-Yangzhou University Cooperation Foundation,China(No.YZ2022183)Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(No.SJCX22_1716)Innovation and Entrepreneurship Training Program for College Students of Jiangsu Province,China(No.202211117173T)。