Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but t...Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high reliability.展开更多
文章针对无刷直流电机(Brushless Direct Current Motor,BLDCM)控制系统霍尔位置传感器故障中常见的单霍尔故障,分别分析了霍尔对电源短路故障和霍尔开路故障2种故障模式,并提出了采用霍尔状态编码值对单霍尔故障进行诊断和定位的方法...文章针对无刷直流电机(Brushless Direct Current Motor,BLDCM)控制系统霍尔位置传感器故障中常见的单霍尔故障,分别分析了霍尔对电源短路故障和霍尔开路故障2种故障模式,并提出了采用霍尔状态编码值对单霍尔故障进行诊断和定位的方法。同时,提出一种实用的霍尔故障修复方法。经过仿真验证和分析证实,文章所提方法能够有效实现单霍尔故障的定位和修复。展开更多
基金supported by National Hi-tech Research and Development Program of China (863 Program,Grant No.2008AA11A126)Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0498)
文摘Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high reliability.
文摘文章针对无刷直流电机(Brushless Direct Current Motor,BLDCM)控制系统霍尔位置传感器故障中常见的单霍尔故障,分别分析了霍尔对电源短路故障和霍尔开路故障2种故障模式,并提出了采用霍尔状态编码值对单霍尔故障进行诊断和定位的方法。同时,提出一种实用的霍尔故障修复方法。经过仿真验证和分析证实,文章所提方法能够有效实现单霍尔故障的定位和修复。