To achieve accurate positioning of autonomous underwater vehicles, an appropriate underwater terrain database storage format for underwater terrain-matching positioning is established using multi-beam data as underwat...To achieve accurate positioning of autonomous underwater vehicles, an appropriate underwater terrain database storage format for underwater terrain-matching positioning is established using multi-beam data as underwater terrainmatching data. An underwater terrain interpolation error compensation method based on fractional Brownian motion is proposed for defects of normal terrain interpolation, and an underwater terrain-matching positioning method based on least squares estimation(LSE) is proposed for correlation analysis of topographic features. The Fisher method is introduced as a secondary criterion for pseudo localization appearing in a topographic features flat area, effectively reducing the impact of pseudo positioning points on matching accuracy and improving the positioning accuracy of terrain flat areas. Simulation experiments based on electronic chart and multi-beam sea trial data show that drift errors of an inertial navigation system can be corrected effectively using the proposed method. The positioning accuracy and practicality are high, satisfying the requirement of underwater accurate positioning.展开更多
The Global Rainforest Mapping (GRFM) project was initiated in 1995 and, through a dedicated data acquisition policy by the National Space Development Agency of Japan (NASDA), data acquisitions could be completed withi...The Global Rainforest Mapping (GRFM) project was initiated in 1995 and, through a dedicated data acquisition policy by the National Space Development Agency of Japan (NASDA), data acquisitions could be completed within a 1.5-year period, resulting in a spatially and temporally homogeneous coverage to contain the entire Amazon Basin from the Atlantic to the Pacific; Central America up to the Yucatan Peninsular in Mexico; equatorial Africa from Madagascar and Kenya in the east to Sierra Leone in the west; and Southeast Asia, including Papua New Guinea. To some extent, GRFM project is an international endeavor led by NASDA, with the goal of producing spatially and temporally contiguous Synthetic Aperture Radar (SAR) data sets over the tropical belt on the Earth by use of the JERS-1 L-band SAR, through the generation of semi-continental, 100m resolution, image mosaics. The GRFM project relies on extensive collaboration with the National Aeronautics and Space Administration (NASA), the Joint Research Center of the European Commission (JRC) and the Japanese Ministry of International Trade and Industry (MITI) for data acquisition, processing, validation and product generation. A science program is underway in parallel with product generation. This involves the agencies mentioned above, as well as a large number of international organizations, universities and individuals to perform field activities and data analysis at different levels.展开更多
At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method o...At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method of variance reduction fast simultaneous localization and mapping(FastSLAM) with simulated annealing is proposed to solve the problems of particle degradation,particle depletion and particle loss in traditional FastSLAM,which lead to the reduction of AUV location estimation accuracy.The adaptive exponential fading factor is generated by the anneal function of simulated annealing algorithm to improve the effective particle number and replace resampling.By increasing the weight of small particles and decreasing the weight of large particles,the variance of particle weight can be reduced,the number of effective particles can be increased,and the accuracy of AUV location and feature location estimation can be improved to some extent by retaining more information carried by particles.The experimental results based on trial data show that the proposed simulated annealing variance reduction FastSLAM method avoids particle degradation,maintains the diversity of particles,weakened the degeneracy and improves the accuracy and stability of AUV navigation and localization system.展开更多
We propose an encryption technique for underwater visible light communication[UVLC]based on chaotic phase scrambling[PS]and conjugate frequency hopping[CFH].The technique is experimentally tested using an 8-level puls...We propose an encryption technique for underwater visible light communication[UVLC]based on chaotic phase scrambling[PS]and conjugate frequency hopping[CFH].The technique is experimentally tested using an 8-level pulse amplitude modulation[PAM-8]and a 1.2 m underwater link.The security key of the phase scrambling code is generated according to a logistic map,and the frequency hopping is achieved by adding the same zero frequency points to the signal spectrum.The maximum transmission rate of 2.1 Gbit/s is measured with bit-error-rate[BER]below 7%the hard-decision forward error correction[HD-FEC]threshold of 3.8×10^(-3).展开更多
水声网络中的MAC协议主要采用RTS/CTS机制,然而RTS/CTS控制包不仅限制了并发传输的可能性,进而降低了信道利用率和吞吐量,而且造成信道资源分配不公平。为了提高吞吐量、信道利用率和公平性,提出了一种基于状态着色的水声网络MAC(State ...水声网络中的MAC协议主要采用RTS/CTS机制,然而RTS/CTS控制包不仅限制了并发传输的可能性,进而降低了信道利用率和吞吐量,而且造成信道资源分配不公平。为了提高吞吐量、信道利用率和公平性,提出了一种基于状态着色的水声网络MAC(State Coloring based MAC,SC-MAC)协议。在SC-MAC协议中,每个节点根据自身一跳邻居表构建本地分层图,通过侦听数据帧或ACK帧获知邻居节点状态来为本地分层图中的节点着色,并根据本地分层着色图调度包的发送,减少数据帧的碰撞与重传。SC-MAC协议在避免冲突的前提下实现了并行传输。同时,给出基于公平性的退避方案以提高SC-MAC协议的公平性。仿真结果表明,SC-MAC协议与R-MAC协议和slotted-FAMA协议相比在端到端延迟、吞吐量和平均能耗等方面有明显的优势。展开更多
A method of underwater simultaneous localization and mapping(SLAM)based on on-board looking forward sonar is proposed.The real-time data flow is obtained to form the underwater acoustic images and these images are pre...A method of underwater simultaneous localization and mapping(SLAM)based on on-board looking forward sonar is proposed.The real-time data flow is obtained to form the underwater acoustic images and these images are pre-processed and positions of objects are extracted for SLAM.Extended Kalman filter(EKF)is selected as the kernel approach to enable the underwater vehicle to construct a feature map,and the EKF can locate the underwater vehicle through the map.In order to improve the association effciency,a novel association method based on ant colony algorithm is introduced.Results obtained on simulation data and real acoustic vision data in tank are displayed and discussed.The proposed method maintains better association effciency and reduces navigation error,and is effective and feasible.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51179035 and 51279221)the Natural Science Foundation of Heilongjiang Province(Grant No.E201121)
文摘To achieve accurate positioning of autonomous underwater vehicles, an appropriate underwater terrain database storage format for underwater terrain-matching positioning is established using multi-beam data as underwater terrainmatching data. An underwater terrain interpolation error compensation method based on fractional Brownian motion is proposed for defects of normal terrain interpolation, and an underwater terrain-matching positioning method based on least squares estimation(LSE) is proposed for correlation analysis of topographic features. The Fisher method is introduced as a secondary criterion for pseudo localization appearing in a topographic features flat area, effectively reducing the impact of pseudo positioning points on matching accuracy and improving the positioning accuracy of terrain flat areas. Simulation experiments based on electronic chart and multi-beam sea trial data show that drift errors of an inertial navigation system can be corrected effectively using the proposed method. The positioning accuracy and practicality are high, satisfying the requirement of underwater accurate positioning.
基金Knowledge Innovation Project of CAS,No. KZCX02-308
文摘The Global Rainforest Mapping (GRFM) project was initiated in 1995 and, through a dedicated data acquisition policy by the National Space Development Agency of Japan (NASDA), data acquisitions could be completed within a 1.5-year period, resulting in a spatially and temporally homogeneous coverage to contain the entire Amazon Basin from the Atlantic to the Pacific; Central America up to the Yucatan Peninsular in Mexico; equatorial Africa from Madagascar and Kenya in the east to Sierra Leone in the west; and Southeast Asia, including Papua New Guinea. To some extent, GRFM project is an international endeavor led by NASDA, with the goal of producing spatially and temporally contiguous Synthetic Aperture Radar (SAR) data sets over the tropical belt on the Earth by use of the JERS-1 L-band SAR, through the generation of semi-continental, 100m resolution, image mosaics. The GRFM project relies on extensive collaboration with the National Aeronautics and Space Administration (NASA), the Joint Research Center of the European Commission (JRC) and the Japanese Ministry of International Trade and Industry (MITI) for data acquisition, processing, validation and product generation. A science program is underway in parallel with product generation. This involves the agencies mentioned above, as well as a large number of international organizations, universities and individuals to perform field activities and data analysis at different levels.
基金supported by the National Science Fund of China under Grants 61603034China Postdoctoral Science Foundation under Grant 2019M653870XB+1 种基金Beijing Municipal Natural Science Foundation (3182027)Fundamental Research Funds for the Central Universities,China,FRF-GF-17-B44,and XJS191315
文摘At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method of variance reduction fast simultaneous localization and mapping(FastSLAM) with simulated annealing is proposed to solve the problems of particle degradation,particle depletion and particle loss in traditional FastSLAM,which lead to the reduction of AUV location estimation accuracy.The adaptive exponential fading factor is generated by the anneal function of simulated annealing algorithm to improve the effective particle number and replace resampling.By increasing the weight of small particles and decreasing the weight of large particles,the variance of particle weight can be reduced,the number of effective particles can be increased,and the accuracy of AUV location and feature location estimation can be improved to some extent by retaining more information carried by particles.The experimental results based on trial data show that the proposed simulated annealing variance reduction FastSLAM method avoids particle degradation,maintains the diversity of particles,weakened the degeneracy and improves the accuracy and stability of AUV navigation and localization system.
基金The Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JQ-208)Key Research and Development Program of Shaanxi(No.2022GY-285,No.2020SF-391)Foundation of Key Laboratory of Road Construction Technology and Equipment of Chang’an University(No.300102259507)。
基金supported by the National Key Research and Development Program of China(No.2022YFB2802803)the National Natural Science Foundation of China(Nos.61925104,62031011,and 62201157)the Major Key Project of PCL。
文摘We propose an encryption technique for underwater visible light communication[UVLC]based on chaotic phase scrambling[PS]and conjugate frequency hopping[CFH].The technique is experimentally tested using an 8-level pulse amplitude modulation[PAM-8]and a 1.2 m underwater link.The security key of the phase scrambling code is generated according to a logistic map,and the frequency hopping is achieved by adding the same zero frequency points to the signal spectrum.The maximum transmission rate of 2.1 Gbit/s is measured with bit-error-rate[BER]below 7%the hard-decision forward error correction[HD-FEC]threshold of 3.8×10^(-3).
文摘水声网络中的MAC协议主要采用RTS/CTS机制,然而RTS/CTS控制包不仅限制了并发传输的可能性,进而降低了信道利用率和吞吐量,而且造成信道资源分配不公平。为了提高吞吐量、信道利用率和公平性,提出了一种基于状态着色的水声网络MAC(State Coloring based MAC,SC-MAC)协议。在SC-MAC协议中,每个节点根据自身一跳邻居表构建本地分层图,通过侦听数据帧或ACK帧获知邻居节点状态来为本地分层图中的节点着色,并根据本地分层着色图调度包的发送,减少数据帧的碰撞与重传。SC-MAC协议在避免冲突的前提下实现了并行传输。同时,给出基于公平性的退避方案以提高SC-MAC协议的公平性。仿真结果表明,SC-MAC协议与R-MAC协议和slotted-FAMA协议相比在端到端延迟、吞吐量和平均能耗等方面有明显的优势。
基金the National Natural Science Foundation of China(No.51009040)the Fund of National Defence Key Laboratory of Autonomous Underwater Vehicle Technology(No.2008002)the Scientific Service Special Fund of University in China(No.E091002)
文摘A method of underwater simultaneous localization and mapping(SLAM)based on on-board looking forward sonar is proposed.The real-time data flow is obtained to form the underwater acoustic images and these images are pre-processed and positions of objects are extracted for SLAM.Extended Kalman filter(EKF)is selected as the kernel approach to enable the underwater vehicle to construct a feature map,and the EKF can locate the underwater vehicle through the map.In order to improve the association effciency,a novel association method based on ant colony algorithm is introduced.Results obtained on simulation data and real acoustic vision data in tank are displayed and discussed.The proposed method maintains better association effciency and reduces navigation error,and is effective and feasible.