REVIEWING the history of the geology of mineral deposits, we may find that in the first fifty years of thetwentieth century the magmatic-hydrothermal theory of ore deposition was the most prevalent, whichgave impetus ...REVIEWING the history of the geology of mineral deposits, we may find that in the first fifty years of thetwentieth century the magmatic-hydrothermal theory of ore deposition was the most prevalent, whichgave impetus to the development of the geology of mineral deposits. In the 1960s, the drilling of theSalton Sea geothermal field, California, the United States, and discovery and study of the Red Sea seafloor hot brines and large amounts of metal sulfides removed therefrom led to the rise of the brine theory ofmineral deposition, thus elucidating the origin of massive metal sulfides and promoted the discoveryand exploration of metal deposits. After the 1970s and the 1980s, through a study of the hydrothermal ore fluids of modern hotsprings. geologists came to realize that there exist low-salinity hydrothermal ore fluids other than展开更多
In hydrothermal mineralization regime, there should be some other models besideS the commonly accepted traditional magmatic and metamorphic hydrothermal ones. The authors suggest a new model named as geothermal nuid m...In hydrothermal mineralization regime, there should be some other models besideS the commonly accepted traditional magmatic and metamorphic hydrothermal ones. The authors suggest a new model named as geothermal nuid mineralization and believe it is an important and distinguishable hydrotherma1 mineralization model. The discussions are focused on several aspects of the new model in its distinguishing features in essential factors of hydrothermal mineralization, essential metallogenic conditions, common metallogenic characteristics, general mineralization process,geotectonic control and metallogenic importance.展开更多
An important diplogenetic mineralization event superimposed on pre-existing exhalation sediments in the Tongling area, Anhui province, was triggered by widespread granitic magmatism along the northeastern margin of th...An important diplogenetic mineralization event superimposed on pre-existing exhalation sediments in the Tongling area, Anhui province, was triggered by widespread granitic magmatism along the northeastern margin of the Yangtze Block during 140–135 Ma under extensional tectonic circumstances following the collision between the North China and Yangtze blocks. The main orebodies of the Dongguashan copper deposit, a typical diplogenetic stratified deposit among many polymetallic ore deposits in China, are hosted by strata between Upper Devonian sandstone and Carboniferous limestone, and its mineralization was genetically related to the Qingshanjiao intrusive. The Rb-Sr isotopic isochron of the Qingshanjiao intrusive yields an age of about 136.5±1.4 Ma. The ore-forming fluid reflected by the inclusion fluid in quartz veins is characterized by high temperature and high salinity, and its age was also determined by Rb -Sr isotope dating as 134±11 Ma. Oxygen and hydrogen isotope composition data suggest that the ore-forming fluid was derived mainly from magmatism. By integrating these isotopic dating data, characteristics of fluid inclusions and the geology of the deposit, the mineralization of the Dongguashan copper deposit is divided into two stages. First, a stratiform sedimentary deposit or protore layer formed in the Late Devonian to the Early Carboniferous, while in the second stage the pre-existing protore was superimposed by hydrothermal fluid that was derived from the Yanshanian magmatic activities occurring around 135 Ma ago. This two-stage mineralization formed the Dongguashan statiform copper deposit. Associated “porphyry” mineralization found in the bottom of and in surrounding intrusive rocks of the orebodies might have occurred in the same period as a second-stage mineralization of this deposit.展开更多
To characterize the hydrothermal processes of East Pacific rise at 9°-10°N, sulfide mineral compositions, textural, and geochemical features of chimney ores were studied using ore microscope,scanning electro...To characterize the hydrothermal processes of East Pacific rise at 9°-10°N, sulfide mineral compositions, textural, and geochemical features of chimney ores were studied using ore microscope,scanning electron microscope, X-ray diffraction analysis, and electron microprobe techniques. Results show that there are three mineral assemblages for the hydrothermal chimney ores, namely:(i) anhydrite + marcasite + pyrite, (ii) pyrite + sphalerite + chalcopyrite, and (iii) chalcopyrite + bornite + digenite + covellite. Mineral assemblages, zonational features, and geochemical characteristics of the ore minerals indicate that ore fluid temperature changed from low to high then to low with a maximum temperature up to 400 ℃. The chimney is a typical black smoker. The initial structure of the chimney was formed by the precipitation of anhydrites, and later the sulfides began to precipitate in the inner wall.展开更多
The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristi...The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristics of metallogenic period quartz veins were studied to reveal the ore-forming fluid features.Laser Raman analysis indicates that the ore-forming fluids is a H_(2)O-NaCl-CH_(4)(-CO_(2))system.Fluid inclusions microthermometry shows a homogenization temperature of 181-375°C and a salinity of 5.26%-16.99%for the disseminated-banded Cu-Zn mineralization;but a homogenization temperature of 142-343°C and a salinity of 5.41%-21.19%for the massive-veined Cu-Zn mineralization.These features suggest a medium-high temperature and a medium salinity for the ore-forming fluids.H-O isotopic data indicates that the ore-forming fluids were mainly from the metamorphic and magmatic water,plus minor formation water.And sulfur isotopic data indicates that sulfur was mainly derived from the formation and magmatic rocks.Metallogenesis of the disseminated-banded mineralization was mainly correlated with fluid mixing and water-rock reaction;whereas that of the massive-veined mineralization was mainly correlated with fluid boiling.The genetic type of the deposit is a medium-high temperature hydrothermal deposit related to magmatism and controlled by shear zones.This study is beneficial to understand the stratiform copper deposit.展开更多
The Diakha gold deposit is located in the southeastern margin of the highly prospective/productive Paleoproterozoic( Birimian) Kédougou-Kéniéba Inlier. Gold mineralization is closely associated with a n...The Diakha gold deposit is located in the southeastern margin of the highly prospective/productive Paleoproterozoic( Birimian) Kédougou-Kéniéba Inlier. Gold mineralization is closely associated with a narrow,sub-vertical,NE-trending shear corridor. The corridor is to the east of a sinistrally reactivated D1 west-dipping fault,which emanated from SMSZ( D2 reverse-sinistral regional structure). The mineralization is hosted by fine-grained sandstone and breccias units associated with a moderate to strong hydrothermal alteration,which is dominated by albitization,carbonization,silicification,hematization,and chloritization. Diakha field data and laboratory analysis suggest the existence of two main stages of hydrothermal mineralization,namely stage I and stage II. Stage I is of a breccias type of mineralization and represents the major gold bearing stage. It isassociated with hematite + calcite + ankerite/dolomite and quartz pervasive alteration,controlled by the predominantly brittle-ductile NNE to NE-shearing structures of the main deformation event D2. Stage II is represented by the second minor hydrothermal episode,showing local quartz-tourmaline and tremolite alteration which is structurally controlled by the dipping S3 cleavage formed during D3 deformation. Petrographic and microthermometric studies of fluid inclusions from quartz veins reveal the presence of early dominant carbonic CO2-pure and aqueous-carbonic CO2-rich( LCO2+ VCO2± H2 O) in stage I. The exclusively aqueous H2 O + Na Cl ± CO2 fluid inclusions( L-type) are observed in stage II. Interpretation shows that the ore-forming fluids originated from a homogeneous H2 O-CO2 fluid during phase separation,with trapping temperatures of 250℃ to 280℃ and low salinity( < 6 wt % Na Cl equiv),indicating an estimated trapping pressure for the deposit between 610 to 800 bars.展开更多
德兴铜矿是中国东部大陆环境最具代表性的大型斑岩铜矿,由朱砂红、铜厂及富家坞三大矿床组成,其中的铜厂矿体以富金而别具特色。在前人研究基础上,本文通过系统的野外观测、详细的岩芯编录和全面的岩相学研究,厘定了铜厂矿床的脉体类型...德兴铜矿是中国东部大陆环境最具代表性的大型斑岩铜矿,由朱砂红、铜厂及富家坞三大矿床组成,其中的铜厂矿体以富金而别具特色。在前人研究基础上,本文通过系统的野外观测、详细的岩芯编录和全面的岩相学研究,厘定了铜厂矿床的脉体类型和形成顺序,系统地开展了各类脉体的流体包裹体研究,查明了成矿流体的演化过程,再塑了岩浆-热液矿化过程。初步识别出德兴矿床3组脉体类型,分别记录了三个不同阶段的蚀变-成矿过程:早期A脉分为4类,形成于成矿早期斑岩尚未固结时,伴有大规模的钾化和黑云母化甚至磁铁矿化;中期B脉可分为7类,形成于斑岩体固结后的大规模裂隙事件发育期,B脉石英呈梳状对称生长、黄铁矿以中心线生长;后期D脉共有3类,发育于成矿晚期,系雨水大量加入和硫化物大量淀积产物。观察发现,所有A、B及D脉沉淀过程中,均伴随大量的岩浆流体出溶、热液蚀变、流体挥发等热液活动、各脉均捕获了同体系内富含的热液流体。详细显微镜鉴定表明,各类脉体的脉石矿物石英内发育的大部分包裹体与世界典型斑岩铜矿床的矿化特征相似,从成矿早期A脉到成矿晚期D脉包裹体的类型发生如下变化:早期以LVH(含单子晶或多子晶包裹体发育,包裹体中还见有金属硫化物)+富气相包裹体为主→中期以含单子晶包裹体+富气相包裹体为主,以及含有少量富液相包裹体→成矿晚期,以富液相包裹体+少量富气相包裹体。包裹体显微测温结果总体上指示了温度、压力及热液成分在各类脉体的形成过程的变化规律,从早期到晚期温度和盐度逐渐降低,热液成矿作用明显经历三个阶段:早期岩浆未完全固结,温度达到800~600℃以上,压力较高(140~50MPa),发生强烈的钾硅酸盐化;中期,由于岩浆冷凝结晶,岩体顶部围岩裂隙发育,静岩压力向静水压力发生转换,温度下降到450~550℃,压力陡然从55~40MPa下降至20MPa(B脉);而D脉形成时,发生大规模绿泥石-水云母化,温度下降至350~375℃,压力完全降低至20MPa以下;最后,与成矿作用无关的热液活动了两次,峰值温度分别是320~300℃和180~200℃,形成了无矿碳酸盐脉、石英脉及黑云母。在成矿过程中,成矿热液也从形成A/B脉时以岩浆热液为主,转变为形成D脉时以雨水、地下水为主。与世界典型斑岩型铜矿床相比,德兴斑岩铜矿床的蚀变-矿化系统基本一致,都由强硅酸盐蚀变带——青磐岩蚀变带——泥岩蚀变带等构成,在不同的蚀变阶段形成了具有特色的不规则形状A脉、脉石矿物梳状对称的B脉及粗颗粒大脉型D脉。德兴铜厂铜金矿各成矿阶段内主要成矿流体特征及其演化过程基本类似于世界典型斑岩矿床。但是,也存在不同之处,在铜厂铜金矿的A、B及D脉都发育了少量CO2包裹体,表明德兴铜厂成矿过程中CO2参与成矿作用,世界其它斑岩型矿床或没有报道发育CO2包裹体(杨志明等,2008),或者仅在其中某个阶段发现了少量CO2包裹体(Harris et al.,2004)。CO2包裹体参与成矿是否有特殊指示意义,须进一步的工作才能得出正确的结论。展开更多
文摘REVIEWING the history of the geology of mineral deposits, we may find that in the first fifty years of thetwentieth century the magmatic-hydrothermal theory of ore deposition was the most prevalent, whichgave impetus to the development of the geology of mineral deposits. In the 1960s, the drilling of theSalton Sea geothermal field, California, the United States, and discovery and study of the Red Sea seafloor hot brines and large amounts of metal sulfides removed therefrom led to the rise of the brine theory ofmineral deposition, thus elucidating the origin of massive metal sulfides and promoted the discoveryand exploration of metal deposits. After the 1970s and the 1980s, through a study of the hydrothermal ore fluids of modern hotsprings. geologists came to realize that there exist low-salinity hydrothermal ore fluids other than
文摘In hydrothermal mineralization regime, there should be some other models besideS the commonly accepted traditional magmatic and metamorphic hydrothermal ones. The authors suggest a new model named as geothermal nuid mineralization and believe it is an important and distinguishable hydrotherma1 mineralization model. The discussions are focused on several aspects of the new model in its distinguishing features in essential factors of hydrothermal mineralization, essential metallogenic conditions, common metallogenic characteristics, general mineralization process,geotectonic control and metallogenic importance.
基金supported by the National Science Foundation of China(grant Nos.49873016,40221301)the Ph.D.Programs Foundation of the Ministry of Education of China(No.20020284035)
文摘An important diplogenetic mineralization event superimposed on pre-existing exhalation sediments in the Tongling area, Anhui province, was triggered by widespread granitic magmatism along the northeastern margin of the Yangtze Block during 140–135 Ma under extensional tectonic circumstances following the collision between the North China and Yangtze blocks. The main orebodies of the Dongguashan copper deposit, a typical diplogenetic stratified deposit among many polymetallic ore deposits in China, are hosted by strata between Upper Devonian sandstone and Carboniferous limestone, and its mineralization was genetically related to the Qingshanjiao intrusive. The Rb-Sr isotopic isochron of the Qingshanjiao intrusive yields an age of about 136.5±1.4 Ma. The ore-forming fluid reflected by the inclusion fluid in quartz veins is characterized by high temperature and high salinity, and its age was also determined by Rb -Sr isotope dating as 134±11 Ma. Oxygen and hydrogen isotope composition data suggest that the ore-forming fluid was derived mainly from magmatism. By integrating these isotopic dating data, characteristics of fluid inclusions and the geology of the deposit, the mineralization of the Dongguashan copper deposit is divided into two stages. First, a stratiform sedimentary deposit or protore layer formed in the Late Devonian to the Early Carboniferous, while in the second stage the pre-existing protore was superimposed by hydrothermal fluid that was derived from the Yanshanian magmatic activities occurring around 135 Ma ago. This two-stage mineralization formed the Dongguashan statiform copper deposit. Associated “porphyry” mineralization found in the bottom of and in surrounding intrusive rocks of the orebodies might have occurred in the same period as a second-stage mineralization of this deposit.
基金This paper is supported by the National Natural Science Foundation of China (No. 40273025)Key Laboratory of Marine Sedimentology and Environmental Geology, State Oceanic Administration, and National High Technology Research and Development Program of China (No. 2006AA09Z219).
文摘To characterize the hydrothermal processes of East Pacific rise at 9°-10°N, sulfide mineral compositions, textural, and geochemical features of chimney ores were studied using ore microscope,scanning electron microscope, X-ray diffraction analysis, and electron microprobe techniques. Results show that there are three mineral assemblages for the hydrothermal chimney ores, namely:(i) anhydrite + marcasite + pyrite, (ii) pyrite + sphalerite + chalcopyrite, and (iii) chalcopyrite + bornite + digenite + covellite. Mineral assemblages, zonational features, and geochemical characteristics of the ore minerals indicate that ore fluid temperature changed from low to high then to low with a maximum temperature up to 400 ℃. The chimney is a typical black smoker. The initial structure of the chimney was formed by the precipitation of anhydrites, and later the sulfides began to precipitate in the inner wall.
基金financially supported by National Natural Science Foundation of China(42272106,41202067)Open Fund of State Key Laboratory for Mineral Deposits Research,Nanjing University(2019-LAMD-K12)China Geological Survey(DD20211386,DD20211392,DD20179603).
文摘The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristics of metallogenic period quartz veins were studied to reveal the ore-forming fluid features.Laser Raman analysis indicates that the ore-forming fluids is a H_(2)O-NaCl-CH_(4)(-CO_(2))system.Fluid inclusions microthermometry shows a homogenization temperature of 181-375°C and a salinity of 5.26%-16.99%for the disseminated-banded Cu-Zn mineralization;but a homogenization temperature of 142-343°C and a salinity of 5.41%-21.19%for the massive-veined Cu-Zn mineralization.These features suggest a medium-high temperature and a medium salinity for the ore-forming fluids.H-O isotopic data indicates that the ore-forming fluids were mainly from the metamorphic and magmatic water,plus minor formation water.And sulfur isotopic data indicates that sulfur was mainly derived from the formation and magmatic rocks.Metallogenesis of the disseminated-banded mineralization was mainly correlated with fluid mixing and water-rock reaction;whereas that of the massive-veined mineralization was mainly correlated with fluid boiling.The genetic type of the deposit is a medium-high temperature hydrothermal deposit related to magmatism and controlled by shear zones.This study is beneficial to understand the stratiform copper deposit.
文摘The Diakha gold deposit is located in the southeastern margin of the highly prospective/productive Paleoproterozoic( Birimian) Kédougou-Kéniéba Inlier. Gold mineralization is closely associated with a narrow,sub-vertical,NE-trending shear corridor. The corridor is to the east of a sinistrally reactivated D1 west-dipping fault,which emanated from SMSZ( D2 reverse-sinistral regional structure). The mineralization is hosted by fine-grained sandstone and breccias units associated with a moderate to strong hydrothermal alteration,which is dominated by albitization,carbonization,silicification,hematization,and chloritization. Diakha field data and laboratory analysis suggest the existence of two main stages of hydrothermal mineralization,namely stage I and stage II. Stage I is of a breccias type of mineralization and represents the major gold bearing stage. It isassociated with hematite + calcite + ankerite/dolomite and quartz pervasive alteration,controlled by the predominantly brittle-ductile NNE to NE-shearing structures of the main deformation event D2. Stage II is represented by the second minor hydrothermal episode,showing local quartz-tourmaline and tremolite alteration which is structurally controlled by the dipping S3 cleavage formed during D3 deformation. Petrographic and microthermometric studies of fluid inclusions from quartz veins reveal the presence of early dominant carbonic CO2-pure and aqueous-carbonic CO2-rich( LCO2+ VCO2± H2 O) in stage I. The exclusively aqueous H2 O + Na Cl ± CO2 fluid inclusions( L-type) are observed in stage II. Interpretation shows that the ore-forming fluids originated from a homogeneous H2 O-CO2 fluid during phase separation,with trapping temperatures of 250℃ to 280℃ and low salinity( < 6 wt % Na Cl equiv),indicating an estimated trapping pressure for the deposit between 610 to 800 bars.
文摘德兴铜矿是中国东部大陆环境最具代表性的大型斑岩铜矿,由朱砂红、铜厂及富家坞三大矿床组成,其中的铜厂矿体以富金而别具特色。在前人研究基础上,本文通过系统的野外观测、详细的岩芯编录和全面的岩相学研究,厘定了铜厂矿床的脉体类型和形成顺序,系统地开展了各类脉体的流体包裹体研究,查明了成矿流体的演化过程,再塑了岩浆-热液矿化过程。初步识别出德兴矿床3组脉体类型,分别记录了三个不同阶段的蚀变-成矿过程:早期A脉分为4类,形成于成矿早期斑岩尚未固结时,伴有大规模的钾化和黑云母化甚至磁铁矿化;中期B脉可分为7类,形成于斑岩体固结后的大规模裂隙事件发育期,B脉石英呈梳状对称生长、黄铁矿以中心线生长;后期D脉共有3类,发育于成矿晚期,系雨水大量加入和硫化物大量淀积产物。观察发现,所有A、B及D脉沉淀过程中,均伴随大量的岩浆流体出溶、热液蚀变、流体挥发等热液活动、各脉均捕获了同体系内富含的热液流体。详细显微镜鉴定表明,各类脉体的脉石矿物石英内发育的大部分包裹体与世界典型斑岩铜矿床的矿化特征相似,从成矿早期A脉到成矿晚期D脉包裹体的类型发生如下变化:早期以LVH(含单子晶或多子晶包裹体发育,包裹体中还见有金属硫化物)+富气相包裹体为主→中期以含单子晶包裹体+富气相包裹体为主,以及含有少量富液相包裹体→成矿晚期,以富液相包裹体+少量富气相包裹体。包裹体显微测温结果总体上指示了温度、压力及热液成分在各类脉体的形成过程的变化规律,从早期到晚期温度和盐度逐渐降低,热液成矿作用明显经历三个阶段:早期岩浆未完全固结,温度达到800~600℃以上,压力较高(140~50MPa),发生强烈的钾硅酸盐化;中期,由于岩浆冷凝结晶,岩体顶部围岩裂隙发育,静岩压力向静水压力发生转换,温度下降到450~550℃,压力陡然从55~40MPa下降至20MPa(B脉);而D脉形成时,发生大规模绿泥石-水云母化,温度下降至350~375℃,压力完全降低至20MPa以下;最后,与成矿作用无关的热液活动了两次,峰值温度分别是320~300℃和180~200℃,形成了无矿碳酸盐脉、石英脉及黑云母。在成矿过程中,成矿热液也从形成A/B脉时以岩浆热液为主,转变为形成D脉时以雨水、地下水为主。与世界典型斑岩型铜矿床相比,德兴斑岩铜矿床的蚀变-矿化系统基本一致,都由强硅酸盐蚀变带——青磐岩蚀变带——泥岩蚀变带等构成,在不同的蚀变阶段形成了具有特色的不规则形状A脉、脉石矿物梳状对称的B脉及粗颗粒大脉型D脉。德兴铜厂铜金矿各成矿阶段内主要成矿流体特征及其演化过程基本类似于世界典型斑岩矿床。但是,也存在不同之处,在铜厂铜金矿的A、B及D脉都发育了少量CO2包裹体,表明德兴铜厂成矿过程中CO2参与成矿作用,世界其它斑岩型矿床或没有报道发育CO2包裹体(杨志明等,2008),或者仅在其中某个阶段发现了少量CO2包裹体(Harris et al.,2004)。CO2包裹体参与成矿是否有特殊指示意义,须进一步的工作才能得出正确的结论。