期刊文献+
共找到6,667篇文章
< 1 2 250 >
每页显示 20 50 100
Performance of low-salinity water flooding for enhanced oil recovery improved by SiO_2 nanoparticles 被引量:7
1
作者 Tangestani Ebrahim Vafaie Sefti Mohsen +2 位作者 Shadman Mohammad Mahdi Kazemi Tooseh Esmaeel Ahmadi Saeb 《Petroleum Science》 SCIE CAS CSCD 2019年第2期357-365,共9页
Low-salinity water injection has been utilized as a promising method for oil recovery in recent years. Low-salinity water flooding changes the ion composition or brine salinity for improving oil recovery. Recently, th... Low-salinity water injection has been utilized as a promising method for oil recovery in recent years. Low-salinity water flooding changes the ion composition or brine salinity for improving oil recovery. Recently, the application of nanoparticles with low-salinity water flooding has shown remarkable results in enhanced oil recovery(EOR). Many studies have been performed on the effect of nanofluids on EOR mechanisms. Their results showed that nanofluids can improve oil recovery when used in low-salinity water flooding. In this work, the effects of injection of low-salinity water and low-salinity nanofluid(prepared by adding SiO_2 nanoparticles to low-salinity water) on oil recovery were investigated. At first, the effects of ions were investigated with equal concentrations in low-salinity water flooding. The experimental results showed that the monovalent ions had better performance than the divalent ions because of them having more negative zeta potential and less ionic strength. Also, low-salinity water flooding recovered 6.1% original oil in place(OOIP) more than the high-salinity flooding. Contact angle measurements demonstrated that low-salinity water could reduce the contact angle between oil and water. Then in the second stage, experiments were continued by adding SiO_2 nanoparticles to the K+ solution which had the highest oil recovery at the first stage. The experimental results illustrated that the addition of Si02 nanoparticles up to 0.05 wt% increased oil recovery by about 4% OOIP more than the low-salinity water flooding. 展开更多
关键词 Enhanced OIL RECOVERY low-salinity water low-salinity NANOFLUID ZETA potential
下载PDF
How much would silica nanoparticles enhance the performance of low-salinity water flooding? 被引量:3
2
作者 Amir Hossein Saeedi Dehaghani Reza Daneshfar 《Petroleum Science》 SCIE CAS CSCD 2019年第3期591-605,共15页
Nanofluids and low-salinity water(LSW)flooding are two novel techniques for enhanced oil recovery.Despite some efforts on investigating benefits of each method,the pros and cons of their combined application need to b... Nanofluids and low-salinity water(LSW)flooding are two novel techniques for enhanced oil recovery.Despite some efforts on investigating benefits of each method,the pros and cons of their combined application need to be evaluated.This work sheds light on performance of LSW augmented with nanoparticles through examining wettability alteration and the amount of incremental oil recovery during the displacement process.To this end,nanofluids were prepared by dispersing silica nanoparticles(0.1 wt%,0.25 wt%,0.5 wt% and 0.75 wt%)in 2,10,20 and 100 times diluted samples of Persian Gulf seawater.Contact angle measurements revealed a crucial role of temperature,where no wettability alteration occurred up to 80 ℃.Also,an optimum wettability state(with contact angle 22°)was detected with a 20 times diluted sample of seawater augmented with 0.25 wt% silica nanoparticles.Also,extreme dilution(herein 100 times)will be of no significance.Throughout micromodel flooding,it was found that in an oil-wet condition,a combination of silica nanoparticles dispersed in 20 times diluted brine had the highest displacement efficiency compared to silica nanofluids prepared with deionized water.Finally,by comparing oil recoveries in both water-and oil-wet micromodels,it was concluded that nanoparticles could enhance applicability of LSW via strengthening wettability alteration toward a favorable state and improving the sweep efficiency. 展开更多
关键词 low-salinity water Silica nanoparticles low-salinity NANOFLUID MICROMODEL Enhanced oil recovery Wettability alteration
下载PDF
Studying the effect of surfactant assisted low-salinity water flooding on clay-rich sandstones 被引量:1
3
作者 Saeed Khezerloo-ye Aghdam Alireza Kazemi Mohammad Ahmadi 《Petroleum》 EI CSCD 2024年第2期306-318,共13页
Sandstone reservoirs often contain clay particles that can cause damage and reduce permeability during low-salinity water flooding.In this study,the effect of surfactants on fine migration in clay-rich sandstones and ... Sandstone reservoirs often contain clay particles that can cause damage and reduce permeability during low-salinity water flooding.In this study,the effect of surfactants on fine migration in clay-rich sandstones and its impact on oil recovery was investigated.First,the impact of surfactants on interparticle forces in fine-matrix,fine-fine,and oil-matrix systems was modeled.The results showed that both CTAB(cetyltrimethyl ammonium bromide)and QS(quillaja saponin)cause EDL compaction,weakening the repulsive forces.However,SDS(sodium dodecyl sulfate)and TX(triton X-100)do not affect the EDL.Next,the effect of surfactants on IFT reduction and wettability alteration was experimentally investigated.All surfactants reduced IFT due to the surface excessive concentration mechanism.The wettability alteration experiment illustrated that although QS and CTAB compact EDL around oil and matrix particles leading to attraction force augmentation,they both alter wettability through adsorption on matrix and carboxylic groups present in crude oil,respectively.Surfactant aqueous solutions were then injected into various clay-rich sandstone sanpacks,which resulted in increased oil recovery.However,the mechanisms leading to enhanced oil recovery variedby surfactant type.CTAB increased recovery by 10%through IFT reduction and wettability alteration,while SDS and TX increased recovery by 12%and 9%,respectively,through wettability alteration and extreme fine migration.In contrast,partial fine migration in the QS flooding experiment reached a recovery increase of 18%.Permeability trends through experiments were also recorded.During CTAB injection,permeability did not reduce,while QS aqueous solution reduced rock permeability to 5 m D.SDS and TX reduced the magnitude of permeability to 2 m D.In conclusion,this study demonstrates that surfactants can effectively improve oil recovery in clay-rich sandstones by altering the interparticle forces,reducing IFT,and changing wettability.The results suggest that the type of surfactant used should be carefully selected to achieve the desired recovery increase without affecting the permeability of the reservoir. 展开更多
关键词 Surfactant flooding Smart water Fine migration Recovery factor
原文传递
Influence of pore structure heterogeneity on channeling channels during hot water flooding in heavy oil reservoir based on CT scanning
4
作者 Qing-Jun Du Hao-Yu Zheng +3 位作者 Jian Hou Yong-Ge Liu Jian-Fang Sun Dong Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2407-2419,共13页
Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore s... Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil. 展开更多
关键词 Heavy oil Hot water flooding Pore structure Channeling channels CT scanning
下载PDF
Displacement characteristics of CO_(2)flooding in extra-high water-cut reservoirs
5
作者 Rui Wang Yaxiong Zhang +3 位作者 Chengyuan Lyu Zengmin Lun Maolei Cui Dongjiang Lang 《Energy Geoscience》 EI 2024年第1期212-218,共7页
Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the inje... Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions. 展开更多
关键词 Displacement characteristics CO_(2)flooding water shield phenomenon Oil-water partition coefficient Response time High water-cut
下载PDF
Effect of CO_(2)flooding in an oil reservoir with strong bottom-water drive in the Tahe Oilfield,Tarim Basin,Northwest China
6
作者 Li Zhang Haiying Liao Maolei Cui 《Energy Geoscience》 EI 2024年第1期230-233,共4页
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit... The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t. 展开更多
关键词 Strong bottom-water drive reservoir CO_(2)flooding Enhanced oil recovery Coning of bottom water Tahe oilfield Tarim Basin Northwest China
下载PDF
Experimental study of the effects of a multistage pore-throat structure on the seepage characteristics of sandstones in the Beibuwan Basin:Insights into the flooding mode
7
作者 Lei Wang Xiao Lei +7 位作者 Qiao-Liang Zhang Guang-Qing Yao Bo Sui Xiao-Jun Chen Ming-Wei Wang Zhen-Yu Zhou Pan-Rong Wang Xiao-Dong Peng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1044-1061,共18页
To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a... To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs. 展开更多
关键词 Beibuwan Basin Multistage pore-throat structure Multistage seepage characteristics Microscopic visualization HETEROGENEITY Gas/water flooding flooding mode
下载PDF
Evaluation of the coupled impact of silicon oxide nanoparticles and low-salinity water on the wettability alteration of Berea sandstones 被引量:1
8
作者 ALOMAIR Osamah AL-DOUSARI Mabkhout +1 位作者 AZUBUIKE CNyeso GARROUCH Ali 《Petroleum Exploration and Development》 SCIE 2023年第4期934-943,共10页
This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial t... This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial tension(IFT),contact angle,Zeta potential,and dynamic displacement measurements were performed at various NP mass fractions and brine salinities.The U.S.Bureau of Mines(USBM)index was used to quantify the wettability alteration.Furthermore,the NP stability and retention and the effect of enhanced oil recovery by nanofluid were examined.The results showed that LSW immiscible displacement with NPs altered the wettability toward more water wet.With the decreasing brine salinity and increasing NP mass fraction,the IFT and contact angle decreased.The wettability alteration intensified most as the brine salinity decreased to 4000 mg/L and the NP mass fraction increased to 0.075%.Under these conditions,the resulting incremental oil recovery factor was approximately 13 percentage points.When the brine salinity was 4000 mg/L and the NP mass fraction was 0.025%,the retention of NPs caused the minimum damage to permeability. 展开更多
关键词 NANOPARTICLE low-salinity water wettability alteration interfacial tension contact angle USBM index
下载PDF
Combined imbibition system with black nanosheet and low-salinity water for improving oil recovery in tight sandstone reservoirs
9
作者 Dao-Yi Zhu Yu-Heng Zhao +7 位作者 Hong-Jun Zhang Qi Zhao Chen-Yang Shi Jun-Hui Qin Zheng-Hao Su Gui-Qi Wang Yang Liu Ji-Rui Hou 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1562-1571,共10页
Nanomaterials and low-salinity water(LSW)are two popular enhanced oil recovery(EOR)methods that have been widely studied in recent years.The former is used for in-depth conformance improvement and the latter for micro... Nanomaterials and low-salinity water(LSW)are two popular enhanced oil recovery(EOR)methods that have been widely studied in recent years.The former is used for in-depth conformance improvement and the latter for microscopic oil displacement(by altering the potential and contact angle).However,there are few literature on combining them to achieve synergistic effects,especially for tight sandstone res-ervoirs.Based on the reservoir conditions of the Jimusar Oilfield,this study investigated the oil recovery mechanism of the combined imbibition system,which was composed of black nanosheet(BN)and LSW.Its performances including decreasing interfacial tension,emulsification,and wettability alterations were evaluated.The imbibition differences between the single system of BN and LSW and the combined BN-LsW imbibition system were then compared.Results showed that the combined imbibition system had a better emulsification effect on the crude oil and could also alter the wettability of the core surface.Moreover,the combined system could increase both the imbibition rate and the ultimate oil recovery.The nuclear magnetic T2 spectrum also indicated that the addition of black nanosheets could divert more fluid into small pores and thus improve the microscopic sweep efficiency. 展开更多
关键词 low-salinity water Black nanosheet Combined imbibition system Wettability alteration Improved oil recovery
下载PDF
GIS-based flash flooding susceptibility analysis and water management in arid mountain ranges:Safaga Region,Red Sea Mountains,Egypt
10
作者 Ahmed E.EL-RAYES Mohamed O.ARNOUS Ahmed M.HELMY 《Journal of Mountain Science》 SCIE CSCD 2023年第12期3665-3686,共22页
The Safaga Region(SR)is part of the Red Sea mountain range in Egypt.Catastrophic flash flooding is now an inescapable event,wreaking havoc and causing massive loss of life and property.The majority of the floodwater,h... The Safaga Region(SR)is part of the Red Sea mountain range in Egypt.Catastrophic flash flooding is now an inescapable event,wreaking havoc and causing massive loss of life and property.The majority of the floodwater,however,has been wasted as runoff to the Red Sea,which,if used wisely,could meet a fraction of the water demands for a variety of applications in this area.The current work aims to use GIS techniques to integrate remote sensing data for evaluating,mitigating,and managing flash floods in SR.The data set comprised Tropical Rainfall Measuring Mission(TRMM)thematic rainfall data,1:50,000 scale topographical map sheets,geological maps,the ASTER Digital Elevation Model(ASTER GDEM),Landsat 7 Enhanced Thematic Mapper"(ETM7+),and Landsat 8 Operational Land Imager.The flash flood risk model of SR is developed using ArcGIS-10.3 geoprocessing tools integrating all the causal factors thematic maps.The final flood risk model for the SR suggests that 57%of the total basins in the SR are at high risk of flooding.Almost 38%of all basins are at moderate flood risk.The remaining 5%of basins are less prone to flooding.Flood-prone zones were identified,suitable dam-building sites were located,and extremely probable areas for water recharge were recognized.On the basis of reliable scientific data,structural and non-structural mitigation strategies that might reduce the damage susceptibility,alleviate the sensitivity of the flash flood,and best utilize its water supply were recommended. 展开更多
关键词 Flash floods GIS SUSCEPTIBILITY water management Arid mountains EGYPT
下载PDF
Efficiency of enhanced oil recovery by injection of low-salinity water in barium-containing carbonate reservoirs 被引量:2
11
作者 Hyemin Park Yongjun Park +1 位作者 Yeonkyeong Lee Wonmo Sung 《Petroleum Science》 SCIE CAS CSCD 2018年第4期772-782,共11页
When low-salinity water containing sulfate ions is injected into carbonate reservoirs, rock dissolution and in situ precipitation occur, altering rock permeability and wettability. Particularly, when barium ions are p... When low-salinity water containing sulfate ions is injected into carbonate reservoirs, rock dissolution and in situ precipitation occur, altering rock permeability and wettability. Particularly, when barium ions are present in formation water,they react chemically with SO;, and BaSO;is precipitated. These reactions can cause a serious impact on the efficiency of enhanced oil recovery(EOR). Therefore, the main purpose of this study was to identify EOR efficiency induced by lowsalinity waterflooding(LSWF) when Ba;is present in carbonate reservoirs. From the experimental results, it was confirmed that the permeability calculated by the measured pressure difference was improved because of rock dissolution predominating over in situ precipitation for the case of low Ba;concentrations. In the analysis of wettability alteration through the measurements of relative permeabilities before and after LSWF, the higher Ba;concentration case consumed more SO;in precipitating the BaSO;, resulting in weaker wettability alteration due to the reduction of sulfate activity.These phenomena ultimately influenced EOR efficiency, i.e., the oil recovery was greater for the lower Ba;concentration. 展开更多
关键词 low-salinity water flooding BARIUM SULFATE Oil recovery CARBONATE
下载PDF
基于MIKE FLOOD模型的平原水网地区内涝治理效果模拟研究
12
作者 侯俊 陈诚 +3 位作者 郑玉磊 丁伟 时间 苗令占 《水利水电科技进展》 CSCD 北大核心 2024年第6期41-47,70,共8页
为科学评估平原水网地区内涝治理效果,以昆山市淀山湖镇为研究对象,基于MIKE FLOOD模型,耦合一维河网、二维地形和一维管网模拟了平原水网地区城镇内涝情况。采用实测降雨数据对模型进行了率定和验证,并模拟了2年一遇、5年一遇、10年一... 为科学评估平原水网地区内涝治理效果,以昆山市淀山湖镇为研究对象,基于MIKE FLOOD模型,耦合一维河网、二维地形和一维管网模拟了平原水网地区城镇内涝情况。采用实测降雨数据对模型进行了率定和验证,并模拟了2年一遇、5年一遇、10年一遇和20年一遇4种重现期降雨条件下现状和治理后的最大淹没水深。模拟结果表明:20年一遇降雨条件下内涝范围变化明显,其余3种重现期降雨条件下内涝范围变化不明显;对于降雨重现期较小条件下的城市内涝治理,应优先考虑管网改造,而针对短历时的强暴雨事件,应优先考虑海绵城市设施建设改造;为了应对不同重现期、短历时降雨造成的城市内涝风险,应在管网改造的基础上配合海绵城市设施建设改造。 展开更多
关键词 平原水网 内涝治理 海绵城市设施 MIKE flood模型 淀山湖镇
下载PDF
Stochastic and upscaled analytical modeling of fines migration in porous media induced by low-salinity water injection 被引量:2
13
作者 Yulong YANG Weifeng YUAN +3 位作者 Jirui HOU Zhenjiang YOU Jun LI Yang LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第3期491-506,共16页
Fines migration induced by injection of low-salinity water(LSW) into porous media can lead to severe pore plugging and consequent permeability reduction. The deepbed filtration(DBF) theory is used to model the aforeme... Fines migration induced by injection of low-salinity water(LSW) into porous media can lead to severe pore plugging and consequent permeability reduction. The deepbed filtration(DBF) theory is used to model the aforementioned phenomenon, which allows us to predict the effluent concentration history and the distribution profile of entrapped particles. However, the previous models fail to consider the movement of the waterflood front. In this study, we derive a stochastic model for fines migration during LSW flooding, in which the Rankine-Hugoniot condition is used to calculate the concentration of detached particles behind and ahead of the moving water front. A downscaling procedure is developed to determine the evolution of pore-size distribution from the exact solution of a large-scale equation system. To validate the proposed model,the obtained exact solutions are used to treat the laboratory data of LSW flooding in artificial soil-packed columns. The tuning results show that the proposed model yields a considerably higher value of the coefficient of determination, compared with the previous models, indicating that the new model can successfully capture the effect of the moving water front on fines migration and precisely match the effluent history of the detached particles. 展开更多
关键词 low-salinity water(LSW)flooding fines migration stochastic model downscaling porous media waterflooding front exact solution
下载PDF
Effects of physical parameter range on dimensionless variable sensitivity in water flooding reservoirs 被引量:8
14
作者 Yu Hu Bai Jia Chun Li Ji Fu Zhou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第5期385-391,共7页
The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequentl... The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate. 展开更多
关键词 Physical parameter range Dimensionless variable Sensitivity analysis water flooding reservoir Two-phase flow in porous media
下载PDF
Rise of Urban Water Table as a Cause of Flooding: Improving Knowledge in the City of Niamey (Niger Republic) 被引量:2
15
作者 Halidou Alassane Hado Mahaman Moustapha Adamou +3 位作者 Guillaume Favreau Marie Boucher Karmadine Hima Ibrahim Dan Dano 《Journal of Water Resource and Protection》 2021年第12期976-999,共24页
Niamey, the capital of Niger, has experienced continuous demographic growth (+4%), accompanied by rapid urban expansion that is insufficiently controlled. This growth, combined with the effects of climate change as we... Niamey, the capital of Niger, has experienced continuous demographic growth (+4%), accompanied by rapid urban expansion that is insufficiently controlled. This growth, combined with the effects of climate change as well as a drastic change in land use (urbanization of cultivated fields, deforestation of plateaus and erosion of slopes) disrupts the water cycle, thus leading to the superposition of three types of floods: 1) rain floods (monsoon period);2) river floods (Niger river);and 3) flooding caused by rising water table. In several neighbourhoods, the water table is now out in a sustainable manner and degrades already fragile sanitary conditions. This study aims to clarify the functioning of aquifers in the city of Niamey due to the combination of geological, geophysical and hydrogeological data. Hydrogeological investigations make it possible to identify, in areas flooded by the water table, a shallow aquifer with low capacitance (effective porosity of a few %) and low permeability (2 × 10<sup>-6</sup> to 1 × 10<sup>-4</sup> m/s), overlying at a level shallow clay (~10 m) and lying on the Precambrian base (schists, granites). This configuration limits flows and has led to the appearance of permanent pools created by the water table in the valley thalweg in and around the city. Thus, in Niamey, an increase of up to twenty to forty meters was observed between 1961 and 2021 with seasonal piezometric fluctuations of a pluri-metric order following the rainy season. Beyond the health impacts, this trajectory negatively impacts land and locally causes degradation or displacement of traffic axes. Containing the level of the water table appears to be essential in the long term for sustainable sanitation in the city of Niamey. 展开更多
关键词 flood Impacts water Table GEOPHYSICS UPWELLING Niamey
下载PDF
Production characteristics and displacement mechanisms of infilling polymer-surfactant-preformed particle gel flooding in post-polymer flooding reservoirs:A review of practice in Ng3 block of Gudao Oilfield
16
作者 Zhi-Bin An Kang Zhou +1 位作者 De-Jun Wu Jian Hou 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2354-2371,共18页
The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristic... The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristics and displacement mechanisms are still unclear,which restricts its further popularization and application.Aiming at this problem,this paper firstly analyzes the production performance of the pilot test and proposed four response types according to the change of water cut curves,including W-type,U-type,V-type response,and no response.Furthermore,the underlying reasons of these four types are analyzed from the aspects of seepage resistance and sweep efficiency.The overall sweep efficiency of gradual-rising W-type,gradual-decreasing W-type,and early V-type response increases from 0.81 to 0.93,0.55 to 0.89,and 0.94 to 1,respectively.And the sum of seepage resistance along the connection line between production well and injection well for U-type and delayed V-type response increases from 0.0994 to 0.2425,and 0.0677 to 0.1654,respectively.Then,the remaining oil distribution after polymer flooding is summarized into four types on the basis of production and geological characteristics,namely disconnected remaining oil,streamline unswept remaining oil,rhythm remaining oil,and interlayer-controlled remaining oil.Furthermore,the main displacement mechanisms for each type are clarified based on the dimensionless seepage resistance and water absorption profile.Generally,improving connectivity by well pattern infilling is the most important for producing disconnected remaining oil.The synergistic effect of well pattern infilling and polymer-surfactant-PPG flooding increases the dimensionless seepage resistance of water channeling regions and forces the subsequent injected water to turn to regions with streamline unswept remaining oil.The improvement of the water absorption profile by polymer-surfactant-PPG flooding and separated layer water injection contributes to displacing rhythm remaining oil and interlayer-controlled remaining oil.Finally,the paper analyzes the relationships between the remaining oil distribution after polymer flooding and production characteristics of infilling polymer-surfactant-PPG flooding.The study helps to deepen the understanding of infilling polymer-surfactant-PPG flooding and has reference significance for more commercial implementations in the future. 展开更多
关键词 Infilling polymer-surfactant-PPG flooding Production characteristics Displacement mechanisms Dimensionless seepage resistance water absorption profile
下载PDF
Rising trends of global precipitable water vapor and its correlation with flood frequency
17
作者 Dong Ren Yong Wang +1 位作者 Guocheng Wang Lintao Liu 《Geodesy and Geodynamics》 EI CSCD 2023年第4期355-367,共13页
Using 4 global reanalysis data sets, significant upward trends of precipitable water vapor(PWV) were found in the 3 time periods of 1958-2020, 1979-2020, and 2000-2020. During 1958-2020, the global PWV trends obtained... Using 4 global reanalysis data sets, significant upward trends of precipitable water vapor(PWV) were found in the 3 time periods of 1958-2020, 1979-2020, and 2000-2020. During 1958-2020, the global PWV trends obtained using the ERA5 and JRA55 data sets are 0.19 ± 0.01 mm per decade(1.15 ± 0.31%)and 0.23 ± 0.01 mm per decade(1.45 ± 0.32%), respectively. The PWV trends obtained using the ERA5,JRA55, NCEP-NCAR, and NCEP-DOE data sets are 0.22 ± 0.01 mm per decade(1.18 ± 0.54%),0.21 ± 0.00 mm per decade(1.76 ± 0.56%), 0.27 ± 0.01 mm per decade(2.20 ± 0.70%) and 0.28 ± 0.01 mm per decade(2.19 ± 0.70%) for the period 1979-2020. During 2000-2020, the PWV trends obtained using ERA5, JRA55, NCEP-DOE, and NCEP-NCAR data sets are 0.40 ± 0.25 mm per decade(2.66 ± 1.51%),0.37 ± 0.24 mm per decade(2.19 ± 1.54%), 0.40 ± 0.26 mm per decade(1.96 ± 1.53%) and 0.36 ± 0.25 mm per decade(2.47 ± 1.72%), respectively. Rising PWV has a positive impact on changes in precipitation,increasing the probability of extreme precipitation and then changing the frequency of flood disasters.Therefore, exploring the relationship between PWV(derived from ERA5 and JRA55) change and flood disaster frequency from 1958 to 2020 revealed a significant positive correlation between them, with correlation coefficients of 0.68 and 0.79, respectively, which explains the effect of climate change on the increase in flood disaster frequency to a certain extent. The study can provide a reference for assessing the evolution of flood disasters and predicting their frequency trends. 展开更多
关键词 Precipitable water vapor(PWV) Linear trend Correlation analysis flood frequency
下载PDF
Theoretical exploration of water injection gravity flooding oil in ultra-deep fault-controlled fractured-cavity carbonate reservoirs 被引量:2
18
作者 YANG Xuewen WANG Rujun +3 位作者 DENG Xingliang LI Shiyin ZHANG Hui YAO Chao 《Petroleum Exploration and Development》 CSCD 2022年第1期133-143,共11页
Based on the analysis of geological characteristics of ultra-deep fault-controlled fracture-cavity carbonate reservoirs and division of reservoir units, two physical models were made, and physical simulations of oil d... Based on the analysis of geological characteristics of ultra-deep fault-controlled fracture-cavity carbonate reservoirs and division of reservoir units, two physical models were made, and physical simulations of oil displacement by water injection were carried out to find out water flooding mechanism in the fault-controlled fracture-cavity carbonate reservoir under complex flow state. On this basis, a mathematical model of fault-controlled carbonate reservoir with coexisting seepage and free flow has been established. Pilot water injection tests have been carried out to evaluate the effects of enhancing oil recovery by water injection. The results show that: fault-controlled fracture-cavity carbonate reservoir units can be divided into three types:the strong natural energy connected type, the weak natural energy connected type and the weak natural energy isolated type;the fault-fracture activity index of the fault-controlled fractured-cavity body can effectively characterize the connectivity of the reservoir and predict the effective direction of water injection;the mathematical model of fault-controlled carbonate reservoir with coexisting seepage and free flows can quantitatively describe the fluid flow law in the fracture-cavity body;the water injected into the fault-controlled fracture-cavity body is weakly affected by the capillary force of the lithologic body, and the oil-water movement is mainly dominated by gravity. The development modes of single well water injection, unit water injection,and single well high pressure water injection proposed based on the connection structure of fracture-cavity space and well storage space configuration are confirmed effective by pilot tests, with obvious water injection gravity flooding effect. 展开更多
关键词 Tarim Basin ORDOVICIAN fault-controlled carbonate reservoir fractured-cavity carbonate reservoir water flooding gravity flooding EOR
下载PDF
Three-Dimensional Imaging of Pore-Scale Water Flooding Phenomena in Water-Wet and Oil-Wet Porous Media 被引量:2
19
作者 Arief Setiawan Tetsuya Suekane +1 位作者 Yoshihiro Deguchi Koji Kusano 《Journal of Flow Control, Measurement & Visualization》 2014年第2期25-31,共7页
The penetration of water during water flooding has been observed over many years using several methods. A microfocused X-ray computed tomography scanner can be used to directly observe 3D water flooding in a nondestru... The penetration of water during water flooding has been observed over many years using several methods. A microfocused X-ray computed tomography scanner can be used to directly observe 3D water flooding in a nondestructive manner. To eliminate the possibility of false images being produced because of X-ray broadening effects, we developed a visualization method by arranging the brightness distribution of all phases involved. Water flooding experiments were conducted using oil-wet and water-wet porous media. The water phase was injected upward into packed glass beads containing an oil phase, and the process was scanned every minute until steady state was reached. Using this scheme, real-time, the water invasion pattern and oil trapping process in clusters of pores and individual pores can be observed clearly. By eliminating false images, the boundary of each phase could be identified with high precision, even in a single pore. Porelevel phenomena, including snap off (which has never before been captured in a real 3D porous medium), piston-like displacement, and the curvature of the interface, were also observed. Direct measurement of the pore throat radius and the contact angle between the wetting and nonwetting phases gave an approximation of the capillary pressure during the piston-like displacement and snap-off processes. 展开更多
关键词 Visualization Porous Medium Pore-Scale water flooding OIL Trapping X-Ray CT Scanner
下载PDF
Effect of various Na/K ratios in low-salinity well water on growth performance and physiological response of Pacific white shrimp Litopenaeus vannamei 被引量:1
20
作者 刘泓宇 谭北平 +4 位作者 杨金芳 林颖博 迟淑艳 董晓慧 杨奇慧 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第5期991-999,共9页
To investigate the influence of sodium to potassium (Na/IO ratios on the growth performance and physiological response of the Pacific white shrimp (Litopenaeus vananmei), various concentrations of KC1 were added to... To investigate the influence of sodium to potassium (Na/IO ratios on the growth performance and physiological response of the Pacific white shrimp (Litopenaeus vananmei), various concentrations of KC1 were added to low-salinity well water (salinity 4) in an 8-week culture trial. Six treatments with NWK ratios of 60:1, 42:1, 33:1, 23:1, 17:1, and 14:1 were replicated in triplicate. The highest weight-gain rate (3 506±48)% and survival rate (89.38±0.88)% was observed in well water with Na/K ratios of 23:1 and 42:1, respectively, while the feed conversion ratio (1.02~0.01), oxygen consumption, and ammonia-N excretion rate was the lowest in the medium with a Na/K ratio of 23:1. Gill Na+-K+-ATPase activity, as an indicator of osmoregulation, peaked in the treatment where the Na/K ratio was 17:1. The total hemocyte count, respiratory burst, and immune-related enzyme activities (ALP, LSZ, PO, and SOD) ofL. vananmei were affected significantly by Na/K ratios (P〈0.05). After challenged with Vibrio harveyi, the cumulative mortality of shrimp reared in a Na/K ratio of 23:1 (30±14.14)% was significantly lower than the control (75~7.07)%. In conclusion, the addition of K+ to low-salinity well water in L. vannamei cultures is feasible. Na/K ratios ranging from 23:1 to 33:1 might improve survival and growth. Immunity and disease resistance are also closely related to the Na/K ratio of the low-salinity well water. The findings may contribute to the development of more efficient K^+ remediation strategies for L. vananmei culture in low-salinity well water. 展开更多
关键词 Litopenaeus vannamei low-salinity well water Na/K ratio OSMOREGULATION nitrogen metabolism immunity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部