Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightwe...Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightweight Ghost-YOLO(You Only Look Once)v8 algorithm.The algorithmintegrates advanced attention mechanisms and a smalltarget detection head to significantly enhance detection performance and efficiency.Firstly,an SE(Squeeze-and-Excitation)mechanism is incorporated into the backbone network to fortify the extraction of resilient features and precise target localization.This mechanism models feature channel dependencies,enabling adaptive adjustment of channel importance,thereby improving recognition of floating litter targets.Secondly,a 160×160 small-target detection layer is designed in the feature fusion neck to mitigate semantic information loss due to varying target scales.This design enhances the fusion of deep and shallow semantic information,improving small target feature representation and enabling better capture and identification of tiny floating litter.Thirdly,to balance performance and efficiency,the GhostConv module replaces part of the conventional convolutions in the feature fusion neck.Additionally,a novel C2fGhost(CSPDarknet53 to 2-Stage Feature Pyramid Networks Ghost)module is introduced to further reduce network parameters.Lastly,to address the challenge of occlusion,a newloss function,WIoU(Wise Intersection over Union)v3 incorporating a flexible and non-monotonic concentration approach,is adopted to improve detection rates for surface floating litter.The outcomes of the experiments demonstrate that the Ghost-YOLO v8 model proposed in this paper performs well in the dataset Marine,significantly enhances precision and recall by 3.3 and 7.6 percentage points,respectively,in contrast with the base model,mAP@0.5 and mAP 0.5:0.95 improve by 5.3 and 4.4 percentage points and reduces the computational volume by 1.88MB,the FPS value hardly decreases,and the efficient real-time identification of floating debris on the water’s surface can be achieved costeffectively.展开更多
To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight arc...To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight architecture based on You Only Look Once(YOLO)v5m.Firstly,a lightweight upsampling operator called Content-Aware Reassembly of Features(CARAFE)is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles,reducing the missed detection rate and false detection rate.Secondly,a new prediction layer for tiny targets is added,and the feature fusion network is redesigned to enhance the detection capability for small targets.Finally,this paper applies L1 regularization to train the improved network,followed by pruning and fine-tuning operations to remove redundant channels,reducing computational and parameter complexity and enhancing the detection efficiency of the network.Training is conducted on the VisDrone2019-DET dataset.The experimental results show that the proposed algorithmreduces parameters and computation by 63.8% and 65.8%,respectively.The average detection accuracy improves by 5.15%,and the detection speed reaches 47 images per second,satisfying real-time requirements.Compared with existing approaches,including YOLOv5m and classical vehicle detection algorithms,our method achieves higher accuracy and faster speed for real-time detection of small target vehicles in edge computing.展开更多
In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted...In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted local contrast is proposed in this paper.First,the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then,a local product weighted method is designed based on the spatial dissimilarity between target and background to further enhance target while suppressing background.Finally,the location of target is obtained by adaptive threshold segmentation.As experimental results demonstrate,the method shows superior performance in several evaluation metrics compared with six existing algorithms on different datasets containing targets such as unmanned aerial vehicles(UAV).展开更多
With the rapid development of deep learning-based detection algorithms,deep learning is widely used in the field of infrared small target detection.However,well-designed adversarial samples can fool human visual perce...With the rapid development of deep learning-based detection algorithms,deep learning is widely used in the field of infrared small target detection.However,well-designed adversarial samples can fool human visual perception,directly causing a serious decline in the detection quality of the recognition model.In this paper,an adversarial defense technology for small infrared targets is proposed to improve model robustness.The adversarial samples with strong migration can not only improve the generalization of defense technology,but also save the training cost.Therefore,this study adopts the concept of maximizing multidimensional feature distortion,applying noise to clean samples to serve as subsequent training samples.On this basis,this study proposes an inverse perturbation elimination method based on Generative Adversarial Networks(GAN)to realize the adversarial defense,and design the generator and discriminator for infrared small targets,aiming to make both of them compete with each other to continuously improve the performance of the model,find out the commonalities and differences between the adversarial samples and the original samples.Through experimental verification,our defense algorithm is not only able to cope with multiple attacks but also performs well on different recognition models compared to commonly used defense algorithms,making it a plug-and-play efficient adversarial defense technique.展开更多
Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing ...Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing traditional methods face several significant challenges,including low background suppression ability,low detection rates,and high false alarm rates when identifying infrared small targets in complex environments.This paper proposes a novel infrared small target detection method based on a transformed Gaussian filter kernel and clustering approach.The method provides improved background suppression and detection accuracy compared to traditional techniques while maintaining simplicity and lower computational costs.In the first step,the infrared image is filtered by a new filter kernel and the results of filtering are normalized.In the second step,an adaptive thresholding method is utilized to determine the pixels in small targets.In the final step,a fuzzy C-mean clustering algorithm is employed to group pixels in the same target,thus yielding the detection results.The results obtained from various real infrared image datasets demonstrate the superiority of the proposed method over traditional approaches.Compared with the traditional method of state of the arts detection method,the detection accuracy of the four sequences is increased by 2.06%,0.95%,1.03%,and 1.01%,respectively,and the false alarm rate is reduced,thus providing a more effective and robust solution.展开更多
Detection of maneuvering small targets has always been an important yet challenging task for radar signal processing.One primary reason is that target variable motions within coherent processing interval generate ener...Detection of maneuvering small targets has always been an important yet challenging task for radar signal processing.One primary reason is that target variable motions within coherent processing interval generate energy migrations across multiple resolution bins,which severely deteriorate the parameter estimation performance.A coarse-to-fine strategy for the detection of maneuvering small targets is proposed.Integration of small points segmented coherently is performed first,and then an optimal inter-segment integration is utilized to derive the coarse estimation of the chirp rate.Sparse fractional Fourier transform(FrFT)is then employed to refine the coarse estimation at a significantly reduced computational complexity.Simulation results verify the proposed scheme that achieves an efficient and reliable maneuvering target detection with-16dB input signal-to-noise ratio(SNR),while requires no exact a priori knowledge on the motion parameters.展开更多
In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an...In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an improved SAR image small target detection method based on YOLOv7 was proposed in this study.The proposed method improved the feature extraction network by using Switchable Around Convolution(SAConv)in the backbone network to help the model capture target information at different scales,thus improving the feature extraction ability for small targets.Based on the attention mechanism,the DyHead module was embedded in the target detection head to reduce the impact of complex background,and better focus on the small targets.In addition,the NWD loss function was introduced and combined with CIoU loss.Compared to the CIoU loss function typically used in YOLOv7,the NWD loss function pays more attention to the processing of small targets,so as to further improve the detection ability of small targets.The experimental results on the HRSID dataset indicate that the proposed method achieved mAP@0.5 and mAP@0.95 scores of 93.5%and 71.5%,respectively.Compared to the baseline model,this represents an increase of 7.2%and 7.6%,respectively.The proposed method can effectively complete the task of SAR image small target detection.展开更多
This paper proposes a real-time detection method to improve the Infrared small target detection CenterNet(ISTD-CenterNet)network for detecting small infrared targets in complex environments.The method eliminates the n...This paper proposes a real-time detection method to improve the Infrared small target detection CenterNet(ISTD-CenterNet)network for detecting small infrared targets in complex environments.The method eliminates the need for an anchor frame,addressing the issues of low accuracy and slow speed.HRNet is used as the framework for feature extraction,and an ECBAM attention module is added to each stage branch for intelligent identification of the positions of small targets and significant objects.A scale enhancement module is also added to obtain a high-level semantic representation and fine-resolution prediction map for the entire infrared image.Besides,an improved sensory field enhancement module is designed to leverage semantic information in low-resolution feature maps,and a convolutional attention mechanism module is used to increase network stability and convergence speed.Comparison experiments conducted on the infrared small target data set ESIRST.The experiments show that compared to the benchmark network CenterNet-HRNet,the proposed ISTD-CenterNet improves the recall by 22.85%and the detection accuracy by 13.36%.Compared to the state-of-the-art YOLOv5small,the ISTD-CenterNet recall is improved by 5.88%,the detection precision is improved by 2.33%,and the detection frame rate is 48.94 frames/sec,which realizes the accurate real-time detection of small infrared targets.展开更多
The traditional small target detection algorithm often results in a high false alarm rate on the sea surface background. To address this issue, a small target detection method based on guided filtering and local avera...The traditional small target detection algorithm often results in a high false alarm rate on the sea surface background. To address this issue, a small target detection method based on guided filtering and local average gray level difference was proposed in this paper for the sea surface. Firstly, the method enhanced the details of the small targets by employing guided filtering to suppress the background clutter and noise in the sea surface image. Subsequently, the local average gray level difference of each point in the image was calculated to further distinguish the targets from other interference points. Finally, the threshold segmentation method was utilized to obtain the actual small targets on the sea surface. After conducting experiments on various sea surface scenes, the LSCRG, BSF, and ROC curve were computed for the proposed method and five other algorithms. Comparative analysis with BS, Top-hat, TDLMS, Max-median, and LCM demonstrates the superiority of the proposed method for infrared small target detection on the sea surface.展开更多
In this paper,a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed.Firstly,the Cameron decomposition is exploited to fuse the radar ...In this paper,a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed.Firstly,the Cameron decomposition is exploited to fuse the radar echoes of full polarization channels at the data level.Due to the artificial material structure on the surface of the target,it can be shown that the non-reciprocity of the target cell is stronger than that of the clutter cell.Then,based on the analysis of the decomposition results,a new feature with scattering geometry characteristics in polarization domain,denoted as Cameron polarization decomposition scattering weight(CPD-SW),is extracted as the test statistic,which can achieve more detailed descriptions of the clutter scattering characteristics utilizing the difference between their scattering types.Finally,the superiority of the proposed CPD-SW detector over traditional detectors in improving detection performance is verified by the IPIX measured dataset,which has strong stability under short-time observation in threshold detection and can also improve the separability of feature space zin anomaly detection.展开更多
Small infrared target detection has widespread applications in various fields including military,aviation,and medicine.However,detecting small infrared targets in complex backgrounds remains challenging.To detect smal...Small infrared target detection has widespread applications in various fields including military,aviation,and medicine.However,detecting small infrared targets in complex backgrounds remains challenging.To detect small infrared targets,we propose a variable-structure U-shaped network referred as CAFUNet.A central differential convolution-based encoder,ASPP,an Attention Fusion module,and a decoder module are the critical components of the CAFUNet.The encoder module based on central difference convolution effectively extracts shallow detail information from infrared images,complemented by rich contextual information obtained from the deep features in the decoder module.However,the direct fusion of the shallow detail features with semantic features may lead to feature mismatch.To address this,we incorporate an Attention Fusion(AF)module to enhance the network performance further.We performed ablation studies on each module to evaluate its effectiveness.The results show that our proposed algorithm outperforms the state-of-the-art methods on publicly available datasets.展开更多
BACKGROUND Small cell lung cancer(SCLC)is a common and aggressive subtype of lung cancer.It is characterized by rapid growth and a high mortality rate.Approximately 10%of patients with SCLC present with brain metastas...BACKGROUND Small cell lung cancer(SCLC)is a common and aggressive subtype of lung cancer.It is characterized by rapid growth and a high mortality rate.Approximately 10%of patients with SCLC present with brain metastases at the time of diagnosis,which is associated with a median survival of 5 mo.This study aimed to summarize the effect of bevacizumab on the progression-free survival(PFS)and overall survival of patients with brain metastasis of SCLC.CASE SUMMARY A 62-year-old man was referred to our hospital in February 2023 because of dizziness and numbness of the right lower extremity without headache or fever for more than four weeks.The patient was diagnosed with limited-stage SCLC.He received 8 cycles of chemotherapy combined with maintenance bevacizumab therapy and achieved a PFS of over 7 mo.CONCLUSION The combination of bevacizumab and irinotecan effectively alleviated brain metastasis in SCLC and prolonged PFS.展开更多
Hepatocellular carcinoma(HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorablesystemic side...Hepatocellular carcinoma(HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorablesystemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs(si RNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and si RNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited sideeffects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is overexpressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and nonviral si RNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic si RNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein, ganglioside GM1 cell surface ligand, epidermal growth factor receptor receptors, monoclonal antibodies, retinoic acid receptors, integrin receptors targeted by Arg-Gly-Asp peptide, folate, and transferrin receptors are the most widely studied cell surface receptors which are used for the site specific delivery of drugs and si RNA-based therapeutics in HCC and discussed in detail in this article.展开更多
This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the g...This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.展开更多
According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extrac...According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3–4 orders of magnitude, and has more powerful target detection performance.展开更多
High frequency surface wave radar (HFSWR) is well proved to have over the horizon (OTH) detection capability to weak aerial targets, such as concealed airplanes or cruise missiles. The most important problem of detect...High frequency surface wave radar (HFSWR) is well proved to have over the horizon (OTH) detection capability to weak aerial targets, such as concealed airplanes or cruise missiles. The most important problem of detection of fast and small targets using HFSWR is earlier warning, i.e. enlargement of detection range oftargets. Therefore, the detection threshold should be decreased as low as possible, but numerous false alarms are brought about at the same time. On this condition, conventional track initiation techniques, which normally require the probability of false alarm to be at the level of 10-6, will initiate enormous false tracks and lead to abnormal operation of tracking system. An adaptive modified hough transform (AMHT) track initiator is proposed accordingly and the relation of detection range to the performance of track initiator is analyzed in this paper. Simulations are performed to confirm the capability of track initiation to fast and small targets in dense clutter by AMHT track initiator. The tolerable probability of false alarm of detector can reach the level of 10 -3 . And it performs better than track initiator based on modified hough transform (MHT).展开更多
A herbal prescription in traditional Chinese medicine(TCM)has great complexity,with multiple components and multiple targets,making it extremely challenging to determine its bioactive compounds.Yinchenhao Tang(YCHT)ha...A herbal prescription in traditional Chinese medicine(TCM)has great complexity,with multiple components and multiple targets,making it extremely challenging to determine its bioactive compounds.Yinchenhao Tang(YCHT)has been extensively used for the treatment of jaundice disease.Although many studies have examined the efficacy and active ingredients of YCHT,there is still a lack of an in-depth systematic analysis of its effective components,mechanisms,and potential targets—especially one based on clinical patients.This study established an innovative strategy for discovering the potential targets and active compounds of YCHT based on an integrated clinical and animal experiment platform.The serum metabolic profiles and constituents of YCHT in vivo were determined by ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry(UPLC-Q-ToF-MS)-based metabolomics combined with a serum pharmacochemistry method.Moreover,a compound–target–pathway network was constructed and analyzed by network pharmacology and ingenuity pathway analysis(IPA).We found that eight active components could modulate five key targets.These key targets were further verified by enzyme-linked immunosorbent assay(ELISA),which indicated that YCHT exerts therapeutic effects by targeting cholesterol 7a-hydroxylase(CYP7A1),multidrug-resistance-associated protein 2(ABCC2),multidrug-resistance-associated protein 3(ABCC3),uridine diphosphate glucuronosyl transferase 1A1(UGT1A1),and farnesoid X receptor(FXR),and by regulating metabolic pathways including primary bile acid biosynthesis,porphyrin and chlorophyll metabolism,and biliary secretion.Eight main effective compounds were discovered and correlated with the key targets and pathways.In this way,we demonstrate that this integrated strategy can be successfully applied for the effective discovery of the active compounds and therapeutic targets of an herbal prescription.展开更多
This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing...This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing technology. The parameters of the algorithm are also given. Experiments have been conducted, the results show that the algorithm has advantages of high detection probability, simple structure, and excellent real-time performance.展开更多
Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregul...Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregular or the background is complex. In this paper, we propose a pixel-level local contrast measure(PLLCM), which can subdivide small targets and backgrounds at pixel level simultaneously.With pixel-level segmentation, the difference between the target and the background becomes more obvious, which helps to improve the detection performance. First, we design a multiscale sliding window to quickly extract candidate target pixels. Then, a local window based on random walker(RW) is designed for pixel-level target segmentation. After that, PLLCM incorporating probability weights and scale constraints is proposed to accurately measure local contrast and suppress various types of background interference. Finally, an adaptive threshold operation is applied to separate the target from the PLLCM enhanced map. Experimental results show that the proposed method has a higher detection rate and a lower false alarm rate than the baseline algorithms, while achieving a high speed.展开更多
基金Supported by the fund of the Henan Province Science and Technology Research Project(No.242102210213).
文摘Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightweight Ghost-YOLO(You Only Look Once)v8 algorithm.The algorithmintegrates advanced attention mechanisms and a smalltarget detection head to significantly enhance detection performance and efficiency.Firstly,an SE(Squeeze-and-Excitation)mechanism is incorporated into the backbone network to fortify the extraction of resilient features and precise target localization.This mechanism models feature channel dependencies,enabling adaptive adjustment of channel importance,thereby improving recognition of floating litter targets.Secondly,a 160×160 small-target detection layer is designed in the feature fusion neck to mitigate semantic information loss due to varying target scales.This design enhances the fusion of deep and shallow semantic information,improving small target feature representation and enabling better capture and identification of tiny floating litter.Thirdly,to balance performance and efficiency,the GhostConv module replaces part of the conventional convolutions in the feature fusion neck.Additionally,a novel C2fGhost(CSPDarknet53 to 2-Stage Feature Pyramid Networks Ghost)module is introduced to further reduce network parameters.Lastly,to address the challenge of occlusion,a newloss function,WIoU(Wise Intersection over Union)v3 incorporating a flexible and non-monotonic concentration approach,is adopted to improve detection rates for surface floating litter.The outcomes of the experiments demonstrate that the Ghost-YOLO v8 model proposed in this paper performs well in the dataset Marine,significantly enhances precision and recall by 3.3 and 7.6 percentage points,respectively,in contrast with the base model,mAP@0.5 and mAP 0.5:0.95 improve by 5.3 and 4.4 percentage points and reduces the computational volume by 1.88MB,the FPS value hardly decreases,and the efficient real-time identification of floating debris on the water’s surface can be achieved costeffectively.
基金funded by the General Project of Key Research and Develop-ment Plan of Shaanxi Province(No.2022NY-087).
文摘To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight architecture based on You Only Look Once(YOLO)v5m.Firstly,a lightweight upsampling operator called Content-Aware Reassembly of Features(CARAFE)is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles,reducing the missed detection rate and false detection rate.Secondly,a new prediction layer for tiny targets is added,and the feature fusion network is redesigned to enhance the detection capability for small targets.Finally,this paper applies L1 regularization to train the improved network,followed by pruning and fine-tuning operations to remove redundant channels,reducing computational and parameter complexity and enhancing the detection efficiency of the network.Training is conducted on the VisDrone2019-DET dataset.The experimental results show that the proposed algorithmreduces parameters and computation by 63.8% and 65.8%,respectively.The average detection accuracy improves by 5.15%,and the detection speed reaches 47 images per second,satisfying real-time requirements.Compared with existing approaches,including YOLOv5m and classical vehicle detection algorithms,our method achieves higher accuracy and faster speed for real-time detection of small target vehicles in edge computing.
基金supported by the National Natural Science Foundation of China (No.U1833203),the National Natural Science Foundation of China (No.62301036)the Aviation Science Foundation (No.2020Z019055001)China Postdoctoral Science Foundation Funded Project (No.2022M720446)。
文摘In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted local contrast is proposed in this paper.First,the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then,a local product weighted method is designed based on the spatial dissimilarity between target and background to further enhance target while suppressing background.Finally,the location of target is obtained by adaptive threshold segmentation.As experimental results demonstrate,the method shows superior performance in several evaluation metrics compared with six existing algorithms on different datasets containing targets such as unmanned aerial vehicles(UAV).
基金supported in part by the National Natural Science Foundation of China under Grant 62073164the Shanghai Aerospace Science and Technology Innovation Foundation under Grant SAST2022-013.
文摘With the rapid development of deep learning-based detection algorithms,deep learning is widely used in the field of infrared small target detection.However,well-designed adversarial samples can fool human visual perception,directly causing a serious decline in the detection quality of the recognition model.In this paper,an adversarial defense technology for small infrared targets is proposed to improve model robustness.The adversarial samples with strong migration can not only improve the generalization of defense technology,but also save the training cost.Therefore,this study adopts the concept of maximizing multidimensional feature distortion,applying noise to clean samples to serve as subsequent training samples.On this basis,this study proposes an inverse perturbation elimination method based on Generative Adversarial Networks(GAN)to realize the adversarial defense,and design the generator and discriminator for infrared small targets,aiming to make both of them compete with each other to continuously improve the performance of the model,find out the commonalities and differences between the adversarial samples and the original samples.Through experimental verification,our defense algorithm is not only able to cope with multiple attacks but also performs well on different recognition models compared to commonly used defense algorithms,making it a plug-and-play efficient adversarial defense technique.
基金supported by the Funding of Jiangsu University of Science and Technology,under the grant number:1132921208.
文摘Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing traditional methods face several significant challenges,including low background suppression ability,low detection rates,and high false alarm rates when identifying infrared small targets in complex environments.This paper proposes a novel infrared small target detection method based on a transformed Gaussian filter kernel and clustering approach.The method provides improved background suppression and detection accuracy compared to traditional techniques while maintaining simplicity and lower computational costs.In the first step,the infrared image is filtered by a new filter kernel and the results of filtering are normalized.In the second step,an adaptive thresholding method is utilized to determine the pixels in small targets.In the final step,a fuzzy C-mean clustering algorithm is employed to group pixels in the same target,thus yielding the detection results.The results obtained from various real infrared image datasets demonstrate the superiority of the proposed method over traditional approaches.Compared with the traditional method of state of the arts detection method,the detection accuracy of the four sequences is increased by 2.06%,0.95%,1.03%,and 1.01%,respectively,and the false alarm rate is reduced,thus providing a more effective and robust solution.
基金supported in part by the National Natural Science Foundation of China (Nos.62171029,61931015,U1833203)Natural Science Foundation of Beijing Municipality (No.4172052)supported in part by the Basic Research Program of Jiangsu Province (No.SBK2019042353)。
文摘Detection of maneuvering small targets has always been an important yet challenging task for radar signal processing.One primary reason is that target variable motions within coherent processing interval generate energy migrations across multiple resolution bins,which severely deteriorate the parameter estimation performance.A coarse-to-fine strategy for the detection of maneuvering small targets is proposed.Integration of small points segmented coherently is performed first,and then an optimal inter-segment integration is utilized to derive the coarse estimation of the chirp rate.Sparse fractional Fourier transform(FrFT)is then employed to refine the coarse estimation at a significantly reduced computational complexity.Simulation results verify the proposed scheme that achieves an efficient and reliable maneuvering target detection with-16dB input signal-to-noise ratio(SNR),while requires no exact a priori knowledge on the motion parameters.
文摘In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an improved SAR image small target detection method based on YOLOv7 was proposed in this study.The proposed method improved the feature extraction network by using Switchable Around Convolution(SAConv)in the backbone network to help the model capture target information at different scales,thus improving the feature extraction ability for small targets.Based on the attention mechanism,the DyHead module was embedded in the target detection head to reduce the impact of complex background,and better focus on the small targets.In addition,the NWD loss function was introduced and combined with CIoU loss.Compared to the CIoU loss function typically used in YOLOv7,the NWD loss function pays more attention to the processing of small targets,so as to further improve the detection ability of small targets.The experimental results on the HRSID dataset indicate that the proposed method achieved mAP@0.5 and mAP@0.95 scores of 93.5%and 71.5%,respectively.Compared to the baseline model,this represents an increase of 7.2%and 7.6%,respectively.The proposed method can effectively complete the task of SAR image small target detection.
基金funded by National Natural Science Foundation of China,Fund Number 61703424.
文摘This paper proposes a real-time detection method to improve the Infrared small target detection CenterNet(ISTD-CenterNet)network for detecting small infrared targets in complex environments.The method eliminates the need for an anchor frame,addressing the issues of low accuracy and slow speed.HRNet is used as the framework for feature extraction,and an ECBAM attention module is added to each stage branch for intelligent identification of the positions of small targets and significant objects.A scale enhancement module is also added to obtain a high-level semantic representation and fine-resolution prediction map for the entire infrared image.Besides,an improved sensory field enhancement module is designed to leverage semantic information in low-resolution feature maps,and a convolutional attention mechanism module is used to increase network stability and convergence speed.Comparison experiments conducted on the infrared small target data set ESIRST.The experiments show that compared to the benchmark network CenterNet-HRNet,the proposed ISTD-CenterNet improves the recall by 22.85%and the detection accuracy by 13.36%.Compared to the state-of-the-art YOLOv5small,the ISTD-CenterNet recall is improved by 5.88%,the detection precision is improved by 2.33%,and the detection frame rate is 48.94 frames/sec,which realizes the accurate real-time detection of small infrared targets.
文摘The traditional small target detection algorithm often results in a high false alarm rate on the sea surface background. To address this issue, a small target detection method based on guided filtering and local average gray level difference was proposed in this paper for the sea surface. Firstly, the method enhanced the details of the small targets by employing guided filtering to suppress the background clutter and noise in the sea surface image. Subsequently, the local average gray level difference of each point in the image was calculated to further distinguish the targets from other interference points. Finally, the threshold segmentation method was utilized to obtain the actual small targets on the sea surface. After conducting experiments on various sea surface scenes, the LSCRG, BSF, and ROC curve were computed for the proposed method and five other algorithms. Comparative analysis with BS, Top-hat, TDLMS, Max-median, and LCM demonstrates the superiority of the proposed method for infrared small target detection on the sea surface.
基金supported by the National Natural Science Foundation of China(62201251)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB510024)the Open Fund for the Hangzhou Institute of Technology Academician Workstation at Xidian University(XH-KY-202306-0291)。
文摘In this paper,a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed.Firstly,the Cameron decomposition is exploited to fuse the radar echoes of full polarization channels at the data level.Due to the artificial material structure on the surface of the target,it can be shown that the non-reciprocity of the target cell is stronger than that of the clutter cell.Then,based on the analysis of the decomposition results,a new feature with scattering geometry characteristics in polarization domain,denoted as Cameron polarization decomposition scattering weight(CPD-SW),is extracted as the test statistic,which can achieve more detailed descriptions of the clutter scattering characteristics utilizing the difference between their scattering types.Finally,the superiority of the proposed CPD-SW detector over traditional detectors in improving detection performance is verified by the IPIX measured dataset,which has strong stability under short-time observation in threshold detection and can also improve the separability of feature space zin anomaly detection.
文摘Small infrared target detection has widespread applications in various fields including military,aviation,and medicine.However,detecting small infrared targets in complex backgrounds remains challenging.To detect small infrared targets,we propose a variable-structure U-shaped network referred as CAFUNet.A central differential convolution-based encoder,ASPP,an Attention Fusion module,and a decoder module are the critical components of the CAFUNet.The encoder module based on central difference convolution effectively extracts shallow detail information from infrared images,complemented by rich contextual information obtained from the deep features in the decoder module.However,the direct fusion of the shallow detail features with semantic features may lead to feature mismatch.To address this,we incorporate an Attention Fusion(AF)module to enhance the network performance further.We performed ablation studies on each module to evaluate its effectiveness.The results show that our proposed algorithm outperforms the state-of-the-art methods on publicly available datasets.
基金Yu-Qing Xia Famous Old Chinese Medicine Heritage Workshop of“3+3”Project of Traditional Chinese Medicine Heritage in Beijing,Jing Zhong Yi Ke Zi(2021),No.73National Natural Science Foundation of China,No.81973640+1 种基金Nursery Program of Wangjing Hospital,Chinese Academy of Traditional Chinese Medicine,No.WJYY-YJKT-2022-05China Academy of Traditional Chinese Medicine Wangjing Hospital High-Level Chinese Medicine Hospital Construction Project Chinese Medicine Clinical Evidence-Based Research:The Evidence-Based Research of Electrothermal Acupuncture for Relieving Cancer-Related Fatigue in Patients With Malignant Tumor,No.WYYY-XZKT-2023-20.
文摘BACKGROUND Small cell lung cancer(SCLC)is a common and aggressive subtype of lung cancer.It is characterized by rapid growth and a high mortality rate.Approximately 10%of patients with SCLC present with brain metastases at the time of diagnosis,which is associated with a median survival of 5 mo.This study aimed to summarize the effect of bevacizumab on the progression-free survival(PFS)and overall survival of patients with brain metastasis of SCLC.CASE SUMMARY A 62-year-old man was referred to our hospital in February 2023 because of dizziness and numbness of the right lower extremity without headache or fever for more than four weeks.The patient was diagnosed with limited-stage SCLC.He received 8 cycles of chemotherapy combined with maintenance bevacizumab therapy and achieved a PFS of over 7 mo.CONCLUSION The combination of bevacizumab and irinotecan effectively alleviated brain metastasis in SCLC and prolonged PFS.
文摘Hepatocellular carcinoma(HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorablesystemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs(si RNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and si RNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited sideeffects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is overexpressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and nonviral si RNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic si RNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein, ganglioside GM1 cell surface ligand, epidermal growth factor receptor receptors, monoclonal antibodies, retinoic acid receptors, integrin receptors targeted by Arg-Gly-Asp peptide, folate, and transferrin receptors are the most widely studied cell surface receptors which are used for the site specific delivery of drugs and si RNA-based therapeutics in HCC and discussed in detail in this article.
基金supported by the National Natural Science Foundation of China (61171194)
文摘This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.
基金supported by the National Key Research and Development Program of China(2016YFB0500901)the Natural Science Foundation of Shanghai(18ZR1437200)the Satellite Mapping Technology and Application National Key Laboratory of Geographical Information Bureau(KLSMTA-201709)
文摘According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3–4 orders of magnitude, and has more powerful target detection performance.
文摘High frequency surface wave radar (HFSWR) is well proved to have over the horizon (OTH) detection capability to weak aerial targets, such as concealed airplanes or cruise missiles. The most important problem of detection of fast and small targets using HFSWR is earlier warning, i.e. enlargement of detection range oftargets. Therefore, the detection threshold should be decreased as low as possible, but numerous false alarms are brought about at the same time. On this condition, conventional track initiation techniques, which normally require the probability of false alarm to be at the level of 10-6, will initiate enormous false tracks and lead to abnormal operation of tracking system. An adaptive modified hough transform (AMHT) track initiator is proposed accordingly and the relation of detection range to the performance of track initiator is analyzed in this paper. Simulations are performed to confirm the capability of track initiation to fast and small targets in dense clutter by AMHT track initiator. The tolerable probability of false alarm of detector can reach the level of 10 -3 . And it performs better than track initiator based on modified hough transform (MHT).
基金This work was supported by grants from the Key Program of National Natural Science Foundation of China(81430093,81830110,and 81861168037)Heilongjiang Touyan Innovation Team Program.
文摘A herbal prescription in traditional Chinese medicine(TCM)has great complexity,with multiple components and multiple targets,making it extremely challenging to determine its bioactive compounds.Yinchenhao Tang(YCHT)has been extensively used for the treatment of jaundice disease.Although many studies have examined the efficacy and active ingredients of YCHT,there is still a lack of an in-depth systematic analysis of its effective components,mechanisms,and potential targets—especially one based on clinical patients.This study established an innovative strategy for discovering the potential targets and active compounds of YCHT based on an integrated clinical and animal experiment platform.The serum metabolic profiles and constituents of YCHT in vivo were determined by ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry(UPLC-Q-ToF-MS)-based metabolomics combined with a serum pharmacochemistry method.Moreover,a compound–target–pathway network was constructed and analyzed by network pharmacology and ingenuity pathway analysis(IPA).We found that eight active components could modulate five key targets.These key targets were further verified by enzyme-linked immunosorbent assay(ELISA),which indicated that YCHT exerts therapeutic effects by targeting cholesterol 7a-hydroxylase(CYP7A1),multidrug-resistance-associated protein 2(ABCC2),multidrug-resistance-associated protein 3(ABCC3),uridine diphosphate glucuronosyl transferase 1A1(UGT1A1),and farnesoid X receptor(FXR),and by regulating metabolic pathways including primary bile acid biosynthesis,porphyrin and chlorophyll metabolism,and biliary secretion.Eight main effective compounds were discovered and correlated with the key targets and pathways.In this way,we demonstrate that this integrated strategy can be successfully applied for the effective discovery of the active compounds and therapeutic targets of an herbal prescription.
文摘This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing technology. The parameters of the algorithm are also given. Experiments have been conducted, the results show that the algorithm has advantages of high detection probability, simple structure, and excellent real-time performance.
基金supported by the National Natural Science Foundation of China under Grant 62003247, Grant 62075169, and Grant 62061160370。
文摘Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregular or the background is complex. In this paper, we propose a pixel-level local contrast measure(PLLCM), which can subdivide small targets and backgrounds at pixel level simultaneously.With pixel-level segmentation, the difference between the target and the background becomes more obvious, which helps to improve the detection performance. First, we design a multiscale sliding window to quickly extract candidate target pixels. Then, a local window based on random walker(RW) is designed for pixel-level target segmentation. After that, PLLCM incorporating probability weights and scale constraints is proposed to accurately measure local contrast and suppress various types of background interference. Finally, an adaptive threshold operation is applied to separate the target from the PLLCM enhanced map. Experimental results show that the proposed method has a higher detection rate and a lower false alarm rate than the baseline algorithms, while achieving a high speed.