期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Analysis and Calibration of Internal Flow Force of EjectorPowered Engine Simulator System in Wind Tunnels
1
作者 TANG Wei WU Chaojun HU Buyuan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第5期747-759,共13页
The ejector-powered engine simulator(EPES)system is an important piece of equipment in conducting an influence test of the intake and jet flow in low-speed wind tunnels.In this work,through the analysis of the structu... The ejector-powered engine simulator(EPES)system is an important piece of equipment in conducting an influence test of the intake and jet flow in low-speed wind tunnels.In this work,through the analysis of the structure and principle of EPES,three parts of the internal flow force were obtained,namely,the additional resistance before the inlet,the internal flow force in the inlet and the thrust produced by the ejector.On the assumption of one-dimensional isentropic adiabatic flow,the theoretical formulae for calculating the forces were derived according to the measured total pressure,static pressure and total temperature of the internal flow section.Subsequently,a calibration tank was used to calibrate the EPES system.On the basis of the characteristics of the EPES system,the process and method of its calibration were designed in detail,and the model installation interface of the calibration tank was reformed.By applying this method,the repeatability accuracy of the inlet flow rate calibration coefficient was less than0.05%,whereas that of the exhaust flow rate and velocity was less than 0.1%.Upon the application of the calibration coefficients to the correction of the wind tunnel experiment data,the results showed good agreement with the numerical simulation results in terms of regularity and magnitude before stall,which validates the reasonableness and feasibility of the calibration method.Analysis of the calibration data also demonstrated the consistency in the variation law and trend between the theoretical calculation and actual measurement of internal flow force,further reflecting the rationality and feasibility of the theoretical calculation.Nevertheless,the numerical difference was large and further widened with a higher ejection flow rate mainly because of the accuracy of flow measurement and the inhomogeneity of internal flow.The thrust deflection angle of EPES is an important factor in correcting this issue.In particular,the thrust deflection angle becomes larger with small ejection flow and becomes smaller with an increase in flow rate,essentially exhibiting a general change of less than 10°. 展开更多
关键词 low-speed wind tunnel ejectorpowered engine simulator calibration tank internal flow force INLET JET
下载PDF
Model Aerodynamic Tests with a Wire-driven Parallel Suspension System in Low-speed Wind Tunnel 被引量:21
2
作者 肖扬文 林麒 +1 位作者 郑亚青 梁斌 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第4期393-400,共8页
Owing to the advantages of wire-driven parallel manipulator, a new wire-driven parallel suspension system for airplane model in low-speed wind tunnel is constructed, and the methods to measure and calculate the aerody... Owing to the advantages of wire-driven parallel manipulator, a new wire-driven parallel suspension system for airplane model in low-speed wind tunnel is constructed, and the methods to measure and calculate the aerodynamic parameters of the airplane model are studied. In detail, a static model of the wire-driven parallel suspension is analyzed, a mathematical model for describ- ing the aerodynamic loads exerted on the scale model is constructed and a calculation method for obtaining the aerodynamic parameters of the model by measuring the tension of wires is presented. Moreover, the measurement system for wire tension and its corresponding data acquisition system are designed and built. Thereafter, the wire-driven parallel suspension system is placed in an open return circuit low-speed wind tunnel for wind tunnel tests to acquire data of each wire tension when the airplane model is at different attitudes and different wind speeds. A group of curves about the parameters for aerodynamic load exerted on the airplane model are obtained at different wind speeds after the acquired data are analyzed. The research results validate the feasibility of using a wire-driven parallel manipulator as the suspension system for low-speed wind ttmnel tests. 展开更多
关键词 wire-driven parallel manipulators low-speed wind tunnel suspension system aerodynamic loads TESTS
原文传递
Study on Pressure Coefficient Distribution of the Airship Zhiyuan-1
3
作者 Ping Liu Gong-Yi Fu +1 位作者 Xiao-Liang Wang Qi Song 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第3期86-92,共7页
A wind tunnel tests with different configurations,pitch and yaw angles were performed to study the wind load characteristics of the rigid model of the airship Zhiyuan-1. The rigid model was aimed to simulate a technic... A wind tunnel tests with different configurations,pitch and yaw angles were performed to study the wind load characteristics of the rigid model of the airship Zhiyuan-1. The rigid model was aimed to simulate a technical demonstrating stratospheric airship named Zhiyuan-1 according to the similarity principle of geometric and Reynolds number. Based on the results of wind tunnel test,the features of pressure coefficient distributions on the surface of the airship were described. It was indicated that the fins and the gondola of airship hardly have the effect on the pressure distribution on the surface of airship,but have obviously effect on the local areas near the fins and the gondola. 展开更多
关键词 AIRSHIP hull configuration low-speed wind tunnel test pressure coefficient distribution
下载PDF
Morphology Effects of Leading-edge Serrations on Aerodynamic Force Production: An Integrated Study Using PIV and Force Measurements 被引量:2
4
作者 Teruaki Ikeda Tetsuya UedA +4 位作者 Toshiyuki Nakata Ryusuke NodA Hiroto Tanaka Takeo Fujii Hao Liu 《Journal of Bionic Engineering》 SCIE EI CSCD 2018年第4期661-672,共12页
While the leading-edge serration in owls' wing is known to be responsible for low noise gliding and flapping flights, the findings on its aero-acoustic role have been diverse or even controversial. Here we present an... While the leading-edge serration in owls' wing is known to be responsible for low noise gliding and flapping flights, the findings on its aero-acoustic role have been diverse or even controversial. Here we present an experimental study of the morphological effects of leading-edge serrations on aerodynamic force production by utilizing owl-inspired, single-feather, clean and serrated wing models with different serration lengths and spacing, and by combining Particle Image Velocimetry (PIV) and force measurements. Force measurements show that an increase in the length and density of the leading-edge serrations leads to a reduction in the lift coefficient and lift-to-drag ratio at Angles of Attack (AoAs) 〈 15° whereas the clean and serrated wings achieve comparable aerodynamic performance at higher AoAs 〉 15°, which owl wings often reach in flight. Furthermore PIV visualization of the flow fluctuations demonstrates that the leading-edge serration-based mechanism is consistent in all serrated wing models in terms of passive control of the laminar-turbulent transition while at AoAs 〉 15° similar suction flow is present at leading edge resulting in a comparable aerodynamic performance to that of the clean wing. Our results indicate the robustness and usefulness of leading-edge serration-inspired devices for aero-acoustic control in biomimetic rotor designs. 展开更多
关键词 BIOMIMETIC leading-edge serrations low-speed wind tunnel particle image velocimetry aerodynamic force lami-nar-turbulent transition
原文传递
Aerodynamic Characteristics of Airship Zhiyuan-1 被引量:2
5
作者 刘平 付功义 +1 位作者 朱利君 王晓亮 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第6期679-687,共9页
An airship named "Zhiyuan-l" was designed/fabricated/flied as a technical demonstration for stratospheric airship during 2007--2009 by Shanghai Jiaotong University. The calculation method and procedure of aerodynami... An airship named "Zhiyuan-l" was designed/fabricated/flied as a technical demonstration for stratospheric airship during 2007--2009 by Shanghai Jiaotong University. The calculation method and procedure of aerodynamic parameters were introduced, and the optimized configuration of the hull and the aerodynamic layout were given in this paper. Wind tunnel tests with different configurations, different pitch angles and different yaw angles were performed to study the wind load characteristics of the rigid model of the airship "Zhiyuan-1" in the φ3.2 m wind tunnel at China Aerodynamics Research & Development Center. Also the numerical calculation about the test model was carried out to investigate the aerodynamic behavior. According to the results of wind test and numerical calculation, the excellent hull configuration of the airship "Zhiyuan-1" with lower drag characteristic was confirmed, which is based on optimism of the Michel transition law. And the phenomena of pressure coefficient distribution were discussed according to the results of wind tunnel test and numerical calculation at different flight attitudes. 展开更多
关键词 stratospheric airship hull configuration low-speed wind tunnel test aerodynamic parameter pressure coefcient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部