In challenging operational environments,Lithium-ion batteries(LIBs)inevitably experience mechanical stresses,including impacts and extrusion,which can lead to battery damage,failure,and even the occurrence of fire and...In challenging operational environments,Lithium-ion batteries(LIBs)inevitably experience mechanical stresses,including impacts and extrusion,which can lead to battery damage,failure,and even the occurrence of fire and explosion incidents.Consequently,it is imperative to investigate the safety performance of LIBs under mechanical loads.This study is grounded in a more realistic coupling scenario consisting of electrochemical cycling and low-velocity impact.We systematically and experimentally uncovered the mechanical,electrochemical,and thermal responses,damage behavior,and corresponding mechanisms under various conditions.Our study demonstrates that higher impact energy results in increased structural stiffness,maximum temperature,and maximum voltage drop.Furthermore,heightened impact energy significantly influences the electrical resistance parameters within the internal resistance.We also examined the effects of State of Charge(SOC)and C-rates.The methodology and experimental findings will offer insights for enhancing the safety design,conducting risk assessments,and enabling the cascading utilization of energy storage systems based on LIBs.展开更多
Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using ...Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.展开更多
Proper design of exhaust systems in marine high-power turbocharged diesel engines can contribute to improve the low-speed performance of these engines and make the working conditions of the cylinders more uniform.Here...Proper design of exhaust systems in marine high-power turbocharged diesel engines can contribute to improve the low-speed performance of these engines and make the working conditions of the cylinders more uniform.Here a high-power marine 16-cylinder V-type turbocharged diesel engine is simulated using the GT-Power software.The results reveal the differences induced by different exhaust system structures,such as an 8-cylinder-inpipe exhaust system with single/double superchargers and a 4-cylinder-in-pipe exhaust system with a single supercharger.After a comparative analysis,the 8-cylinder type with double superchargers is determined to be the optimal solution,and the structure of the exhaust system is further optimized.The simulations show that the optimized maximum exhaust temperature difference among cylinders is reduced by 66%.Finally,the simulation results and the optimized performance of the designed exhaust system are verified through experiments.展开更多
The impact properties of normal concrete (NC) and reinforced concrete (RC) specimens,steel fibre reinforced concrete (SFRC) specimens and RC+SFRC specimens with different steel fibre dosages were investigated with the...The impact properties of normal concrete (NC) and reinforced concrete (RC) specimens,steel fibre reinforced concrete (SFRC) specimens and RC+SFRC specimens with different steel fibre dosages were investigated with the drop-weight impact test recommended by ACI Committee 544.The results indicate that the number of blows to final failure is greatly increased by addition of steel fibres.Moreover,the combination of steel fibres and steel rebars demonstrates a significant positive composite effect on the impact resistance,which results in the improvement in impact toughness of concrete specimens.In the view of variation of impact test results,the two-parameter Weibull distribution was adopted to analyze the experimental data.It is proved that the probabilistic distributions of the blows to first crack and to final failure of six types of samples approximately follow two-parameter Weibull distribution.展开更多
Road side barriers are constructed to protect passengers and contain vehicles when a vehicle crashes into a barrier. In general, full-scale crash testing needs to be carried out if a geometrically and structurally equ...Road side barriers are constructed to protect passengers and contain vehicles when a vehicle crashes into a barrier. In general, full-scale crash testing needs to be carried out if a geometrically and structurally equivalent barrier has not previously been proven to meet the requirements of containing the vehicle and dissipating sufficient impact energy for passenger protection. As full-scale crash testing is very expensive, the number of data that can be measured in a test is usually limited, and it may not always be possible to obtain good quality measurements in such a test, a reliable and efficient numerical simulation of crash testing is therefore very useful. This paper presents finite element simulations of a 3-rail steel road traffic barrier under vehicle impact. The performance levels defined in Australian Standards AS5100 Clause 10.5 for these barriers are checked. The numerical simulations show that the barrier is able to meet low performance levels. However, the maximum deceleration is higher than the acceptable limit for passenger protection. If present, a kerb launches the vehicles into the barrier, allowing for the possibility of overriding the barrier under certain circumstances, but it redirects the vehicle and reduces the incident angle, which reduces impact force on the barrier. Further investigation into all common kerb profiles on roads should be carried out, as only one kerb profile is investigated in this study.展开更多
Pneumatic down-the-hole (DTH) hammer has been extensively used in air drillings through hard and ultra-hard geological formations. Numerical modeling can offer close observation on the working behaviors by visualizing...Pneumatic down-the-hole (DTH) hammer has been extensively used in air drillings through hard and ultra-hard geological formations. Numerical modeling can offer close observation on the working behaviors by visualizing internal pressure status as well as provide reliable performance predictions for large-diameter DTH hammers to which conventional empirical and experimental approaches cannot be applied. In this study, CFD simulations coupled with dynamic meshing are utilized to simulate the air flow and piston movement inside the large-diameter DTH hammers. The numerical modeling scheme is verified against a theoretical model published in literature. Effects of structural parameters on hammer performance, including piston mass, piston upper-end diameter, piston groove diameter, and lengths of intake and exhaust stroke in both front and rear chambers, are analyzed in detail by virtue of sets of numerical simulations. The simulations suggest that changing the intake stroke of front chamber has a negligible influence on hammer performance while increasing the piston groove would lower all the four indicators of hammer performance, including impact energy, impact frequency, maximum stroke, and air consumption rate. Changing the other structural parameters demonstrates mixed effects on the performance indicators. Based on the numerical simulations, a large GQ-400 DTH hammer has been designed for reduced air consumption rate and tested in a field drilling practice. The air drilling test with the designed hammer provided a penetration rate 1.7 times faster than that of conventional mud drilling.展开更多
Native dejects in HfSiO4 are investigated by first principles calculations. Transition levels of native detects can be accurately described by employing the nonlocal HSE06 hybrid functional. This methodology overcomes...Native dejects in HfSiO4 are investigated by first principles calculations. Transition levels of native detects can be accurately described by employing the nonlocal HSE06 hybrid functional. This methodology overcomes the band gap problem in traditional functionals. By band alignments among the Si, GaAs and HfSiO4. we are able to determine the position of defect levels in Si and GaAs relative to the HfSiO4 band gap. We evaluate the. possibility of these defects acting as fixed charge. Native defects lead to the change of valence and conduction band offsets. Gate leakage current is evaluated by the band offset. In addition, we also investigate diffusions of native defects, and discuss how they affect the MOS device performance.展开更多
Front bumper, crash box and side rail are key body structural parts in front crash. Deformation space is affected by compartment packaging. The improvement suggestions are proposed to solve the problems existed in the...Front bumper, crash box and side rail are key body structural parts in front crash. Deformation space is affected by compartment packaging. The improvement suggestions are proposed to solve the problems existed in the current vehicle struc- ture and compartment packaging based on the areas that influence performance of automobile offset deformable barrier impact, such as the side rail, mounting, storage battery packaging,etc. It is proved that dO % offset crash simulation result of one certain car is well-correlated with the physical test. Optimization cases meet the crash performance requirements. The objec- tive of the analysis is to guide structural design and improves a car' s crash safety performance.展开更多
Background: Social phobia disrupts students in their academic career. The aim of this research work was to study this anxious disorder impact on the academic performance among students from the University of Parakou (...Background: Social phobia disrupts students in their academic career. The aim of this research work was to study this anxious disorder impact on the academic performance among students from the University of Parakou (UP). Study methods: It was a descriptive cross-sectional study with prospective data collection among 363 students recruited through systematic random sampling from April to June 2015 at the campus of the UP. A questionnaire including the Mini International Neuropsychiatric Interview (MINI), the Liebowitz social anxiety intensity evaluation scale and the ASSIST was used for data collection in compliance with recommended ethical principles. Results and Conclusion Social phobia prevalence among students from the campus of University of Parakou was 11. 6% [CI<sub>95%</sub> = 10. 9 - 21. 2]. Its intensity was moderate (66.7%), medium (23.4%), severe (7.1%) and very severe (4.8%) only among female students. Moreover, gender, rural or urban living environment and field of study were statistically associated with this social phobia which reduced academic performance by 57.1%, among the studied population. However, 42.9% were not influenced in any way. Addiction to alcoholic beverages (23.8%) and anxiolytics (9.5%) were used to overcome the disorder. Although the risk of dependency to these substances was low, adverse effects on their health and socio-professional future were to be taken seriously.展开更多
Wind energy is one of the most basic forms of renewable energy,which shows an increasing rate of development worldwide and also at the European level.However,this rapid deployment of wind farms makes the need for an i...Wind energy is one of the most basic forms of renewable energy,which shows an increasing rate of development worldwide and also at the European level.However,this rapid deployment of wind farms makes the need for an impact assessment of this type of projects on the natural and man-made environment imperative.The present paper aims to identify and assess the environmental impacts of wind farm projects in the Region of Central Greece.A modified Rapid Impact Assessment Matrix(RIAM)method is used for this purpose.The methodology includes the identification of the existing onshore wind farm projects in the study area,the appropriate modifications of the RIAM method to respond to the characteristics of the projects and the study area,the qualitative assessment of their potential impacts during construction and operational phases and the computation of the Environmental Performance Grade(EPG)of projects based on the pro-posed modified RIAM method.The results reveal that although there are some slight negative impacts on the natural environment of the study area,the examined wind farms contribute positively both to the atmosphere and to the socio-economic environment of the study.This study extends the potential for using RIAM as a tool in environmental impact assessment studies of renewable energy projects.展开更多
Impact of band-engineering to the performance of charge trapping memory with HfO2/Ta2O5/HfO2 (HTH) as the charge trapping layer is investigated. Compared with devices with the same total HfO2 thickness, structures w...Impact of band-engineering to the performance of charge trapping memory with HfO2/Ta2O5/HfO2 (HTH) as the charge trapping layer is investigated. Compared with devices with the same total HfO2 thickness, structures with Ta2O5 closer to substrates show larger program/erase window, because the 2nd HfO2 (next to blocking oxide) serving as part of blocking oxide reduces the current tunneling out of/in the charge trapping layer during program and erase. Moreover, trapped charge centroid is modulated and contributed more to the fiat-band voltage shift. Further experiments prove that devices with a thicker 2nd HfO2 layer exhibit larger saturate fiat-band shift in both program and erase operation. The optimized device achieves a 7 V memory window and good reliability characteristics.展开更多
We evaluate the impact of temperature on the output behavior of a carbon nanotube field effect transistor (CNFET) based chaotic generator. The sources cause the variations in both current-voltage characteristics of ...We evaluate the impact of temperature on the output behavior of a carbon nanotube field effect transistor (CNFET) based chaotic generator. The sources cause the variations in both current-voltage characteristics of the CNFET device and an overall chaotic circuit is pointed out. To verify the effect of temperature variation on the output dynamics of the chaotic circuit, a simulation is performed by employing the CNFET compact model of Wong et al. in HSPICE with a temperature range from -100℃ to 100℃. The obtained results with time series, frequency spectra, and bifurcation diagram from the simulation demonstrate that temperature plays a significant role in the output dynamics of the CNFET-based chaotic circuit. Thus, temperature-related issues should be taken into account while designing a high-quality chaotic generator with high stability.展开更多
The volume of highway traffic in the United States continues to increase. In the face of this there is a concomitant need to improve and repair transportation infrastructure. Construction frequently requires a reducti...The volume of highway traffic in the United States continues to increase. In the face of this there is a concomitant need to improve and repair transportation infrastructure. Construction frequently requires a reduction in capacity during construction activity; consequently road users as well as adjacent businesses must endure the delays and inconveniences associated with transportation construction. Recognizing the problems that construction can produce, state highway agencies (SHAs) have continually sought ways to minimize the negative impact from their construction operations. Incentive contracting has played an important role in this effort to improve project performance. The Florida Department of Transportation (FDOT) is one of the leading SHAs using such innovative contracting methods as Incentive/Disincentive (I/D), A+B (cost plus time bidding) combined with I/D, No Excuse Bonus, and Liquidated Savings. This paper analyzes the traffic impact on incentive project time performance using highway construction projects recently completed in Florida. Project data obtained from FDOT were evaluated using time performance indices. A survey of traffic impact on project work types was performed in Florida in order to evaluate the relationship between construction project types and road traffic influence during construction. Based on the survey results, the 38 most frequently used work types in Florida during the study period were categorized into three traffic impact levels: (1) high traffic impact, (2) medium traffic impact, and (3) low traffic impact. Statistical analysis was performed. The results show that there are significant differences on project time performance between low and high impact levels as well as low and medium impact levels.展开更多
Arsenic can diffuse into high-κ dielectrics during OaAs-based metal oxide semiconductor transistor process, which causes the degradation of gate dielectrics. To explore the origins of the degradation, we employ nonlo...Arsenic can diffuse into high-κ dielectrics during OaAs-based metal oxide semiconductor transistor process, which causes the degradation of gate dielectrics. To explore the origins of the degradation, we employ nonlocal B3LYP hybrid functional to study arsenic related defects in ZrO2. Via band alignments between the OaAs and ZrO2, we are able to determine the defect formation energy in the GaAs relative to the ZrO2 band gap and assess how they will affect the device performance. Arsenic at the interstitial site serves as a source of positive fixed charge while at the oxygen or zirconium substitutional site changes its charge state within the band gap of GaAs. Moreover, it is found that arsenic related defects produce conduction band offset reduction and gap states, which will increase the gate leakage current.展开更多
The outbreak of novel coronavirus pneumonia has affected almost all industries and enterprises.This paper analyzes the impact of the epidemic on the macro economy through GDP and other indicators,analyzes the impact o...The outbreak of novel coronavirus pneumonia has affected almost all industries and enterprises.This paper analyzes the impact of the epidemic on the macro economy through GDP and other indicators,analyzes the impact of the epidemic on the overall business performance of the enterprises through the asset turnover speed index of the above scale industrial enterprises,and analyzes the impact of the epidemic on the net profit of the listed companies through the first quarter performance forecast of the listed companies.At last,the paper puts forward that enterprises should improve their awareness and ability to resist risks.展开更多
Based on the provincial data of tourism and cultural industries from 2009 to 2019,this paper studies the impact of the integration of culture and tourism on the economic benefits of regional tourism in China.The resul...Based on the provincial data of tourism and cultural industries from 2009 to 2019,this paper studies the impact of the integration of culture and tourism on the economic benefits of regional tourism in China.The results show that:①The integration level of the two industries is generally low in all provinces and regions,and the regional differences are obvious.The integration degree of the central and eastern regions is generally higher than that of the western regions.②The integration degree of culture and tourism has a significant positive impact on the economic benefits of regional tourism.The influence on the central and eastern regions is greater than that on the western regions.③The level of informatization has a positive moderating effect on the economic benefits of regional tourism caused by the integration of culture and tourism.④Government intervention has a negative moderating effect on the economic benefits of tourism.In addition,the level of regional economic development,accessibility and tourism resource endowment are also significant factors affecting the economic benefits of regional tourism.The results show that promoting the deep integration of culture and tourism,promoting the informatization of tourism and moderate government intervention in the industry are conducive to improving the economic benefits of regional tourism.展开更多
The temperature dependence of some performance of 6H SiC unipolar power devices is analyzed theoretically.By employing the temperature dependent ionization coefficient and mobility of a silicon carbide,the analytica...The temperature dependence of some performance of 6H SiC unipolar power devices is analyzed theoretically.By employing the temperature dependent ionization coefficient and mobility of a silicon carbide,the analytical expressions of the temperature dependent performance,such as breakdown characteristics and on resistance of 6H SiC unipolar power devices are derived in a closed form.The analytical results are compared with the experimental results,with good accordance found in the breakdown characteristics.展开更多
By means of polarizing optical microscopy (POM), deformation behavior of four kinds of fibers, i.e, ultra high molecular weight polyethylene (UHMW-PE) fiber, polyvinyl alcohol (PVA) fiber, polyethylene terephthalate (...By means of polarizing optical microscopy (POM), deformation behavior of four kinds of fibers, i.e, ultra high molecular weight polyethylene (UHMW-PE) fiber, polyvinyl alcohol (PVA) fiber, polyethylene terephthalate (PET) fiber, and wholly aromatic (rho-hydroxybenzoic acid/2-hydroxy-6-naphthoic acid) copolyester [P(HBA/HNA)]/PET (ACPET blend) fiber, in axial compression, axial impacting, and bending was observed. In compression, kink bands formed at an angle of 55-60 degrees ro the fiber axis in 10-times-drawn UHMW-PE fiber, 75-80 degrees in 40-times-drawn sample, 80 degrees in PVA fiber, and 90 degrees in the ACPET blend fiber. In impacting and bending, band angles of UHMW-PE, PVA and PET fibers are nearly the same as those formed in compression, indicating that slip systems do not change. For any of the four kinds of fiber, band spacing exhibits great differences in compression, in impacting, and in bending, which may be attributed to the differences in the degrees of strain or stress concentration.展开更多
Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fra...Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fraction was researched on repeated compressive impact in four kinds of impact modes through split Hopkinson pressure bar (SHPB). The experimental results show that the peak stress and elastic modulus decrease and the strain rate and peak strain increase gradually with the increasing of impact times. The initial material damage increases and the peak stress of the specimen decreases from the second impact with the increasing of the initial incident wave. Standard strength on repeated impact is defined to compare the ability of resistance against repeated impact among different materials. The rate of reduction of standard strength is decreased by fiber reinforcement under repeated impact. The material damage is reduced and the ability of repeated impact resistance of UHPFRC is improved with the increasing of fiber volume fraction.展开更多
A recent technique, using to potentially replace the conventional impregnating one in low voltage electric motors, has been studied in this communication. The conventional technique that uses?both primary and secondar...A recent technique, using to potentially replace the conventional impregnating one in low voltage electric motors, has been studied in this communication. The conventional technique that uses?both primary and secondary insulations;?i.e.: enamel and varnish, has been compared to this recent technique which only uses one component,?i.e.: self-bonding wires. Self-bonding wires polymerization is very quick compared to that of the conventional technique. Environmental impact and both dielectric and mechanical properties of these two techniques have been estimated and compared. The goal is to estimate if this recent technique has not only a better environmental footprint but also good technical properties. The dielectric properties that have been measured are the dielectric strength and?the lifetime under pulse?voltage while mechanical consists in measuring the bonding strength that is crucial for impregnation.?For that purpose, a Life Cycle Assessment (LCA) that can simultaneously evaluatenumerous impacts on ground, water and air,?has been performed. The results show clearly that the recent technique significantly reduces the environmental footprint. Both mechanical and dielectric properties are then compared and analyzed.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12111530222)the Fundamental Research Funds for the Central Universities(Grant No.23GH02023)+2 种基金the Taicang Basic Research Program Project(Grant No.TC2023JC15)the Shaanxi Key Research and Development Program for International Cooperation and Exchanges(Grant No.2022KWZ-23)the 111 Project of China(Grant No.BP0719007).
文摘In challenging operational environments,Lithium-ion batteries(LIBs)inevitably experience mechanical stresses,including impacts and extrusion,which can lead to battery damage,failure,and even the occurrence of fire and explosion incidents.Consequently,it is imperative to investigate the safety performance of LIBs under mechanical loads.This study is grounded in a more realistic coupling scenario consisting of electrochemical cycling and low-velocity impact.We systematically and experimentally uncovered the mechanical,electrochemical,and thermal responses,damage behavior,and corresponding mechanisms under various conditions.Our study demonstrates that higher impact energy results in increased structural stiffness,maximum temperature,and maximum voltage drop.Furthermore,heightened impact energy significantly influences the electrical resistance parameters within the internal resistance.We also examined the effects of State of Charge(SOC)and C-rates.The methodology and experimental findings will offer insights for enhancing the safety design,conducting risk assessments,and enabling the cascading utilization of energy storage systems based on LIBs.
基金supported by the National Natural Science Foundation of China(No.52079133)CRSRI Open Research Program(Program SN:CKWV2019746/KY)+1 种基金the project of Key Laboratory of Water Grid Project and Regulation of Ministry of Water Resources(QTKS0034W23291)the Youth Innovation Promotion Association CAS.
文摘Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.
基金the High-Tech Ship Scientific Research Project[MC-201501-D01-01].
文摘Proper design of exhaust systems in marine high-power turbocharged diesel engines can contribute to improve the low-speed performance of these engines and make the working conditions of the cylinders more uniform.Here a high-power marine 16-cylinder V-type turbocharged diesel engine is simulated using the GT-Power software.The results reveal the differences induced by different exhaust system structures,such as an 8-cylinder-inpipe exhaust system with single/double superchargers and a 4-cylinder-in-pipe exhaust system with a single supercharger.After a comparative analysis,the 8-cylinder type with double superchargers is determined to be the optimal solution,and the structure of the exhaust system is further optimized.The simulations show that the optimized maximum exhaust temperature difference among cylinders is reduced by 66%.Finally,the simulation results and the optimized performance of the designed exhaust system are verified through experiments.
基金Project(50578026) supported by the National Natural Science Foundation of ChinaProject supported by FCT (SFRH/BPD/22680/2005)and Research Center of Mathematics of the University of Minho through the FCT Pluriannual Funding Program
文摘The impact properties of normal concrete (NC) and reinforced concrete (RC) specimens,steel fibre reinforced concrete (SFRC) specimens and RC+SFRC specimens with different steel fibre dosages were investigated with the drop-weight impact test recommended by ACI Committee 544.The results indicate that the number of blows to final failure is greatly increased by addition of steel fibres.Moreover,the combination of steel fibres and steel rebars demonstrates a significant positive composite effect on the impact resistance,which results in the improvement in impact toughness of concrete specimens.In the view of variation of impact test results,the two-parameter Weibull distribution was adopted to analyze the experimental data.It is proved that the probabilistic distributions of the blows to first crack and to final failure of six types of samples approximately follow two-parameter Weibull distribution.
文摘Road side barriers are constructed to protect passengers and contain vehicles when a vehicle crashes into a barrier. In general, full-scale crash testing needs to be carried out if a geometrically and structurally equivalent barrier has not previously been proven to meet the requirements of containing the vehicle and dissipating sufficient impact energy for passenger protection. As full-scale crash testing is very expensive, the number of data that can be measured in a test is usually limited, and it may not always be possible to obtain good quality measurements in such a test, a reliable and efficient numerical simulation of crash testing is therefore very useful. This paper presents finite element simulations of a 3-rail steel road traffic barrier under vehicle impact. The performance levels defined in Australian Standards AS5100 Clause 10.5 for these barriers are checked. The numerical simulations show that the barrier is able to meet low performance levels. However, the maximum deceleration is higher than the acceptable limit for passenger protection. If present, a kerb launches the vehicles into the barrier, allowing for the possibility of overriding the barrier under certain circumstances, but it redirects the vehicle and reduces the incident angle, which reduces impact force on the barrier. Further investigation into all common kerb profiles on roads should be carried out, as only one kerb profile is investigated in this study.
基金This work was supported by the Natural Science Foundation of Jilin Province(YDZj202101ZYTS143)National Key Research and Development Project of China(project No.2018YFC1505303).
文摘Pneumatic down-the-hole (DTH) hammer has been extensively used in air drillings through hard and ultra-hard geological formations. Numerical modeling can offer close observation on the working behaviors by visualizing internal pressure status as well as provide reliable performance predictions for large-diameter DTH hammers to which conventional empirical and experimental approaches cannot be applied. In this study, CFD simulations coupled with dynamic meshing are utilized to simulate the air flow and piston movement inside the large-diameter DTH hammers. The numerical modeling scheme is verified against a theoretical model published in literature. Effects of structural parameters on hammer performance, including piston mass, piston upper-end diameter, piston groove diameter, and lengths of intake and exhaust stroke in both front and rear chambers, are analyzed in detail by virtue of sets of numerical simulations. The simulations suggest that changing the intake stroke of front chamber has a negligible influence on hammer performance while increasing the piston groove would lower all the four indicators of hammer performance, including impact energy, impact frequency, maximum stroke, and air consumption rate. Changing the other structural parameters demonstrates mixed effects on the performance indicators. Based on the numerical simulations, a large GQ-400 DTH hammer has been designed for reduced air consumption rate and tested in a field drilling practice. The air drilling test with the designed hammer provided a penetration rate 1.7 times faster than that of conventional mud drilling.
基金Supported by the Science Foundation from Education Department of Liaoning Province under Grant No L2014445
文摘Native dejects in HfSiO4 are investigated by first principles calculations. Transition levels of native detects can be accurately described by employing the nonlocal HSE06 hybrid functional. This methodology overcomes the band gap problem in traditional functionals. By band alignments among the Si, GaAs and HfSiO4. we are able to determine the position of defect levels in Si and GaAs relative to the HfSiO4 band gap. We evaluate the. possibility of these defects acting as fixed charge. Native defects lead to the change of valence and conduction band offsets. Gate leakage current is evaluated by the band offset. In addition, we also investigate diffusions of native defects, and discuss how they affect the MOS device performance.
基金"Twelfth Five-year Plan"for Sci & Tech Research of China(No.2011BAG03B02No.2011BAG03B06)
文摘Front bumper, crash box and side rail are key body structural parts in front crash. Deformation space is affected by compartment packaging. The improvement suggestions are proposed to solve the problems existed in the current vehicle struc- ture and compartment packaging based on the areas that influence performance of automobile offset deformable barrier impact, such as the side rail, mounting, storage battery packaging,etc. It is proved that dO % offset crash simulation result of one certain car is well-correlated with the physical test. Optimization cases meet the crash performance requirements. The objec- tive of the analysis is to guide structural design and improves a car' s crash safety performance.
文摘Background: Social phobia disrupts students in their academic career. The aim of this research work was to study this anxious disorder impact on the academic performance among students from the University of Parakou (UP). Study methods: It was a descriptive cross-sectional study with prospective data collection among 363 students recruited through systematic random sampling from April to June 2015 at the campus of the UP. A questionnaire including the Mini International Neuropsychiatric Interview (MINI), the Liebowitz social anxiety intensity evaluation scale and the ASSIST was used for data collection in compliance with recommended ethical principles. Results and Conclusion Social phobia prevalence among students from the campus of University of Parakou was 11. 6% [CI<sub>95%</sub> = 10. 9 - 21. 2]. Its intensity was moderate (66.7%), medium (23.4%), severe (7.1%) and very severe (4.8%) only among female students. Moreover, gender, rural or urban living environment and field of study were statistically associated with this social phobia which reduced academic performance by 57.1%, among the studied population. However, 42.9% were not influenced in any way. Addiction to alcoholic beverages (23.8%) and anxiolytics (9.5%) were used to overcome the disorder. Although the risk of dependency to these substances was low, adverse effects on their health and socio-professional future were to be taken seriously.
文摘Wind energy is one of the most basic forms of renewable energy,which shows an increasing rate of development worldwide and also at the European level.However,this rapid deployment of wind farms makes the need for an impact assessment of this type of projects on the natural and man-made environment imperative.The present paper aims to identify and assess the environmental impacts of wind farm projects in the Region of Central Greece.A modified Rapid Impact Assessment Matrix(RIAM)method is used for this purpose.The methodology includes the identification of the existing onshore wind farm projects in the study area,the appropriate modifications of the RIAM method to respond to the characteristics of the projects and the study area,the qualitative assessment of their potential impacts during construction and operational phases and the computation of the Environmental Performance Grade(EPG)of projects based on the pro-posed modified RIAM method.The results reveal that although there are some slight negative impacts on the natural environment of the study area,the examined wind farms contribute positively both to the atmosphere and to the socio-economic environment of the study.This study extends the potential for using RIAM as a tool in environmental impact assessment studies of renewable energy projects.
基金Supported by the National Basic Research Program of China under Grant No 2011CBA00602the National Key Scientific and Technological Project under Grant No 2013ZX01032001-001-003
文摘Impact of band-engineering to the performance of charge trapping memory with HfO2/Ta2O5/HfO2 (HTH) as the charge trapping layer is investigated. Compared with devices with the same total HfO2 thickness, structures with Ta2O5 closer to substrates show larger program/erase window, because the 2nd HfO2 (next to blocking oxide) serving as part of blocking oxide reduces the current tunneling out of/in the charge trapping layer during program and erase. Moreover, trapped charge centroid is modulated and contributed more to the fiat-band voltage shift. Further experiments prove that devices with a thicker 2nd HfO2 layer exhibit larger saturate fiat-band shift in both program and erase operation. The optimized device achieves a 7 V memory window and good reliability characteristics.
基金Supported by the Basic Science Research Program through the National Research Foundation of Korea Funded by the Ministry of Education,Science and Technology under Grant No 2012-0002777
文摘We evaluate the impact of temperature on the output behavior of a carbon nanotube field effect transistor (CNFET) based chaotic generator. The sources cause the variations in both current-voltage characteristics of the CNFET device and an overall chaotic circuit is pointed out. To verify the effect of temperature variation on the output dynamics of the chaotic circuit, a simulation is performed by employing the CNFET compact model of Wong et al. in HSPICE with a temperature range from -100℃ to 100℃. The obtained results with time series, frequency spectra, and bifurcation diagram from the simulation demonstrate that temperature plays a significant role in the output dynamics of the CNFET-based chaotic circuit. Thus, temperature-related issues should be taken into account while designing a high-quality chaotic generator with high stability.
文摘The volume of highway traffic in the United States continues to increase. In the face of this there is a concomitant need to improve and repair transportation infrastructure. Construction frequently requires a reduction in capacity during construction activity; consequently road users as well as adjacent businesses must endure the delays and inconveniences associated with transportation construction. Recognizing the problems that construction can produce, state highway agencies (SHAs) have continually sought ways to minimize the negative impact from their construction operations. Incentive contracting has played an important role in this effort to improve project performance. The Florida Department of Transportation (FDOT) is one of the leading SHAs using such innovative contracting methods as Incentive/Disincentive (I/D), A+B (cost plus time bidding) combined with I/D, No Excuse Bonus, and Liquidated Savings. This paper analyzes the traffic impact on incentive project time performance using highway construction projects recently completed in Florida. Project data obtained from FDOT were evaluated using time performance indices. A survey of traffic impact on project work types was performed in Florida in order to evaluate the relationship between construction project types and road traffic influence during construction. Based on the survey results, the 38 most frequently used work types in Florida during the study period were categorized into three traffic impact levels: (1) high traffic impact, (2) medium traffic impact, and (3) low traffic impact. Statistical analysis was performed. The results show that there are significant differences on project time performance between low and high impact levels as well as low and medium impact levels.
基金Supported by the Key Project of Education Department of China under Grant No 211035the Science Foundation from Education Department of Liaoning Province under Grant No L2014445
文摘Arsenic can diffuse into high-κ dielectrics during OaAs-based metal oxide semiconductor transistor process, which causes the degradation of gate dielectrics. To explore the origins of the degradation, we employ nonlocal B3LYP hybrid functional to study arsenic related defects in ZrO2. Via band alignments between the OaAs and ZrO2, we are able to determine the defect formation energy in the GaAs relative to the ZrO2 band gap and assess how they will affect the device performance. Arsenic at the interstitial site serves as a source of positive fixed charge while at the oxygen or zirconium substitutional site changes its charge state within the band gap of GaAs. Moreover, it is found that arsenic related defects produce conduction band offset reduction and gap states, which will increase the gate leakage current.
文摘The outbreak of novel coronavirus pneumonia has affected almost all industries and enterprises.This paper analyzes the impact of the epidemic on the macro economy through GDP and other indicators,analyzes the impact of the epidemic on the overall business performance of the enterprises through the asset turnover speed index of the above scale industrial enterprises,and analyzes the impact of the epidemic on the net profit of the listed companies through the first quarter performance forecast of the listed companies.At last,the paper puts forward that enterprises should improve their awareness and ability to resist risks.
基金Sponsored by National Social Science Fund of China(18BGL148)Natural Science Foundation of Inner Mongolia Autonomous Region(2019MS04019)。
文摘Based on the provincial data of tourism and cultural industries from 2009 to 2019,this paper studies the impact of the integration of culture and tourism on the economic benefits of regional tourism in China.The results show that:①The integration level of the two industries is generally low in all provinces and regions,and the regional differences are obvious.The integration degree of the central and eastern regions is generally higher than that of the western regions.②The integration degree of culture and tourism has a significant positive impact on the economic benefits of regional tourism.The influence on the central and eastern regions is greater than that on the western regions.③The level of informatization has a positive moderating effect on the economic benefits of regional tourism caused by the integration of culture and tourism.④Government intervention has a negative moderating effect on the economic benefits of tourism.In addition,the level of regional economic development,accessibility and tourism resource endowment are also significant factors affecting the economic benefits of regional tourism.The results show that promoting the deep integration of culture and tourism,promoting the informatization of tourism and moderate government intervention in the industry are conducive to improving the economic benefits of regional tourism.
文摘The temperature dependence of some performance of 6H SiC unipolar power devices is analyzed theoretically.By employing the temperature dependent ionization coefficient and mobility of a silicon carbide,the analytical expressions of the temperature dependent performance,such as breakdown characteristics and on resistance of 6H SiC unipolar power devices are derived in a closed form.The analytical results are compared with the experimental results,with good accordance found in the breakdown characteristics.
文摘By means of polarizing optical microscopy (POM), deformation behavior of four kinds of fibers, i.e, ultra high molecular weight polyethylene (UHMW-PE) fiber, polyvinyl alcohol (PVA) fiber, polyethylene terephthalate (PET) fiber, and wholly aromatic (rho-hydroxybenzoic acid/2-hydroxy-6-naphthoic acid) copolyester [P(HBA/HNA)]/PET (ACPET blend) fiber, in axial compression, axial impacting, and bending was observed. In compression, kink bands formed at an angle of 55-60 degrees ro the fiber axis in 10-times-drawn UHMW-PE fiber, 75-80 degrees in 40-times-drawn sample, 80 degrees in PVA fiber, and 90 degrees in the ACPET blend fiber. In impacting and bending, band angles of UHMW-PE, PVA and PET fibers are nearly the same as those formed in compression, indicating that slip systems do not change. For any of the four kinds of fiber, band spacing exhibits great differences in compression, in impacting, and in bending, which may be attributed to the differences in the degrees of strain or stress concentration.
基金Funded by the National Natural Science Foundation of China (No. 50808101)Jiangsu Provincial Program for Basic Research (Natural Science Foundation) (No.BK2008417)China Postdoctoral Science Foundation (No. 20080431100)
文摘Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fraction was researched on repeated compressive impact in four kinds of impact modes through split Hopkinson pressure bar (SHPB). The experimental results show that the peak stress and elastic modulus decrease and the strain rate and peak strain increase gradually with the increasing of impact times. The initial material damage increases and the peak stress of the specimen decreases from the second impact with the increasing of the initial incident wave. Standard strength on repeated impact is defined to compare the ability of resistance against repeated impact among different materials. The rate of reduction of standard strength is decreased by fiber reinforcement under repeated impact. The material damage is reduced and the ability of repeated impact resistance of UHPFRC is improved with the increasing of fiber volume fraction.
文摘A recent technique, using to potentially replace the conventional impregnating one in low voltage electric motors, has been studied in this communication. The conventional technique that uses?both primary and secondary insulations;?i.e.: enamel and varnish, has been compared to this recent technique which only uses one component,?i.e.: self-bonding wires. Self-bonding wires polymerization is very quick compared to that of the conventional technique. Environmental impact and both dielectric and mechanical properties of these two techniques have been estimated and compared. The goal is to estimate if this recent technique has not only a better environmental footprint but also good technical properties. The dielectric properties that have been measured are the dielectric strength and?the lifetime under pulse?voltage while mechanical consists in measuring the bonding strength that is crucial for impregnation.?For that purpose, a Life Cycle Assessment (LCA) that can simultaneously evaluatenumerous impacts on ground, water and air,?has been performed. The results show clearly that the recent technique significantly reduces the environmental footprint. Both mechanical and dielectric properties are then compared and analyzed.