期刊文献+
共找到5,771篇文章
< 1 2 250 >
每页显示 20 50 100
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects 被引量:3
1
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 low-temperature performance Anode materials Microstructural regulations Surface modifications
下载PDF
Low-temperature characteristicsof rubbers and performance testsof type 120 emergencyvalve diaphragms 被引量:1
2
作者 Ming Gao Anhui Pan +5 位作者 Yi Huang Jiaqi Wang Yan Zhang Xiao Xie Huanre Han Yinghua Jia 《Railway Sciences》 2024年第1期47-58,共12页
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista... Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms. 展开更多
关键词 Natural rubber Chloroprene rubber low-temperature characteristic 120 emergency valve DIAPHRAGM
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
3
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Advances in sodium-ion batteries at low-temperature: Challenges and strategies
4
作者 Haoran Bai Xiaohui Zhu +3 位作者 Huaisheng Ao Guangyu He Hai Xiao Yinjuan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期518-539,I0012,共23页
With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a h... With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs. 展开更多
关键词 low-temperature Sodium-ion batteries Reaction kinetics Cycle stability Safety concerns of Sodium-ion batteries
下载PDF
Temperature inversion enables superior stability for low-temperature Zn-ion batteries
5
作者 Fu-Da Yu Zhe-Jian Yi +10 位作者 Rui-Yang Li Wei-Hao Lin Jie Chen Xiao-Yue Chen Yi-Ming Xie Ji-Huai Wu Zhang Lan Lan-Fang Que Bao-Sheng Liu Hao Luo Zhen-Bo Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期245-253,共9页
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ... It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems. 展开更多
关键词 Aqueous Zn-ion batteries low-temperature performance Opposite temperature dependence Zndendrite growth Vanadium dissolution
下载PDF
Modulating the Electrolyte Inner Solvation Structure via Low Polarity Co-solvent for Low-Temperature Aqueous Zinc-Ion Batteries
6
作者 Yongchao Kang Feng Zhang +6 位作者 Houzhen Li Wangran Wei Huitong Dong Hao Chen Yuanhua Sang Hong Liu Shuhua Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期104-113,共10页
Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature perf... Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature performance.Herein,a low-temperature electrolyte for low-temperature aqueous zinc-ion batteries is designed by introducing low-polarity diglyme into an aqueous solution of Zn(ClO_(4))_(2).The diglyme disrupts the hydrogenbonding network of water and lowers the freezing point of the electrolyte to-105℃.The designed electrolyte achieves ionic conductivity up to16.18 mS cm^(-1)at-45℃.The diglyme and ClO_(4)^(-)reconfigure the solvated structure of Zn^(2+),which is more favorable for the desolvation of Zn^(2+)at low temperatures.In addition,the diglyme effectively suppresses the dendrites,hydrogen evolution reaction,and by-products of the zinc anode,improving the cycle stability of the battery.At-20℃,a Zn‖Zn symmetrical cell is cycled for 5200 h at 1 mA cm^(-2)and 1 mA h cm^(-2),and a Zn‖polyaniline battery achieves an ultra-long cycle life of 10000 times.This study sheds light on the future design of electrolytes with high ionic conductivity and easy desolvation at low temperatures for rechargeable batteries. 展开更多
关键词 aqueous zinc-ion batteries high performance inner solvation structure low polarity co-solvent low-temperature electrolyte
下载PDF
Impact of Low-temperature Storage on Volatile Flavor Compounds in Prepared Pork Products
7
作者 Xiulian WANG Jiamin ZHANG +3 位作者 Ting BAI Wei WANG Kaihong YANG Lili JI 《Agricultural Biotechnology》 2024年第4期70-75,81,共7页
[Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18... [Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18℃.The volatile flavor compounds of prepared pork were determined by solid-phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS)at days 0,7,14,21 and 28,and relative odor activity value(OAV),principal component analysis(PCA)and cluster analysis(CA)were combined to analyze changes in volatile flavor compounds of prepared pork during storage.[Results]The total number of volatile flavor compounds gradually decreased with the prolongation of the storage period,and OAV analysis identified 22 key flavor compounds(OAV≥1).The results of PCA and CA showed that 2-methyl-1-butanol,1-octen-3-ol,linalool,cineole,hexanal and nonanal were the main key flavor components,and the degree of flavor degradation was low under both superchilling and freezing conditions.After 28 days of storage,the alcohol content in the chilling group was significantly higher than other two groups,and the overall content of volatile flavor compounds was also significantly higher than other two groups,indicating that the-4℃chilling storage was more favorable for maintaining the overall flavor of prepared pork.[Conclusions]This study provides a theoretical basis for finding a better storage method for prepared meat products. 展开更多
关键词 low-temperature storage Prepared pork Volatile flavor component Principal component analysis Cluster analysis
下载PDF
Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO_(2)
8
作者 Xu Zhao Naitao Gao +2 位作者 Shengcheng Wu Shaozhen Li Sujuan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期786-794,共9页
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d... CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs. 展开更多
关键词 polyethylene oxide-modified TiO_(2) film low-temperature process CsPbI_(2)Br-based all-inorganic perovskite solar cells photo-voltaic performance
下载PDF
Ca and Sr co-doping induced oxygen vacancies in 3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts for boosting low-temperature oxidative coupling of methane
9
作者 Tongtong Wu Yuechang Wei +5 位作者 Jing Xiong Yitao Yang Zhenpeng Wang Dawei Han Zhen Zhao Jian Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期331-344,共14页
It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(... It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application. 展开更多
关键词 3DOM catalysts Ca ions Sr ions low-temperature oxidative couplingof methane Oxygen vacancies O_(2)^(-) species
下载PDF
Hydromagnetic Squeezing Nanofluid Flow between Two Vertical Plates in Presence of a Chemical Reaction
10
作者 Benjamin Matur Madit Jackson K. Kwanza Phineas Roy Kiogora 《Journal of Applied Mathematics and Physics》 2024年第1期126-146,共21页
In this study, Hydromagnetic Squeezing Nanofluid flow between two vertical plates in presence of a chemical reaction has been investigated. The governing equations were transformed by similarity transformation and the... In this study, Hydromagnetic Squeezing Nanofluid flow between two vertical plates in presence of a chemical reaction has been investigated. The governing equations were transformed by similarity transformation and the resulting ordinary differential equations were solved by collocation method. The velocity, temperature, concentration and magnetic induction profiles were determined with help of various flow parameters. The numerical scheme was simulated with aid of MATLAB. The results showed that increasing the squeeze number only boosts velocity and concentration while lowering temperature. Conversely, increasing the Hartmann number, Reynold’s magnetic number, Eckert number and Thermal Grashof number generally increases temperature but decreases both velocity and concentration. Chemical reaction rate and Soret number solely elevate concentration while Schmidt number only reduces it. The results of this study will be useful in the fields of oil and gas industry, plastic processing industries, filtration, food processing, lubrication system in machinery, Microfluidics devices for drug delivery and other related fields of nanotechnology. 展开更多
关键词 HYDROMAGNETIC squeezing Flow NANOFLUID Variable Magnetic Field Chemical Reaction
下载PDF
Preparation of α-Bi_2O_3 from bismuth powders through low-temperature oxidation 被引量:4
11
作者 夏纪勇 唐谟堂 +2 位作者 陈萃 金胜明 陈永明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2289-2294,共6页
α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 ... α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 particles. Kinetic studies on the bismuth oxidation at low-temperatures were carried out by TGA method. The results show that bismuth beads should be reunited and oxidized to become irregular Bi2O3 powders. The bismuth oxidation follows shrinking core model, and its controlling mechanism varies at different reaction time. Within 0-10 min, the kinetics is controlled by chemical reaction, after that it is controlled by O2 diffusion in the solid α-Bi2O3 layer. The apparent activation energy is determined as 55.19 kJ/mol in liquid-phase oxidation. 展开更多
关键词 bismuth powder low-temperature oxidation α-Bi2O3 oxidation kinetics
下载PDF
Asymbiotic Germination and Low-temperature in Vitro Conservation of Cymbidium Dayanum 被引量:2
12
作者 罗远华 冷青云 +1 位作者 莫饶 陈业渊 《Agricultural Science & Technology》 CAS 2008年第1期67-69,74,共4页
[Objective] The aim of the research was to establish asymbiotic germination and low-temperature in vitro conservation technique system of Cymbidium dayanum by using plant tissue culture technique to realize its rapid ... [Objective] The aim of the research was to establish asymbiotic germination and low-temperature in vitro conservation technique system of Cymbidium dayanum by using plant tissue culture technique to realize its rapid propagation and long-term conservation in vitro. [Method] With mature seeds of C. dayanum as explants, different media were selected to establish asymbiotic germination technique system. With protocorms as materials, conservation, resumptive proliferation and plant regeneration conditions were selected to establish low-temperature in vitro conservation technique system preliminarily. [Result] Mature seeds of C. dayanum could germinate after cultured 90 days on MS media as well as "Hyponex 1" media. The germination rate reached more than 98%. Protocorms inoculated in "Hyponex 1" media could be conserved continuously at 5 ℃ in dark for more than 18 months and the survival rate could reach 90%. Conserved protocorms could realize resumptive preliferation culture both on 1/2 MS and "Hyponex 1" media. The seed- ling-strengthening and rooting media were 1/2 MS media. [Conclusion] This research provided practical basis for in vitro conservation and rapid propagation of C. dayanum germplasm resource. 展开更多
关键词 Cymbidium dayanum Asymbiotic germination PROTOCORM low-temperature in vitro conservation
下载PDF
Effects of Exogenous Glycine Betaine on Oxidation Metabolism in Cucumbers during Low-temperature Storage
13
作者 许丽 陈湘宁 +2 位作者 张海英 韩涛 王富贵 《Agricultural Science & Technology》 CAS 2015年第5期857-861,867,共6页
[Objective] This study aimed to analyze the effects of different concentrations of glycine betaine(GB) on oxidation metabolism in cucumbers under low-temperature stress and to investigate the possible mechanism of l... [Objective] This study aimed to analyze the effects of different concentrations of glycine betaine(GB) on oxidation metabolism in cucumbers under low-temperature stress and to investigate the possible mechanism of low-temperature resistance in cucumber during low-temperature storage. [Method] Cucumber cultivar Zhongnong No.8 was treated with 0, 5, 10 and 15 mmol/L GB solutions for 15 min and stored at 4 ℃. Changes in oxidative metabolism-related parameters were observed. [Result] Increasing exogenous GB concentration could enhance GB content in cucumbers, decline lipoxygenase(LOX) activity, improve peroxidase(POD) and catalase(CAT) activities, remove effectively hydrogen peroxide(H2O2) and reduce the accumulation of malondialdehyde(MDA). [Conclusion] Treating cucumbers with10 mmol/L GB exhibited the most remarkable effect. 展开更多
关键词 CUCUMBER Glycine betaine (GB) low-temperature resistance Oxidation metabolism
下载PDF
The entropic squeezing of superposition of two arbitrary coherent states 被引量:7
14
作者 卢道明 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第2期618-623,共6页
In this paper the superpositions of two arbitrary coherent states |ψ〉 = α |β| + be^iψ |mβe^iδ〉 are constructed by using the superposition principle of quantum mechanics. The entropic squeezing effects of ... In this paper the superpositions of two arbitrary coherent states |ψ〉 = α |β| + be^iψ |mβe^iδ〉 are constructed by using the superposition principle of quantum mechanics. The entropic squeezing effects of the quantum states are studied. The numerical results indicate that the amplitudes, the ratio between the amplitudes of two coherent states, the phase difference between the two components and the relative phase of the two coefficients play important roles in the squeezing effects of the position entropy and momentum entropy. 展开更多
关键词 coherent state superposition state entropy squeezing
下载PDF
Laboratory tests and numerical simulations of brittle marble and squeezing schist at Jinping II hydropower station,China 被引量:11
15
作者 Chunsheng Zhang,Weijiang Chu,Ning Liu,Yongsheng Zhu,Jing Hou East China Investigation and Design Institute,China Hydropower Engineering Consulting Group Co.,Hangzhou,310014,China 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第1期30-38,共9页
Four 16.7 km-long tunnels with diameters ranging from 12.4 to 14.6 m are now under construction at Jinping II hydropower station along the Yalong River.The tunnels pass through Triassic rocks below Jinping Mountain.Th... Four 16.7 km-long tunnels with diameters ranging from 12.4 to 14.6 m are now under construction at Jinping II hydropower station along the Yalong River.The tunnels pass through Triassic rocks below Jinping Mountain.The tunnels are characterized with high overburden,long alignment and complex geological conditions.Brittle failure in marble and squeezing in schist are the primary problems in tunnelling.This paper introduces the studies of laboratory tests on Jinping II marble as well as numerical prediction of excavation damaged zone (EDZ) of tunnel section in brittle marble and determination of reinforced concrete lining thickness for restraining time-dependent deformation in the schist tunnel section.Laboratory tests indicate that Jinping II marble presents a complex brittle-ductile-plastic transition behavior of post-peak response with increasing confining pressure.Such behavior can be described numerically with the Hoek-Brown model.The EDZ was calibrated and predicted using both fast Lagrangian analysis of continua (FLAC) and particle flow code (PFC).The predicted result of EDZ in sections with different qualities of rock mass under various overburden pressures is quite helpful in understanding EDZ characterization and support design.A power-law creep model was used to support the lining design,especially in determining the lining thickness.Field convergence measurement data over 19 months were used to calibrate the creep model properties,followed by a sensibility analysis of reinforced concrete lining thickness that was launched to present the maximum lining compressive stress. 展开更多
关键词 deep tunnel time-dependent behavior excavation damaged zone (EDZ) squeezing MARBLE
下载PDF
Entropy squeezing of an atom with a k-photon in the Jaynes-Cummings model 被引量:3
16
作者 康冬鹏 廖庆洪 +2 位作者 Ahamd Muhammad Ashfaq 王月媛 刘树田 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第1期318-325,共8页
The entropy squeezing of an atom with a k-photon in the Jaynes Cummings model is investigated. For comparison, we also study the corresponding variance squeezing and atomic inversion. Analytical results show that entr... The entropy squeezing of an atom with a k-photon in the Jaynes Cummings model is investigated. For comparison, we also study the corresponding variance squeezing and atomic inversion. Analytical results show that entropy squeezing is preferable to variance squeezing for zero atomic inversion. Moreover, for initial conditions of the system the relation between squeezing and photon transition number is also discussed. This provides a theoretical approach to finding out the optimal entropy squeezing. 展开更多
关键词 Jaynes-Cumming model entropy squeezing variance squeezing atomic inversion
下载PDF
Squeezing rock conditions at phyllite-slate zone in Golab water conveyance tunnel,Iran:A case study 被引量:5
17
作者 Rahmati Asghar Faramarzi Lohrasb Darbor Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2475-2485,共11页
Squeezing ground in tunneling is associated with large deformation of the tunnel face. In this study, squeezing characteristics of the ground and rock conditions in Golab water conveyance tunnel, Iran, are discussed a... Squeezing ground in tunneling is associated with large deformation of the tunnel face. In this study, squeezing characteristics of the ground and rock conditions in Golab water conveyance tunnel, Iran, are discussed and the classification of squeezing behavior around zones where the problems occurred is presented. The squeezing conditions were investigated using empirical and semi empirical methods. In the next step, creep convergence of the tunnel with Burger's model was simulated by the numerical method. Numerical analysis showed that wall displacement(64.1 mm) of the Golab tunnel was more than allowable strain(1% of the tunnel diameter), therefore, it was found that squeezing phenomenon could exist, leading to the failure of the support system. Numerical analysis at the phyllite-slate zone also showed squeezing conditions due to the weakness of rock mass and high overburden that this situation cause failure in the segmental lining. In this research, failure in segmental lining in phyllite-slate zone verified the results of the numerical modeling. 展开更多
关键词 squeezing large deformation Burger’s model numerical analysis failure SEGMENTAL LINING
下载PDF
Entropy squeezing and atomic inversion in the K-photon Jaynes–Cummings model in the presence of the Stark shift and a Kerr medium:A full nonlinear approach 被引量:5
18
作者 H R Baghshahi M K Tavassoly A Behjat 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期417-428,共12页
The interaction between a two-level atom and a single-mode field in the k-photon Jaynes-Cummings model (JCM) in the presence of the Stark shift and a Kerr medium is studied. All terms in the Hamiltonian, such as the... The interaction between a two-level atom and a single-mode field in the k-photon Jaynes-Cummings model (JCM) in the presence of the Stark shift and a Kerr medium is studied. All terms in the Hamiltonian, such as the single-mode field, its interaction with the atom, the contribution of the Stark shift and the Kerr medium effects are considered to be f-deformed. In particular, the effect of the initial state of the radiation field on the dynamical evolution of some physical properties such as atomic inversion and entropy squeezing are investigated by considering different initial field states (coherent, squeezed and thermal states). 展开更多
关键词 Jaynes-Cummings model entropy squeezing atomic inversion intensity-dependent coupling
下载PDF
Experimental investigation on friction and squeezing of roof structure key blocks corner upon long-wall face 被引量:7
19
作者 QingxiangHuang 《Journal of University of Science and Technology Beijing》 CSCD 2005年第2期102-105,共4页
The coefficients of friction and squeezing of the key blocks comer in the roof structure of underground coalface are key factors to roof structure stability quantitative analysis. In this paper, through the special t... The coefficients of friction and squeezing of the key blocks comer in the roof structure of underground coalface are key factors to roof structure stability quantitative analysis. In this paper, through the special test of three-type corner friction and squeez- ing of real rock specimens, and physical simulation test on the roof key blocks of roof structure as well as the finite element calcula- tion of the corner stress distribution and failure mechanism, the characteristics of friction and squeezing of the roof key blocks comer are revealed. It is found that the friction angle of the roof key blocks corner is the residual friction angle, and the frictional angle of the roof key blocks is 22-32° (average 27°), so the friction coefficient is determined as 0.5. It also found the squeezing strength is less than the uniaxial strength, and the squeezing coefficient of the roof blocks corner is determined as 0.4. Based on the results, the ground control theory can be updated from qualitative analysis to quantitative analysis. 展开更多
关键词 roof structure key blocks FRICTION squeezing blocks corner
下载PDF
A review of low-temperature heat recovery technologies for industry processes 被引量:13
20
作者 Li Xia Renmin Liu +4 位作者 Yiting Zeng Peng Zhou Jingjing Liu Xiaorong Cao Shuguang Xiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2227-2237,共11页
The amount of low-temperature heat generated in industrial processes is high,but recycling is limited due to low grade and low recycling efficiency,which is one of the reasons for low energy efficiency.It implies that... The amount of low-temperature heat generated in industrial processes is high,but recycling is limited due to low grade and low recycling efficiency,which is one of the reasons for low energy efficiency.It implies that there is a great potential for low-temperature heat recovery and utilization.This article provided a detailed review of recent advances in the development of low-temperature thermal upgrades,power generation,refrigeration,and thermal energy storage.The detailed description will be given from the aspects of system structure improvement,work medium improvement,and thermodynamic and economic performance evaluation.It also pointed out the development bottlenecks and future development trends of various technologies.The low-temperature heat combined utilization technology can recover waste heat in an all-round and effective manner,and has great development prospects. 展开更多
关键词 low-temperature HEAT HEAT PUMP Power generation HEAT STORAGE REFRIGERATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部