In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive ...In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength, ultimate tensile strain and tensile modulus of elasticity were tested. In addition, ultrasonic method and scanning electron microscope analysis were used to explain the microstructure mechanism. The results show that polypropylene fiberreinforced concrete presents a better performance on crack resistance than ordinary concrete, and the synergism of EVA and polypropylene fiber can improve the anti-cracking ability of concrete further.展开更多
The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and mi...The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and microwave dielectric measurements. The experimental results show that a small amount of BaCu(B2O5) addition can effectively reduce the sintering temperature to 900℃, and induce only a limited degradation of the microwave dielectric properties. Typically, the best microwave dielectric properties of er24.5, Q×f =24 622 GHz, rf=4.2×10-6℃ -1 are obtained for 1.0% BCB-doped Li2MgTi3O8 ceramics sintered at 900℃ for 3 h. The BCB-doped Li2MgTi3O8 ceramics can be compatible with Ag electrode, which may be a strong candidate for low temperature co-fired ceramics applications.展开更多
The density of asphalt was measured with the pycnometer and densitometer. Creep properties of the asphalt were investigated with the bending beam rheometer at temperatures ranging from 0 ~C to -36 ~C. The asphalt dens...The density of asphalt was measured with the pycnometer and densitometer. Creep properties of the asphalt were investigated with the bending beam rheometer at temperatures ranging from 0 ~C to -36 ~C. The asphalt density data used to correlate with the creep properties were calculated from the regression equation of density and temperature. The asphalt sample used to determine the creep property was aged by the standard RTFOT test and the PAV test. The test results showed that the asphalt density had a linear relationship with temperature changes. The logarithm of the creep stiffness and the slope of the logarithm of the stiffness at 60 seconds all demonstrated a linear relationship with the density, and the regression coefficient of these data was around 0.99. The creep stiffness and the slope of the creep stiffness can be calculated from the asphalt density at the same temperature.展开更多
A dominant intrinsic luminescence band, which is due to the surface potential barriers of crystalline grains, and an edge doublet, which arises as an LO-phonon repetition of the e-h band, has been revealed in the low-...A dominant intrinsic luminescence band, which is due to the surface potential barriers of crystalline grains, and an edge doublet, which arises as an LO-phonon repetition of the e-h band, has been revealed in the low-temperature photoluminescence spectra of fine-grained obliquely deposited films. Doping film with In impurity leads to quenching of the doublet band, while further thermal treatment causes activation of the intrinsic band, the half-width and the blue shift of the red edge of which correlates with the maximum value of anomalously high photovoltage generated by the film.展开更多
We present low-temperature magnetization, magnetoresistance and specific heat measurements on the Kondo lattice compound CePt_3P under applied magnetic fields up to 9.0 T. At zero field, CePt_3P exhibits a moderately ...We present low-temperature magnetization, magnetoresistance and specific heat measurements on the Kondo lattice compound CePt_3P under applied magnetic fields up to 9.0 T. At zero field, CePt_3P exhibits a moderately enhanced Sommerfeld coefficient of electronic specific heat γCe=86 mJ/mol·K^2 as well as two successive magnetic transitions of Ce 4f moments: an antiferromagnetic ordering at T_(N_1) = 3.0 K and a spin reorientation at T_(N_2)=1.9 K. The value of T_(N_1) shifts to lower temperature as magnetic field increases, and it is ultimately suppressed around B_c ~3.0 T at 1.5 K. No evidence of non-Fermi liquid behavior is observed around B_c down to the lowest temperature measured. Moreover, γ decreases monotonously with increasing the magnetic field. On the other hand, the electrical resistivity shows an anomalous temperature dependence ρ∝T^n with the exponent n decreasing monotonously from ~2.6 around B_c down to ~1.7 for B = 9.0 T. The T-B phase diagram constructed from the present experimental results of CePt_3P does not match the quantum criticality scenario of heavy fermion systems.展开更多
The effect of adding crumb rubber(CR)and carbon nanotubes(CNTs)on the low-temperature properties of virgin asphalt was studied.Using the force-ductility test and the bending beam rheometer(BBR)test,the deformation res...The effect of adding crumb rubber(CR)and carbon nanotubes(CNTs)on the low-temperature properties of virgin asphalt was studied.Using the force-ductility test and the bending beam rheometer(BBR)test,the deformation resistance and rheological properties of asphalt samples at low temperatures were evaluated,respectively.Based on the result of BBR test,the creep functions of the Burgers model and the Zener model were used to fit the low-temperature creep characteristics of the asphalt samples.Furthermore,the differential scanning calorimetry(DSC)test and the attenuated total reflection-Fourier transform infrared spectroscopy(ATR-FTIR)test were utilized to appraise the low-temperature stability and chemical properties of asphalt samples,respectively.The results showed that CR significantly improved the low-temperature properties of virgin asphalt,while CNTs had little effect.Moreover,during the degradation of CR,aromatic and aliphatic components were released.In particular,the aliphatic components of CR-modified asphalt were much higher than those of virgin asphalt,which had a significant effect on improving the low-temperature properties of the asphalt.The DSC test results showed that CR enhanced the low-temperature stability of the asphalt,while the addition of CNTs presented a slightly negative effect.展开更多
The effects of CuO and H3BO3 additions on the low-temperature sintering,microstructure,and microwave dielectric properties of Ba2Ti3Nb4O18 ceramics were investigated.The addition of less amount of CuO ( 〈1 wt%) con...The effects of CuO and H3BO3 additions on the low-temperature sintering,microstructure,and microwave dielectric properties of Ba2Ti3Nb4O18 ceramics were investigated.The addition of less amount of CuO ( 〈1 wt%) considerably facilitated the densification of Ba2Ti3Nb4O18 ceramics.Appropriate addition of H3BO3 ( 〈3.5 wt%) remarkably improved the microwave dielectric properties of ceramics.The addition of H3BO3 and CuO successfully reduced the sintering temperature of Ba2Ti3Nb4O18 ceramics from 1300 to 1050 ℃.Ba2Ti3Nb4O18 ceramics sintered at 1 050 ℃ for 4 h with the addition of 1.0 wt% CuO and 3.5 wt% H3BO3 exhibited good microwave dielectric properties:er=33.74,Q?f=13 812 GHz,and tf=-5.35 ppm/°C at about 5.0 GHz.展开更多
To address the inhomogeneous microstructure and improve the mechanical properties of DT300 ultra-high strength steel specimens fabricated by laser powder bed fusion,different post-heat treatment schedules are performe...To address the inhomogeneous microstructure and improve the mechanical properties of DT300 ultra-high strength steel specimens fabricated by laser powder bed fusion,different post-heat treatment schedules are performed.With the increase in austenitizing temperature and time,the migration rate of austenite grain boundaries continuously increases with the dissolution of nano-carbides,and the formation of nano-oxides and twin martensite is also inhibited accordingly.The rapid growth in the size of prior austenite grains and martensite laths,as well as the decrease in the content of nano-oxides and twin martensite,led to a rapid decrease in the strength(yield strength and ultimate tensile strength)from HT2 to HTF specimens.The HT1 specimens(austenitizing at 830℃for 30 min,then oil quenching and tempering at 300℃for 120 min and finally air cooling)display excellent mechanical properties of yield strength of 1572 MPa,ultimate tensile strength of 1847 MPa,elongation of 9.84%,and fracture toughness of 106 MPa m^(1/2),which are counterparts to those of conventional DT300 steel forgings after heat treatment.展开更多
In order to study the mechanical properties and energy evolution of low-temperature concrete during uniaxial compres‐sion, a uniaxial compression test was performed on concrete. In addition, the evolution laws of com...In order to study the mechanical properties and energy evolution of low-temperature concrete during uniaxial compres‐sion, a uniaxial compression test was performed on concrete. In addition, the evolution laws of compressive strength, deformation modulus and total energy, elastic potential energy, dissipated energy and peak energy of concrete in the process of deformation and failure are analyzed. The effects of age and temperature on low-temperature concrete is analyzed from the perspective of energy. Test results show that temperature improves the strength and deformation of concrete to varying degrees. When cured for 28 days, the compressive strength and deformation modulus of concrete at −20 ℃ is increased by 17.98% and 21.45% respectively, compared with the compressive strength and deformation modulus at room temperature of 20 ℃. At the point of failure of the concrete under uniaxial compression, the total damage energy and the dissipation energy both increase, while the developed elastic strain energy increases and then decreases. Increase in curing duration tends to increase the total destruction energy of concrete, peak point elastic strain energy, peak point dissipation energy, and peak point total energy. Whereas increase in curing durations, has shown to decrease the total destruction energy of concrete, the peak point elastic strain energy, peak point dissipation energy, and peak point total energy. The peak point strain energy reflects the ability of low-temperature concrete to reasonably resist damage. By using the principle of energy analysis to study the deformation process of concrete, it provides research methods and ideas for the deformation analysis of this type of material under load.展开更多
We investigated synthesis and characterization of melamine-urea-formaldehyde(MUF) microcapsules containing n-alkane mixture as phase change core material for thermal energy storage and low-temperature protection. Th...We investigated synthesis and characterization of melamine-urea-formaldehyde(MUF) microcapsules containing n-alkane mixture as phase change core material for thermal energy storage and low-temperature protection. The phase change microcapsules(microPCMs) were prepared by an in situ polymerization using sodium dodecyl sulfate(SDS) and polyvinyl alcohol(PVA) as emulsifiers. Surface morphology, particle size, chemical structure, and thermal properties of microPCMs were, respectively, characterized by using scanning electron microscopy(SEM), field emission scanning electron microscopy(FESEM), Fourier transform infrared spectroscopy(FT-IR), differential scanning calorimetry(DSC), and thermal gravimetric analysis(TGA). Low-temperature resistance performances were measured at-15,-30,-45, and-60 ℃ after microPCMs were coated on a cotton fabric by foaming technology. The results showed that spherical microPCMs had 4.4 μm diameter and 100 nm wall thickness. The melting and freezing temperatures and the latent heats of the microPCMs were determined as 28.9 and 29.6 ℃ as well as 110.0 and 115.7 J/g, respectively. Encapsulation of n-alkane mixture achieved 84.9 %. TGA analysis indicated that the microPCMs had good chemical stability below 250 ℃. The results showed that the microencapsulated n-alkane mixture had good energy storage potential. After the addition of 10 % microPCMs, low-temperature resistance duration was prolonged by 126.9%, 145.5%, 128.6%, and 87.5% in environment of-15,-30,-45 and-60 ℃, respectively as compared to pure fabric. Based on the results, phase change microcapsule plays an effective role in lowtemperature protection field for the human body.展开更多
Active soldering of 5A06 Al alloy was performed at 300 ℃ by using Sn-1Ti and Sn-1Ti-0.3Ga active solders, respectively. Theeffects of soldering time on the microstructure and mechanical properties of the joints were ...Active soldering of 5A06 Al alloy was performed at 300 ℃ by using Sn-1Ti and Sn-1Ti-0.3Ga active solders, respectively. Theeffects of soldering time on the microstructure and mechanical properties of the joints were investigated. The results showed that the Sn-1Tisolder broke the oxide film on the surface of the Al substrate and induced intergranular diffusion in the Al substrate. When Ga was added tothe solder, severe dissolution pits appeared in the Al substrate due to the action of Sn-1Ti-0.3Ga solder, and many Al particles were flakedfrom the matrix into the solder seam. Under thermal stress and the Ti adsorption effect, the oxide film cracked. With increasing solderingtime, the shear strength of 5A06 Al alloy joints soldered with Sn-1Ti and Sn-1Ti-0.3Ga active solders increased. When soldered for 90 min,the joint soldered with Sn-1Ti-0.3Ga solder had a higher shear strength of 22.12 MPa when compared to Sn-1Ti solder.展开更多
The effects of Li2O-MgO-B2O3 (LMB) glass additive on the sintering characteristics, phase purity, microstructure, and microwave dielectric properties of Li2MgTi3O8 ceramics were investigated. The experimental result...The effects of Li2O-MgO-B2O3 (LMB) glass additive on the sintering characteristics, phase purity, microstructure, and microwave dielectric properties of Li2MgTi3O8 ceramics were investigated. The experimental results demonstrate that the addition of LMB glass effectively lowers the sintering temperature of Li2MgTi3O8 ceramic from 1025 ℃ to 875 ℃ and induces no obvious degradation of the microwave dielectric properties. Typically, the 1.5%LMB glass-added Li2MgTi3O8 ceramic sintered at 875 ℃ for 4 h shows excellent microwave dielectric properties of Q×f=45403 GHz, εr=25.9 and τf≈0 ℃-1. The dielectric ceramic exhibits stability against the reaction with the Ag electrode, which indicates that the ceramics could be applied in multilayer microwave devices requiring low firing temperatures.展开更多
The fatigue property of asphalt mixtures under complicated environment (low-temperature bending performance, chloride penetration, freezing-thawing cycle and their coupling effect) and the improvement effect for rel...The fatigue property of asphalt mixtures under complicated environment (low-temperature bending performance, chloride penetration, freezing-thawing cycle and their coupling effect) and the improvement effect for relevant property of basalt fiber-reinforcing asphalt mixture under complicated environment are studied. Two grading types of asphalt mixtures, AC-16I and AC-13I, are chosen, whose optimum asphalt-aggregate ratio and optimum dosage of basalt fiber are determined by the Marshall test. The standard specimens are made firstly, and then the low temperature bending tests of asphalt mixture and basalt fiber-reinforced asphalt mixture under the coupling effect of the chloride erosion and freezing-thawing cycle have been carried out. Finally, the fatigue property tests of asphalt mixture and basalt fiber-reinforced asphalt mixture under complex environment are performed on MTS material testing system. The results indicate that the tensile strength, the maximum curving tensile stress, the curving stiffness modulus, and fatigue properties of asphalt mixture are influenced by the coupling effect of the chloride erosion and freezing-thawing cycle. The low-temperature bending performance and fatigue property of asphalt mixtures under complicated environment can be greatly improved by adding moderate basalt fiber. The dense gradation asphalt mixture possesses stronger ability to resist adverse environmental effects under the same condition.展开更多
Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, le...Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.展开更多
The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing ...The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics.展开更多
The microstructure, electrical properties, and density of Dy2O3-doped ZnO-based varistor ceramics, prepared using high-energy ball milling (HEBM) and sintered at 800℃, were investigated by increasing the cooling ra...The microstructure, electrical properties, and density of Dy2O3-doped ZnO-based varistor ceramics, prepared using high-energy ball milling (HEBM) and sintered at 800℃, were investigated by increasing the cooling rate in the order of H (slow cooling in furnace) → L (cooling in furnace) → K (cooling in air). With the increase in cooling rate, the grain size and density decreased, the breakdown voltage (VImA/mm) increased, and the nonlinear coefficient (α) and leakage current (IL) exhibited extremum. The sample with the cooling type L showed the best properties with the breakdown voltage of 2650 V/ram, o:of 20.3, IL of 5.2 laA, and density of 5.42 g/cm^3. The barrier height (ФB), donor concentration (Nd), density of the interface states (Nd), and barrier width (ω) all exhibited extremum during the alteration in cooling rate. The different relative amount of Bi-rich phase and its distribution as well as the characteristic parameters of grain boundary, resulting from the alteration of cooling rate, led to the changes in the properties of varistor ceramics.展开更多
The properties of road base course materials of granular soils stabilized by AGS granular soil stabilizing cement were studied.The AGS cement has an expansibility to a certain degree,so the dry shrinkage of AGS cemen...The properties of road base course materials of granular soils stabilized by AGS granular soil stabilizing cement were studied.The AGS cement has an expansibility to a certain degree,so the dry shrinkage of AGS cement paste and AGS stabilized granular is much lower than that of Portland slag cement.AGS has a good suitability to granular soils.Granular soils stabilized by AGS have a much higher strength than that of soils stabilized by P S cement.The same strength can be reached with 20% reduction of cement dosage for AGS cement.And their elastic and resilient modulus are similar,but the former has a much higher tensile splitting strength,so the AGS stabilized granular has a much better anti-cracking performance than that of the P S stabilized granular.The reduced value of the strength and the density with the retard time for the granular soils stabilized by AGS is lower than that for P S cement.展开更多
In this study,ceramics was prepared by slip casting(no pressure was used during shaping step)and atmospheric pressure sintering with low-melting point glass(LPG)powder as the binding material to facilitate the transfo...In this study,ceramics was prepared by slip casting(no pressure was used during shaping step)and atmospheric pressure sintering with low-melting point glass(LPG)powder as the binding material to facilitate the transformation of spodumene flotation tailings(SFTs)into ceramics at lower temperatures.The influence of sintering temperature and mass ratio of LPG on the mechanical properties(flexural strength and compressive strength)of ceramic materials was studied by orthogonal test.The results showed that when the mass ratio of LPG powder was higher than or equal to 20 wt%and the sintering temperature was higher than or equal to 550℃,mutual adhesion between the sample particles was realised and consequently the ceramic materials could be prepared with good mechanical properties(the maximum flexural strength=19.55 MPa,the maximum compressive strength=42.25 MPa,average porosity=24.52%,average apparent density=1.66 g/cm^(3),and average water absorption=14.79%).The sintered ceramics were characterized by XRF,XRD,optical microscopy analysis,SEM,TGA-DSC and FT-IR.The formation of liquid phase at high temperature may lead to the mutual bonding between particles,which might be the main reason for the improvement of mechanical properties of ceramic materials.Overall,SFTs were successfully sintered at low temperature to prepare ceramic materials with good mechanical properties,which are crucial for energy conservation and environmental preservation.展开更多
Currently, Nanjing South Railway Stationplanning to implement slate roof renovation is integratingsolar cell modules into traditional roof materials to generateclean energy. Copper–indium–gallium diselenide(CuIn1-x...Currently, Nanjing South Railway Stationplanning to implement slate roof renovation is integratingsolar cell modules into traditional roof materials to generateclean energy. Copper–indium–gallium diselenide(CuIn1-xGaxSe2, CIGS) is one of the most promisingmaterials for thin film solar cells. Cu(In1-xGax)Se2 filmswere deposited by a one-step radio frequency magnetronsputtering process at low substrate temperature. X-raydiffraction, Raman, scanning electron microscopy, energydispersiveX-ray spectroscopy, and electrical and opticalmeasurements were carried out to investigate the depositedfilms. The results reveal that a temperature of 320 C iscritical for near-stoichiometric CIGS films with uniformsurface morphology. Cu-rich phase particulates are foundat less than this temperature. The sample deposited at380 C gives well-crystalline single-phase CIGS film.Furthermore, the electrical and optical performances of theabsorber layer are improved significantly with theincreasing substrate temperature.展开更多
Low-temperature heat capacities of the solid compound Zn(C4H7O5)2(s) were measured in a temperature range from 78 to 374 K, with an automated adiabatic calorimeter. A solid-to-solid phase transition occurred in th...Low-temperature heat capacities of the solid compound Zn(C4H7O5)2(s) were measured in a temperature range from 78 to 374 K, with an automated adiabatic calorimeter. A solid-to-solid phase transition occurred in the temperature range of 295?322 K. The peak temperature, the enthalpy, and entropy of the phase transition were determined to be (316.269±1.039) K, (11.194±0.335) kJ?mol-1, and (35.391±0.654) J?K-1?mol-1, respectively. The experimental values of the molar heat capacities in the temperature regions of 78?295 K and 322?374 K were fitted to two polynomial equations of heat capacities(Cp,m) with reduced temperatures(X) and [X = f(T)], with the help of the least squares method, respectively. The smoothed molar heat capacities and thermodynamic functions of the compound, relative to that of the standard reference temperature 293.15 K, were calculated on the basis of the fitted polynomials and tabulated with an interval of 5 K. In addition, the possible mechanism of thermal decomposition of the compound was inferred by the result of TG-DTG analysis.展开更多
基金Funded by National Key R&D Program(No.2016YFC0701003)of Chinathe Fundamental Research Funds for the Central Universities
文摘In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength, ultimate tensile strain and tensile modulus of elasticity were tested. In addition, ultrasonic method and scanning electron microscope analysis were used to explain the microstructure mechanism. The results show that polypropylene fiberreinforced concrete presents a better performance on crack resistance than ordinary concrete, and the synergism of EVA and polypropylene fiber can improve the anti-cracking ability of concrete further.
基金Project(2010GXNSFA013029) supported by the Natural Science Foundation of Guangxi Province,ChinaProject(101059529) supported by National Undergraduate Innovation Program of the Ministry of Education of China
文摘The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and microwave dielectric measurements. The experimental results show that a small amount of BaCu(B2O5) addition can effectively reduce the sintering temperature to 900℃, and induce only a limited degradation of the microwave dielectric properties. Typically, the best microwave dielectric properties of er24.5, Q×f =24 622 GHz, rf=4.2×10-6℃ -1 are obtained for 1.0% BCB-doped Li2MgTi3O8 ceramics sintered at 900℃ for 3 h. The BCB-doped Li2MgTi3O8 ceramics can be compatible with Ag electrode, which may be a strong candidate for low temperature co-fired ceramics applications.
文摘The density of asphalt was measured with the pycnometer and densitometer. Creep properties of the asphalt were investigated with the bending beam rheometer at temperatures ranging from 0 ~C to -36 ~C. The asphalt density data used to correlate with the creep properties were calculated from the regression equation of density and temperature. The asphalt sample used to determine the creep property was aged by the standard RTFOT test and the PAV test. The test results showed that the asphalt density had a linear relationship with temperature changes. The logarithm of the creep stiffness and the slope of the logarithm of the stiffness at 60 seconds all demonstrated a linear relationship with the density, and the regression coefficient of these data was around 0.99. The creep stiffness and the slope of the creep stiffness can be calculated from the asphalt density at the same temperature.
文摘A dominant intrinsic luminescence band, which is due to the surface potential barriers of crystalline grains, and an edge doublet, which arises as an LO-phonon repetition of the e-h band, has been revealed in the low-temperature photoluminescence spectra of fine-grained obliquely deposited films. Doping film with In impurity leads to quenching of the doublet band, while further thermal treatment causes activation of the intrinsic band, the half-width and the blue shift of the red edge of which correlates with the maximum value of anomalously high photovoltage generated by the film.
基金Supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No LQ19A040006the Scientific Research Fund of Zhejiang Provincial Education Department under Grant No Y201840160
文摘We present low-temperature magnetization, magnetoresistance and specific heat measurements on the Kondo lattice compound CePt_3P under applied magnetic fields up to 9.0 T. At zero field, CePt_3P exhibits a moderately enhanced Sommerfeld coefficient of electronic specific heat γCe=86 mJ/mol·K^2 as well as two successive magnetic transitions of Ce 4f moments: an antiferromagnetic ordering at T_(N_1) = 3.0 K and a spin reorientation at T_(N_2)=1.9 K. The value of T_(N_1) shifts to lower temperature as magnetic field increases, and it is ultimately suppressed around B_c ~3.0 T at 1.5 K. No evidence of non-Fermi liquid behavior is observed around B_c down to the lowest temperature measured. Moreover, γ decreases monotonously with increasing the magnetic field. On the other hand, the electrical resistivity shows an anomalous temperature dependence ρ∝T^n with the exponent n decreasing monotonously from ~2.6 around B_c down to ~1.7 for B = 9.0 T. The T-B phase diagram constructed from the present experimental results of CePt_3P does not match the quantum criticality scenario of heavy fermion systems.
基金the support from the National Natural Science Foundation of China (Grant No.52078051)the Technology Innovation Project of Department of Industry and Information Technology of Shandong Province (Grant No.Lugongxinji (2020) 8)+2 种基金the Transportation Department of Shandong Province (Grant No.Lujiaokeji (2017) 28)the Traffic Science and Technology Project of Xixian New District Management Committee of Shaanxi Province (2017 44)the Zhuhai Transportation Group Co.Ltd.(JT-HG-2020-21)
文摘The effect of adding crumb rubber(CR)and carbon nanotubes(CNTs)on the low-temperature properties of virgin asphalt was studied.Using the force-ductility test and the bending beam rheometer(BBR)test,the deformation resistance and rheological properties of asphalt samples at low temperatures were evaluated,respectively.Based on the result of BBR test,the creep functions of the Burgers model and the Zener model were used to fit the low-temperature creep characteristics of the asphalt samples.Furthermore,the differential scanning calorimetry(DSC)test and the attenuated total reflection-Fourier transform infrared spectroscopy(ATR-FTIR)test were utilized to appraise the low-temperature stability and chemical properties of asphalt samples,respectively.The results showed that CR significantly improved the low-temperature properties of virgin asphalt,while CNTs had little effect.Moreover,during the degradation of CR,aromatic and aliphatic components were released.In particular,the aliphatic components of CR-modified asphalt were much higher than those of virgin asphalt,which had a significant effect on improving the low-temperature properties of the asphalt.The DSC test results showed that CR enhanced the low-temperature stability of the asphalt,while the addition of CNTs presented a slightly negative effect.
文摘The effects of CuO and H3BO3 additions on the low-temperature sintering,microstructure,and microwave dielectric properties of Ba2Ti3Nb4O18 ceramics were investigated.The addition of less amount of CuO ( 〈1 wt%) considerably facilitated the densification of Ba2Ti3Nb4O18 ceramics.Appropriate addition of H3BO3 ( 〈3.5 wt%) remarkably improved the microwave dielectric properties of ceramics.The addition of H3BO3 and CuO successfully reduced the sintering temperature of Ba2Ti3Nb4O18 ceramics from 1300 to 1050 ℃.Ba2Ti3Nb4O18 ceramics sintered at 1 050 ℃ for 4 h with the addition of 1.0 wt% CuO and 3.5 wt% H3BO3 exhibited good microwave dielectric properties:er=33.74,Q?f=13 812 GHz,and tf=-5.35 ppm/°C at about 5.0 GHz.
基金funded by the Science and Technology Project of Guangdong Province (2020B090923001)Guangdong Basic and Applied Basic Research Foundation (2023A1515010384)The Fundamental Research Funds for the Central Universities (2023ZYGXZR005).
文摘To address the inhomogeneous microstructure and improve the mechanical properties of DT300 ultra-high strength steel specimens fabricated by laser powder bed fusion,different post-heat treatment schedules are performed.With the increase in austenitizing temperature and time,the migration rate of austenite grain boundaries continuously increases with the dissolution of nano-carbides,and the formation of nano-oxides and twin martensite is also inhibited accordingly.The rapid growth in the size of prior austenite grains and martensite laths,as well as the decrease in the content of nano-oxides and twin martensite,led to a rapid decrease in the strength(yield strength and ultimate tensile strength)from HT2 to HTF specimens.The HT1 specimens(austenitizing at 830℃for 30 min,then oil quenching and tempering at 300℃for 120 min and finally air cooling)display excellent mechanical properties of yield strength of 1572 MPa,ultimate tensile strength of 1847 MPa,elongation of 9.84%,and fracture toughness of 106 MPa m^(1/2),which are counterparts to those of conventional DT300 steel forgings after heat treatment.
基金supported by the University Synergy In‐novation Program of Anhui Province (GXXT-2019-005).
文摘In order to study the mechanical properties and energy evolution of low-temperature concrete during uniaxial compres‐sion, a uniaxial compression test was performed on concrete. In addition, the evolution laws of compressive strength, deformation modulus and total energy, elastic potential energy, dissipated energy and peak energy of concrete in the process of deformation and failure are analyzed. The effects of age and temperature on low-temperature concrete is analyzed from the perspective of energy. Test results show that temperature improves the strength and deformation of concrete to varying degrees. When cured for 28 days, the compressive strength and deformation modulus of concrete at −20 ℃ is increased by 17.98% and 21.45% respectively, compared with the compressive strength and deformation modulus at room temperature of 20 ℃. At the point of failure of the concrete under uniaxial compression, the total damage energy and the dissipation energy both increase, while the developed elastic strain energy increases and then decreases. Increase in curing duration tends to increase the total destruction energy of concrete, peak point elastic strain energy, peak point dissipation energy, and peak point total energy. Whereas increase in curing durations, has shown to decrease the total destruction energy of concrete, the peak point elastic strain energy, peak point dissipation energy, and peak point total energy. The peak point strain energy reflects the ability of low-temperature concrete to reasonably resist damage. By using the principle of energy analysis to study the deformation process of concrete, it provides research methods and ideas for the deformation analysis of this type of material under load.
基金Funded by Tianjin Research Program of Application Foundation and Advanced Technology(No.15JCZDJC38400)the National Natural Science Foundation of China(Nos.51303131 and 51303128)
文摘We investigated synthesis and characterization of melamine-urea-formaldehyde(MUF) microcapsules containing n-alkane mixture as phase change core material for thermal energy storage and low-temperature protection. The phase change microcapsules(microPCMs) were prepared by an in situ polymerization using sodium dodecyl sulfate(SDS) and polyvinyl alcohol(PVA) as emulsifiers. Surface morphology, particle size, chemical structure, and thermal properties of microPCMs were, respectively, characterized by using scanning electron microscopy(SEM), field emission scanning electron microscopy(FESEM), Fourier transform infrared spectroscopy(FT-IR), differential scanning calorimetry(DSC), and thermal gravimetric analysis(TGA). Low-temperature resistance performances were measured at-15,-30,-45, and-60 ℃ after microPCMs were coated on a cotton fabric by foaming technology. The results showed that spherical microPCMs had 4.4 μm diameter and 100 nm wall thickness. The melting and freezing temperatures and the latent heats of the microPCMs were determined as 28.9 and 29.6 ℃ as well as 110.0 and 115.7 J/g, respectively. Encapsulation of n-alkane mixture achieved 84.9 %. TGA analysis indicated that the microPCMs had good chemical stability below 250 ℃. The results showed that the microencapsulated n-alkane mixture had good energy storage potential. After the addition of 10 % microPCMs, low-temperature resistance duration was prolonged by 126.9%, 145.5%, 128.6%, and 87.5% in environment of-15,-30,-45 and-60 ℃, respectively as compared to pure fabric. Based on the results, phase change microcapsule plays an effective role in lowtemperature protection field for the human body.
基金the National Natural Science Foundation of China(No.52171045).
文摘Active soldering of 5A06 Al alloy was performed at 300 ℃ by using Sn-1Ti and Sn-1Ti-0.3Ga active solders, respectively. Theeffects of soldering time on the microstructure and mechanical properties of the joints were investigated. The results showed that the Sn-1Tisolder broke the oxide film on the surface of the Al substrate and induced intergranular diffusion in the Al substrate. When Ga was added tothe solder, severe dissolution pits appeared in the Al substrate due to the action of Sn-1Ti-0.3Ga solder, and many Al particles were flakedfrom the matrix into the solder seam. Under thermal stress and the Ti adsorption effect, the oxide film cracked. With increasing solderingtime, the shear strength of 5A06 Al alloy joints soldered with Sn-1Ti and Sn-1Ti-0.3Ga active solders increased. When soldered for 90 min,the joint soldered with Sn-1Ti-0.3Ga solder had a higher shear strength of 22.12 MPa when compared to Sn-1Ti solder.
基金Project(2010GXNSFA013029)supported by National Undergraduates Innovating Experimentation Project of ChinaProject(101059529)supported by Natural Science Foundation of Guangxi,China
文摘The effects of Li2O-MgO-B2O3 (LMB) glass additive on the sintering characteristics, phase purity, microstructure, and microwave dielectric properties of Li2MgTi3O8 ceramics were investigated. The experimental results demonstrate that the addition of LMB glass effectively lowers the sintering temperature of Li2MgTi3O8 ceramic from 1025 ℃ to 875 ℃ and induces no obvious degradation of the microwave dielectric properties. Typically, the 1.5%LMB glass-added Li2MgTi3O8 ceramic sintered at 875 ℃ for 4 h shows excellent microwave dielectric properties of Q×f=45403 GHz, εr=25.9 and τf≈0 ℃-1. The dielectric ceramic exhibits stability against the reaction with the Ag electrode, which indicates that the ceramics could be applied in multilayer microwave devices requiring low firing temperatures.
基金Fund by Collaborative Innovation Center of Water Conservancy&Transportation Infrastructure Safety,Henan Province,China Postdoctoral Science Fund(No.20110491008)Science and Technology Planning Project of Department of Transportation of Henan Province(No.2013-2-12)The State Key Laboratory Open Fund of Harbor,Coastal and Offshore Engineering(No.LP1113)
文摘The fatigue property of asphalt mixtures under complicated environment (low-temperature bending performance, chloride penetration, freezing-thawing cycle and their coupling effect) and the improvement effect for relevant property of basalt fiber-reinforcing asphalt mixture under complicated environment are studied. Two grading types of asphalt mixtures, AC-16I and AC-13I, are chosen, whose optimum asphalt-aggregate ratio and optimum dosage of basalt fiber are determined by the Marshall test. The standard specimens are made firstly, and then the low temperature bending tests of asphalt mixture and basalt fiber-reinforced asphalt mixture under the coupling effect of the chloride erosion and freezing-thawing cycle have been carried out. Finally, the fatigue property tests of asphalt mixture and basalt fiber-reinforced asphalt mixture under complex environment are performed on MTS material testing system. The results indicate that the tensile strength, the maximum curving tensile stress, the curving stiffness modulus, and fatigue properties of asphalt mixture are influenced by the coupling effect of the chloride erosion and freezing-thawing cycle. The low-temperature bending performance and fatigue property of asphalt mixtures under complicated environment can be greatly improved by adding moderate basalt fiber. The dense gradation asphalt mixture possesses stronger ability to resist adverse environmental effects under the same condition.
文摘Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.
基金Project supported by National Natural Science Foundation of China (50471045) Shanghai Nano-Technology PromotionCenter (0452nm026)
文摘The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics.
基金This work is financially supported by the National Natural Science Foundation of China (No. 50471045)Shanghai Nano-technology Promotion Center (No. 0452nm026).
文摘The microstructure, electrical properties, and density of Dy2O3-doped ZnO-based varistor ceramics, prepared using high-energy ball milling (HEBM) and sintered at 800℃, were investigated by increasing the cooling rate in the order of H (slow cooling in furnace) → L (cooling in furnace) → K (cooling in air). With the increase in cooling rate, the grain size and density decreased, the breakdown voltage (VImA/mm) increased, and the nonlinear coefficient (α) and leakage current (IL) exhibited extremum. The sample with the cooling type L showed the best properties with the breakdown voltage of 2650 V/ram, o:of 20.3, IL of 5.2 laA, and density of 5.42 g/cm^3. The barrier height (ФB), donor concentration (Nd), density of the interface states (Nd), and barrier width (ω) all exhibited extremum during the alteration in cooling rate. The different relative amount of Bi-rich phase and its distribution as well as the characteristic parameters of grain boundary, resulting from the alteration of cooling rate, led to the changes in the properties of varistor ceramics.
文摘The properties of road base course materials of granular soils stabilized by AGS granular soil stabilizing cement were studied.The AGS cement has an expansibility to a certain degree,so the dry shrinkage of AGS cement paste and AGS stabilized granular is much lower than that of Portland slag cement.AGS has a good suitability to granular soils.Granular soils stabilized by AGS have a much higher strength than that of soils stabilized by P S cement.The same strength can be reached with 20% reduction of cement dosage for AGS cement.And their elastic and resilient modulus are similar,but the former has a much higher tensile splitting strength,so the AGS stabilized granular has a much better anti-cracking performance than that of the P S stabilized granular.The reduced value of the strength and the density with the retard time for the granular soils stabilized by AGS is lower than that for P S cement.
基金Projects(51674207,51922091)supported by the National Natural Science Foundation of ChinaProject(2018QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST,ChinaProjects(2019YFS0453,2018JY0148)supported by the Sichuan Science and Technology Program,China。
文摘In this study,ceramics was prepared by slip casting(no pressure was used during shaping step)and atmospheric pressure sintering with low-melting point glass(LPG)powder as the binding material to facilitate the transformation of spodumene flotation tailings(SFTs)into ceramics at lower temperatures.The influence of sintering temperature and mass ratio of LPG on the mechanical properties(flexural strength and compressive strength)of ceramic materials was studied by orthogonal test.The results showed that when the mass ratio of LPG powder was higher than or equal to 20 wt%and the sintering temperature was higher than or equal to 550℃,mutual adhesion between the sample particles was realised and consequently the ceramic materials could be prepared with good mechanical properties(the maximum flexural strength=19.55 MPa,the maximum compressive strength=42.25 MPa,average porosity=24.52%,average apparent density=1.66 g/cm^(3),and average water absorption=14.79%).The sintered ceramics were characterized by XRF,XRD,optical microscopy analysis,SEM,TGA-DSC and FT-IR.The formation of liquid phase at high temperature may lead to the mutual bonding between particles,which might be the main reason for the improvement of mechanical properties of ceramic materials.Overall,SFTs were successfully sintered at low temperature to prepare ceramic materials with good mechanical properties,which are crucial for energy conservation and environmental preservation.
基金financial supports of the Foundation of National Magnetic Confinement Fusion Science Program (No. 2011GB112001)the Program of International S&T Cooperation (No. 2013DFA51050)+1 种基金the NationalNatural Science Foundation of China (No. 51271155, 51377138)the Science Foundation of Sichuan Province (Nos. 2011JY0031 and 2011JY0130)
文摘Currently, Nanjing South Railway Stationplanning to implement slate roof renovation is integratingsolar cell modules into traditional roof materials to generateclean energy. Copper–indium–gallium diselenide(CuIn1-xGaxSe2, CIGS) is one of the most promisingmaterials for thin film solar cells. Cu(In1-xGax)Se2 filmswere deposited by a one-step radio frequency magnetronsputtering process at low substrate temperature. X-raydiffraction, Raman, scanning electron microscopy, energydispersiveX-ray spectroscopy, and electrical and opticalmeasurements were carried out to investigate the depositedfilms. The results reveal that a temperature of 320 C iscritical for near-stoichiometric CIGS films with uniformsurface morphology. Cu-rich phase particulates are foundat less than this temperature. The sample deposited at380 C gives well-crystalline single-phase CIGS film.Furthermore, the electrical and optical performances of theabsorber layer are improved significantly with theincreasing substrate temperature.
基金the National Natural Science Foundation of China(No.20673050).
文摘Low-temperature heat capacities of the solid compound Zn(C4H7O5)2(s) were measured in a temperature range from 78 to 374 K, with an automated adiabatic calorimeter. A solid-to-solid phase transition occurred in the temperature range of 295?322 K. The peak temperature, the enthalpy, and entropy of the phase transition were determined to be (316.269±1.039) K, (11.194±0.335) kJ?mol-1, and (35.391±0.654) J?K-1?mol-1, respectively. The experimental values of the molar heat capacities in the temperature regions of 78?295 K and 322?374 K were fitted to two polynomial equations of heat capacities(Cp,m) with reduced temperatures(X) and [X = f(T)], with the help of the least squares method, respectively. The smoothed molar heat capacities and thermodynamic functions of the compound, relative to that of the standard reference temperature 293.15 K, were calculated on the basis of the fitted polynomials and tabulated with an interval of 5 K. In addition, the possible mechanism of thermal decomposition of the compound was inferred by the result of TG-DTG analysis.