期刊文献+
共找到1,194篇文章
< 1 2 60 >
每页显示 20 50 100
Comparative study of two biological nitrogen removal processes:A/O process and step-feeding process 被引量:3
1
作者 祝贵兵 彭永臻 +1 位作者 王淑莹 马斌 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期528-531,共4页
Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feedi... Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feeding process achieves over 80% total nitrogen (TN) removal efficiency, but the TN removal efficiency of the A/O process is only 40%. Moreover, filamentous sludge bulking can be well restrained in the step-feeding process. Given the conditions of a returned sludge ratio of 100% and a nitrifying liquor recycle ratio of 200%, the TN removal efficiency is 78.32% in the A/O process, but the sludge volume index (SVI) value increases to 143 mL/g. In the step-feeding process, the SVI is only 94.4 mL/g when the TN removal efficiency reaches 81. 1%. The step-feeding process has distinct advantages over the A/O process in the aspects of practicability, nitrogen removal and operating stability. 展开更多
关键词 activated sludge biological nitrogen removal A/O process step-feeding process efficiency
下载PDF
Simultaneous nitrification and denitrification in step feeding biological nitrogen removal process 被引量:19
2
作者 ZHU Gui-bing PENG Yong-zhen +2 位作者 WU Shu-yun WANG Shu-ying XU Shi-wei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第9期1043-1048,共6页
The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence... The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc. 展开更多
关键词 biological nitrogen removal dissolved oxygen floc size simultaneous nitrification and denitrification step feeding process
下载PDF
Achieving and maintaining biological nitrogen removal via nitrite under normal conditions 被引量:10
3
作者 CUI You-wei PENG Yong-zhen +2 位作者 GAN Xiang-qing YE Liu WANG Ya-yi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第5期794-797,共4页
The principal aim of this paper is to develop an approach to realize stable biological nitrogen removal via nitrite under normal conditions. Validation of the new method was established on laboratory-scale experiments... The principal aim of this paper is to develop an approach to realize stable biological nitrogen removal via nitrite under normal conditions. Validation of the new method was established on laboratory-scale experiments applying the sequencing batch reactor(SBR) activated sludge process to domestic wastewater with low C/N ratio. The addition of sodium chloride(NaCI) to influent was established to achieve nitrite build-up. The high nitrite accumulation, depending on the salinity in influent and the application duration of salt, was obtained in SBRs treating saline wastewater. The maintenance results indicated that the real-time SBRs can maintain stable nitrite accumulation, but conversion from shorter nitrification-denitrification to full nitrification-denitrification was observed after some operation cycles in the other SBR with fixed-time control. The presented method is valuable to offer a solution to realize and to maintain nitrogen removal via nitrite under normal conditions. 展开更多
关键词 nitrite accumulation salt selective inhibition real-time control of nitrification biological nitrogen removal via nitrite nitrite-oxidizers ammonium-oxidizers
下载PDF
Development and Experimental Evaluation of a Steady-state Model for the Step-feed Biological Nitrogen Removal Process 被引量:7
4
作者 祝贵兵 彭永臻 +3 位作者 王淑莹 左金龙 王亚宜 郭建华 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第3期411-417,共7页
In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the... In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the to- tal nitrogen concentration of the effluent in the step-feed biological nitrogen removal process.Unlike the previous modeling methods,this model can be used to calculate the removal rates of ammonia and nitrate in each stage and thereby predict the concentrations of ammonia,nitrate,and total nitrogen in the effluent.To verify the simulation results,pilot-scale experimental studies were carried out in a four-stage step feed process.Good correlations were achieved between the measured data and the simulation results,which proved the validity of the developed model. The sensitivity of the model predictions was analyzed.After verification of the validity,the step feed process was optimally operated for five months using the model and the criteria developed for the design and operation.During the pilot-scale experimental period,the effluent total nitrogen concentrations were all below 5mg·L -1 ,with more than 90%removal efficiency. 展开更多
关键词 activated siudge biological nitrogen removal OPTIMIZATION SIMULATION steady-state model step-feedprocess
下载PDF
Effect of Sludge Retention Time on Nitrite Accumulation in Real-time Control Biological Nitrogen Removal Sequencing Batch Reactor 被引量:7
5
作者 吴昌永 彭永臻 +2 位作者 王淑莹 李晓玲 王然登 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第3期512-517,共6页
In this study,four sequencing batch reactors(SBR),with the sludge retention time(SRT)of 5,10,20 and 40 d,were used to treat domestic wastewater,and the effect of SRT on nitrite accumulation in the biological nitrogen ... In this study,four sequencing batch reactors(SBR),with the sludge retention time(SRT)of 5,10,20 and 40 d,were used to treat domestic wastewater,and the effect of SRT on nitrite accumulation in the biological nitrogen removal SBR was investigated.The real-time control strategy based on online parameters,such as pH,dissolved oxygen(DO)and oxidation reduction potential(ORP),was used to regulate the nitrite accumulation in SBR. The model-based simulation and experimental results showed that with the increase of SRT,longer time was needed to achieve high level of nitritation.In addition,the nitrite accumulation rate(NAR)was higher when the SRT was relatively shorter during a 112-day operation.When the SRT was 5 d,the system was unstable with the mixed liquor suspended solids(MLSS)decreased day after day.When the SRT was 40 d,the nitrification process was significantly inhibited.SRT of 10 to 20 d was more suitable in this study.The real-time control strategy combined with SRT control in SBR is an effective method for biological nitrogen removal via nitrite from wastewater. 展开更多
关键词 biological nitrogen removal nitrite accumulation real time control sludge retention time sequencing batch reactors
下载PDF
Nitrogen Removal Efficiencies for Two Biological Nutrient Removal (BNR) Plants in Thailand: Molasses as an External Carbon Source for Enriched Denitrifying Culture in a BNR Process 被引量:1
6
作者 P.L. Noophan P. Pajorn +2 位作者 S. Sirivithayapakorn M. Damrongsri C. Wantawin 《Journal of Environmental Science and Engineering》 2011年第10期1245-1251,共7页
Two biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Thailand were selected for study: the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP. For each site the influents, effluents, and sup... Two biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Thailand were selected for study: the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP. For each site the influents, effluents, and supernatant liquids from anaerobic sludge digesters were analyzed for total Kjeldahl nitrogen (TKN), total nitrogen (TN), total chemical oxygen demand (TCOD), biodegradable chemical oxygen demand (bCOD), and biochemical oxygen demand (BOD). Nitrogen removal efficiencies in the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP were evaluated. Inadequate nitrogen removal at the Nonghkaem centralized WWTP was found during the summer period. Influent ratios of bCOD:N at the Nonghkaem plant and the Suvarnabhumi Airport plant were 2.42:1-5.45:1 and 4.1:1-6.5:1, respectively. The efficacy of addition of molasses as a carbon source for enriched denitrifying culture in a BNR process at Nonghkaem was studied. Fluorescent in situ hybridization technique (FISH) was used to identify specific nitrifying bacteria (Nitrosomonas spp., Nitrobacter spp. and Nitrospira spp.). Nitrospira spp. was the most prevalent species in the aeration tank at the Nonghkaem WWTP. This result from FISH suggests that there were significantly low oxygen and nitrite concentration in the aeration tank at the Nonghkaem WWTP during a period of low nitrogen removal. 展开更多
关键词 nitrogen removal efficiency biological nutrient removal Thailand
下载PDF
A Combined System for Biological Removal of Nitrogen and Carbon from Nylon-6 Production Wastewater
7
作者 刘芳 刘国华 +2 位作者 田晴 张曼 陈季华 《Journal of Donghua University(English Edition)》 EI CAS 2007年第6期700-706,共7页
A combined system consisting of hydrolysis acidification, denitrification and nitrification reactors was used to remove carbon and nitrogen from the nylon - 6 production wastewater, which was characterized by good bio... A combined system consisting of hydrolysis acidification, denitrification and nitrification reactors was used to remove carbon and nitrogen from the nylon - 6 production wastewater, which was characterized by good biodegradability and high nitrogen concentration. The influences of Chemical Oxygen Demand (COD) in the influent, recirculation ratio, Hydraulic Residence Time (HRT) and Dissolved Oxygen (DO) concentration on the system performances were investigated. From results it could be seen that good performances have been achieved during the overall experiments periods, and COD, Total Nitrogen (TN), NH^+ -N and Suspended Solids (SS) in the effluent were 53, 16, 2 and 24 mg· L^-1, respectively, which has satisfied the first standard of wastewater discharge established by Environmental Protection Agency (EPA) of China. Furthermore, results showed that operation factors, viz. COD in the influent, recirculation ratio, HRT and DO concentration, all had important influences on the system performances. 展开更多
关键词 Nylon-6 production wastewater hydrolysis acidification submerged biofilm reactor biological nitrogen removal
下载PDF
Enhanced Nutrient Removal with Upflow Biological Aerated Filter for Reclaimed Water
8
作者 王海东 彭永臻 +1 位作者 王淑莹 张艳萍 《Journal of Beijing Institute of Technology》 EI CAS 2007年第3期369-374,共6页
A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrific... A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrification and phosphorus removal. The experimental results showed that the final effluent of the two-stage upflow biofilter process operated in series could meet the stringent limits of the reclaimed water for the total nitrogen of 2 mg/L, and total phosphorus of 0.3 mg/L. The high treatment efficiency allowed the reactor operating at very high hydraulic loadings and reaching nearly complete nitrification and denitrifieation. 展开更多
关键词 biological aerated filter NITRIFICATION DENITRIFICATION nitrogen and phosphorus removal reclaimed water
下载PDF
Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system 被引量:35
9
作者 PENG Yongzhen HOU Hongxun +2 位作者 WANG Shuying CUI Youwei Zhiguo Yuan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第4期398-403,共6页
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was... To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified. 展开更多
关键词 oxidation ditch biological nitrogen removal biological phosphorus removal simultaneous nitrification and denitrification (SND) pilot scale municipal wastewater
下载PDF
Removal of nitrogen and phosphorus in a combined A^2/O-BAF system with a short aerobic SRT 被引量:15
10
作者 DING Yong-wei WANG Lin +1 位作者 WANG Bao-zhen WANG Zheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第6期1082-1087,共6页
A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobi... A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A^2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitdfying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A^2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A^2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A^2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1--4 mg/L nitrate nitrogen in the anoxic zone effluent of A^2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies. 展开更多
关键词 nitrogen and phosphorus removal denitrifying phosphorus removal denitrifying phosphorus accumulating organisms (DPAOs) anaerobic/anoxic/aerobic process (A^2/O) biological aerated filter (BAF) aerobic sludge retention time (SRT)
下载PDF
Applying real-time control to enhance the performance of nitrogen removal in CAST system 被引量:10
11
作者 WANG Shao-po PENG Yong-zhen +1 位作者 WANG Shu-ying GAO Shou-you 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第5期736-739,共4页
A bench-scale reactor(72 L) red with domestic sewage, was operated more than 3 months with three operation modes: traditional mode, modified mode and real-time control mode, so as to evaluate effects of the operati... A bench-scale reactor(72 L) red with domestic sewage, was operated more than 3 months with three operation modes: traditional mode, modified mode and real-time control mode, so as to evaluate effects of the operation mode on the system performance and to develop a feasible control strategy. Results obtained from fixed-time control study indicate that the variations of the pH and oxidation-reduction potential(ORP) profiles can represent dynamic characteristics of system and the cycle sequences can be controlled and optimized by the control points on the pH and ORP profiles. A control strategy was, therefore, developed and applied to real-time control mode. Compared with traditional mode, the total nitrogen(TN) removal can be increased by approximately 16% in modified mode and a mean TN removal of 92% was achieved in real-time control mode. Moreover, approximately 12.5% aeration energy was saved in real- time control mode. The result of this study shows that the performance of nitrogen removal was enhanced in modified operation mode. Moreover, the real-time control made it possible to optimize process operation and save aeration energy. 展开更多
关键词 cyclic activated sludge technology biological nitrogen removal real-time control oxidation-reduction potential(ORP)
下载PDF
Study of control strategy and simulation in anoxic-oxic nitrogen removal process 被引量:2
12
作者 PENGYong-zhen WANGZhi-hui WANGShu-ying 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第3期425-428,共4页
The control strategy and simulation of external carbon addition were specially studied in an anoxic-oxic(A/O) process with low carbon: nitrogen(C/N) domestic wastewater. The control strategy aimed to adjust the flow r... The control strategy and simulation of external carbon addition were specially studied in an anoxic-oxic(A/O) process with low carbon: nitrogen(C/N) domestic wastewater. The control strategy aimed to adjust the flow rate of external carbon dosage to the anoxic zone, thus the concentration of nitrate plus nitrite(NOx--N) in the anoxic zone was kept closed to the set point. The relationship was studied between the NOx--N concentration in the anoxic zone(S_ NO) and the dosage of external carbon, and the results showed that the removal efficiency of the total nitrogen(TN) could not be largely improved by double dosage of carbon source when S_ NO reached about 2 mg/L. Through keeping S_ NO at the level of about 2 mg/L, the demand of effluent quality could be met and the carbon dosage could be optimized. Based on the Activated Sludge Model No.1(ASM No.1), a simplified mathematical model of external carbon dosage was developed. Simulation results showed that PI controller and feed-forward PI controller both had good dynamic response and steady precision. And feed-forward PI controller had better control effects due to its consideration of influent disturbances. 展开更多
关键词 ASM No.1 biological nitrogen removal external carbon addition feed-forward PI control
下载PDF
Theoretical evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process 被引量:4
13
作者 祝贵兵 彭永臻 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第3期263-266,共4页
Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduce... Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduced based on the mass balance of nitrate in the last stage. The comparison of pre-denitrification process and step feed process in the aspects of nitrogen removal efficiency, volume of reactor and building investment was studied, and the results indicated that step-feed anoxic/oxic activated sludge process was superior to pre-denitrification process in these aspects. 展开更多
关键词 step feed process biological nitrogen removal reaction kinetics process kinetics
下载PDF
Isolation of aerobic denitrifier and characteristics of enhanced nitrogen removal in concentric-circles reactor with diversion wall
14
作者 许晓毅 汤丽娟 +1 位作者 罗固源 蒋真玉 《Journal of Central South University》 SCIE EI CAS 2009年第S1期374-378,共5页
Three strains of aerobic denitrifiers,named as AT3,AT6 and AT7,were isolated from concentric-circles reactor with diversion wall possessing simultaneous nitrification and denitrification (SND) effect of 69%. The three... Three strains of aerobic denitrifiers,named as AT3,AT6 and AT7,were isolated from concentric-circles reactor with diversion wall possessing simultaneous nitrification and denitrification (SND) effect of 69%. The three strains are all gram-positive and rod-shaped,and their colonial colors are pale yellow,milk white and pink,respectively. Combined with 16SrDNA sequence homology comparison and biochemical tests,AT3 and AT7 were identified to belong to Rhodococcus,and AT6 to Gordonia. These bacterial strains could grow well in the medium with potassium nitrate as nitrogen source and sodium citrate as carbon source. Based on the enhanced nitrogen removal experiments of selected bacteria mixture for activated sludge,the inoculum amount of 5% was supposed to be proper. The mixed biomass suspension of selected strains with PVA immobilization was put into the concentric-circles reactor in order to study the characteristics of enhanced nitrogen removal after amplifying cultivation with inoculated amount of 5%. The experimental results show that the average removal efficiencies of ammonia nitrogen (NH3-N) and total nitrogen (TN) in the reactor enhanced with aerobic denitrifying bacteria using PVA are 92.18% and 79.14% respectively,increasing by 5.29% and 7.83% respectively compared with removal effects of control group without strains enhancement. 展开更多
关键词 NITRIFICATION DENITRIFICATION AEROBIC denitrifier biological nitrogen removal polyvinyl alcohol immobilization
下载PDF
Nitrification-denitrification via nitrite pathway in biological treatment of hypersaline wastewater
15
作者 祝贵兵 彭永臻 +1 位作者 孟祥胜 于德爽 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第6期822-825,共4页
Pilot-scale studies on biological treatment of hypersaline wastewater at low temperature were conducted and results showed that seawater salinity had a strong negative effect on notrouomonas and nitrobaeter growth, bu... Pilot-scale studies on biological treatment of hypersaline wastewater at low temperature were conducted and results showed that seawater salinity had a strong negative effect on notrouomonas and nitrobaeter growth, but much more on the nitrobaeter. The nitrification action was mainly accomplished by nitrosomonas. Bench-scale experiments using two SBRs were carried out for further investigation under different conditions of salinities, ammonia loadings and temperatures. Biological nitrogen removal via nitrite pathway from wastewater containing 30 percent seawater was achieved, but the ammonia removal efficiency was strongly related not only to the influent ammonia loading at different salinities but also to temperatures. When the ratio of seawater to wastewater was 30 percent, and the ammonia loading was below the critical value of 0. 15 kgNH4 ^+ -N/( kgMLSS · d) , the ammonia removal efficiency via nitrite pathway was above 90 %. The critical level of ammonia loading was 0. 15, 0. 08 and 0. 03 kgNH4 ^+ -N/( kgMLSS · d) respectively at different temperatures of 30℃, 25℃ and 20℃ when the influent ammonia concentration was 60 - 80 mg/L and pH was 7.5 - 8.0. 展开更多
关键词 flushing lavatory with seawater hypersaline wastewater biological nitrogen removal nitrificationdenitrification via nitrite pathway bench-scale studies
下载PDF
Research progress and prospect of low-carbon biological technology for nitrate removal in wastewater treatment
16
作者 Ru Zheng Kuo Zhang +1 位作者 Lingrui Kong Sitong Liu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第7期1-21,共21页
Wastewater treatment plants are the major energy consumers and significant sources of greenhouse gas emissions,among which biological nitrogen removal of wastewater is an important contributor to carbon emissions.Howe... Wastewater treatment plants are the major energy consumers and significant sources of greenhouse gas emissions,among which biological nitrogen removal of wastewater is an important contributor to carbon emissions.However,traditional heterotrophic denitrification still has the problems of excessive residual sludge and the requirement of external carbon sources.Consequently,the development of innovative low-carbon nitrate removal technologies is necessary.This review outlines the key roles of sulfur autotrophic denitrification and hydrogen autotrophic denitrification in low-carbon wastewater treatment.The discovered nitrate/nitrite dependent anaerobic methane oxidation enables sustainable methane emission reduction and nitrogen removal by utilizing available methane in situ.Photosynthetic microorganisms exhibited a promising potential to achieve carbon-negative nitrate removal.Specifically,the algal-bacterial symbiosis system and photogranules offer effective and prospective low-carbon options for nitrogen removal.Then,the emerging nitrate removal technology of photoelectrotrophic denitrification and the underlying,photoelectron transfer mechanisms are discussed.Finally,we summarize and prospect these technologies,highlighting that solar-driven biological nitrogen removal technology is a promising area for future sustainable wastewater treatment.This review has important guiding significance for the design of low-carbon wastewater treatment systems. 展开更多
关键词 Carbon emissions Low-carbon biological nitrogen removal DENITRIFICATION
原文传递
Experimental study of nitrite accumulation in pre-denitrification biological nitrogen removal process
17
作者 Xuelei WU Lunqiang CHEN +2 位作者 Yongzhen PENG Yayi WANG Pu WANG 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2008年第2期236-240,共5页
The effect of dissolved oxygen(DO)concentration on nitrite accumulation was investigated in a pilot-scale pre-denitrification process at room temperature for 100 days.In the first 10 days,due to the instability of the... The effect of dissolved oxygen(DO)concentration on nitrite accumulation was investigated in a pilot-scale pre-denitrification process at room temperature for 100 days.In the first 10 days,due to the instability of the system,the DO concentration fluctuated between 1.0 and 2.0 mg/L.In the next 14 days,the DO concentration was kept at 0.5 mg/L and nitrite accumulation occurred,with the average nitrite accumulation rate at 91%.From the 25th day,the DO concentration was increased to 2.0 mg/L to destroy the nitrite accumulation,but nitrite accumulation rate was still as high as 90%.From the 38th day the nitrite accumulation rate decreased to 15%–30%linearly.From the 50th day,DO concentration was decreased to 0.5 mg/L to resume nitrite accumulation.Until the 83rd day the nitrite accumulation rate began to increase to 80%.Dissolved oxygen was the main cause of nitrite accumulation,taking into account other factors such as pH,free ammonia concentration,temperature,and sludge retention time.Because of the different affinity for oxygen between nitrite oxidizing bacteria and ammonia oxidizing bacteria when DO concentration was kept at 0.5 mg/L,nitrite accumulation occurred. 展开更多
关键词 PRE-DENITRIFICATION biological nitrogen removal nitrite accumulation dissolved oxygen
原文传递
Effect of initial ammonium concentration on a one-stage partial nitrification/anammox biofilm system:Nitrogen removal performance and the microbial community
18
作者 Mengyu Zhou Yun Han +3 位作者 Yang Zhuo Fen Yu Gaoyuan Hu Dangcong Peng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第9期176-188,共13页
One-stage partial nitrification coupled with anammox(PN/A)technology effectively reduces the energy consumption of a biological nitrogen removal system.Inhibiting nitrite-oxidizing bacteria(NOB)is essential for this t... One-stage partial nitrification coupled with anammox(PN/A)technology effectively reduces the energy consumption of a biological nitrogen removal system.Inhibiting nitrite-oxidizing bacteria(NOB)is essential for this technology to maintain efficient nitrogen removal performance.Initial ammonium concentration(IAC)affects the degree of inhibited NOB.In this study,the effect of the IAC on a PN/A biofilm was investigated in a moving bed biofilm reactor.The results showed that nitrogen removal efficiency decreased from 82.49%±1.90%to 64.57%±3.96%after the IAC was reduced from 60 to 20 mg N/L,while the nitrate production ratio increased from 13.87%±0.90%to 26.50%±3.76%.NOB activity increased to1,133.86 mg N/m^(2)/day after the IAC decreased,approximately 4-fold,indicating that the IAC plays an important inhibitory role in NOB.The rate-limiting step in the mature biofilm of the PN/A system is the nitritation process and is not shifted by the IAC.The analysis of the microbial community structure in the biofilm indicates that the IAC was the dominant factor in changes in community structure.Ca.Brocadia and Ca.Jettenia were the main anammox bacteria,and Nitrosomonas and Nitrospira were the main AOB and NOB,respectively.IAC did not affect the difference in growth between Ca.Brocadia and Ca.Jettenia.Thus,modulating the IAC promoted the PN/A process with efficient nitrogen removal performance at medium to low ammonium concentrations. 展开更多
关键词 biological nitrogen removal Partial nitrification ANAMMOX Ammonium concentration BIOFILM
原文传递
Combined biologic aerated filter and sulfur/ceramisite autotrophic denitrification for advanced wastewater nitrogen removal at low temperatures 被引量:6
19
作者 Tian WAN Guangming ZHANG +2 位作者 Fcngwci DU Junguo HE Pan WU 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2014年第6期967-972,共6页
An innovative advanced wastewater treatment process combining biologic aerated filter (BAF) and sulfur/ ceramisite-based autotrophic denitrification (SCAD) for reliable removal of nitrogen was proposed in this pap... An innovative advanced wastewater treatment process combining biologic aerated filter (BAF) and sulfur/ ceramisite-based autotrophic denitrification (SCAD) for reliable removal of nitrogen was proposed in this paper. In SCAD reactor, ceramisite was used as filter and Ca (HCO3)2 was used for supplying alkalinity and carbon source. The BAF-SCAD was used to treat the secondary treatment effluent. The performance of this process was investigated, and the impact of temperature on nitrogen removal was studied. Results showed that the combined system was effective in nitrogen removal even at low temperatures (8℃). Removal of total nitrogen (TN), NH4+ -N, NO3-N reached above 90% at room temperature. Nitrification was affected by the temperature and nitrification at low temperature (8℃) was a limiting factor for TN removal. However, denitrification was not impacted by the temperature and the removal of NO3 -N maintained 98% during the experimental period. The reason of effective denitrification at low temperature might be the use of easily dissolved Ca(HCO3)2 and high-flux ceramisite, which solved the problem of low mass transfer efficiency at low temperatures. Besides, vast surface area of sulfur with diameter of 2-6 mm enhanced the rate of microbial utilization. The removal of nitrate companied with the production of SO42-, and the average concentration of SO27 was about 240mg.L^-1. These findings would be beneficial for the application of this process to nitrogen removal especially in the winter and cold regions. 展开更多
关键词 autotrophic denitrification biologic aerated filter (BAF) sulfur/ceramisite-based autotrophic denitrification (SCAD) advanced nitrogen removal
原文传递
Research on polyhydroxyalkanoates and glycogen transformations: Key aspects to biologic nitrogen and phosphorus removal in low dissolved oxygen systems 被引量:3
20
作者 Hongjing LI Yinguang CHEN 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2011年第2期283-290,共8页
In this paper,a study was conducted on the effect of polyhydroxyalkanoates(PHA)and glycogen transformations on biologic nitrogen and phosphorus removal in low dissolved oxygen(DO)systems.Two laboratory-scale sequencin... In this paper,a study was conducted on the effect of polyhydroxyalkanoates(PHA)and glycogen transformations on biologic nitrogen and phosphorus removal in low dissolved oxygen(DO)systems.Two laboratory-scale sequencing batch reactors(SBR1 and SBR2)were operating with anaerobic/aerobic(low DO,0.15-0.45 mg·L^(-1))configurations,which cultured a propionic to acetic acid ratio(molar carbon ratio)of 1.0 and 2.0,respectively.Fewer poly-3-hydroxybutyrate(PHB),total PHA,and glycogen transformations were observed with the increase of propionic/acetic acid,along with more poly-3-hydroxyvalerate(PHV)and poly-3-hydroxy-2-methyvalerate(PH2MV)shifts.The total nitrogen(TN)removal efficiency was 68%and 82%in SBR1 and SBR2,respectively.In the two SBRs,the soluble ortho-phosphate(SOP)removal efficiency was 94%and 99%,and the average sludge polyphosphate(poly-P)content(g·g-MLVSS^(-1))was 8.3%and 10.2%,respectively.Thus,the propionic to acetic acid ratio of the influent greatly influenced the PHA form and quantity,glycogen transformation,and poly-P contained in activated sludge and further determined TN and SOP removal efficiency.Moreover,significant correlations between the SOP removal rate and the(PHV+PH2MV)/PHA ratio were observed(R^(2)>0.99).Accordingly,PHA and glycogen transformations should be taken into account as key components for optimizing anaerobic/aerobic(low DO)biologic nitrogen and phosphorus removal systems. 展开更多
关键词 low dissolved oxygen(DO) biological nitrogen and phosphorus removal polyhydroxyalkanoates(PHA) GLYCOGEN
原文传递
上一页 1 2 60 下一页 到第
使用帮助 返回顶部