Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nit...Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nitrogen-doped hard carbon nanofibers(NHCNFs)were prepared by a lowtemperature carbonization treatment assisted with electrospinning technology.Density functional theory analysis elucidates the incorporation of nitrogen heteroatoms with various chemical states into carbon matrix would significantly alter the total electronic configurations,leading to the robust adsorption and efficient diffusion of Na atoms on electrode interface.The obtained material carbonized at 600°C(NHCNF-600)presented a reversible specific capacity of 191.0 mAh g^(−1)and no capacity decay after 200 cycles at 1 A g^(−1).It was found that the sodium-intercalated degree had a correlation with the electrochemical impedance.A sodium-intercalated potential of 0.2 V was adopted to lower the electrochemical impedance.The constructed sodium-ion capacitor with activated carbon cathode and presodiated NHCNF-600 anode can present an energy power density of 82.1 Wh kg^(−1)and a power density of 7.0 kW kg^(−1).展开更多
Supercapacitors(SCs) are high-power energy storage devices with ultra-fast charge/discharge properties.SCs using concentrated aqueous-based electrolytes can work at low temperatures due to their intrinsic properties, ...Supercapacitors(SCs) are high-power energy storage devices with ultra-fast charge/discharge properties.SCs using concentrated aqueous-based electrolytes can work at low temperatures due to their intrinsic properties, such as higher freezing point depression(FPD) and robustness. Besides the traditional organic-and aqueous-based(salt-in-water) electrolytes used in SCs, water-in-salt(WISE) sodium perchlorate electrolytes offer high FPD, non-flammability, and low-toxicity conditions, allowing the fabrication of safer, environmentally friendly, and more robust devices. For the first time, this work reports a comprehensive study regarding WISE system’s charge-storage capabilities and physicochemical properties under low-temperature conditions(T < 0 ℃) using mesoporous carbon-based electrodes. The effect of temperature reduction on the electrolyte viscosity and electrical properties was investigated using different techniques and the in-situ(or operando) Raman spectroscopy under dynamic polarization conditions.The cell voltage, equivalent series resistance, and specific capacitance were investigated as a function of the temperature. The cell voltage(U) increased ~ 50%, while the specific capacitance decreased ~20%when the temperature was reduced from 25 ℃ to -10 ℃. As a result, the maximum specific energy(E = CU^(2)/2) increased ~ 100%. Therefore, low-temperature WISEs are promising candidates to improve the energy-storage characteristics in SCs.展开更多
Numerous new carbon allotropes have been uncovered by compressing carbon nanotubes based on our computational investigation. The volume compression calculations suggest that these new phases have a very high anti-comp...Numerous new carbon allotropes have been uncovered by compressing carbon nanotubes based on our computational investigation. The volume compression calculations suggest that these new phases have a very high anti-compressibility with a large bulk modulus (B0). The predicted B0 of new phases is larger than that of c-BN (373 GPa) and smaller than that of diamond (453 GPa). All of the predicted structures are superhard transparent materials with a larger band gap and possess the covalent characteristics with sp3-hybridized electronic states. The simulated results will help us better understand the structural phase transition of cold-compressed carbon nanotubes.展开更多
The effect of adding crumb rubber(CR)and carbon nanotubes(CNTs)on the low-temperature properties of virgin asphalt was studied.Using the force-ductility test and the bending beam rheometer(BBR)test,the deformation res...The effect of adding crumb rubber(CR)and carbon nanotubes(CNTs)on the low-temperature properties of virgin asphalt was studied.Using the force-ductility test and the bending beam rheometer(BBR)test,the deformation resistance and rheological properties of asphalt samples at low temperatures were evaluated,respectively.Based on the result of BBR test,the creep functions of the Burgers model and the Zener model were used to fit the low-temperature creep characteristics of the asphalt samples.Furthermore,the differential scanning calorimetry(DSC)test and the attenuated total reflection-Fourier transform infrared spectroscopy(ATR-FTIR)test were utilized to appraise the low-temperature stability and chemical properties of asphalt samples,respectively.The results showed that CR significantly improved the low-temperature properties of virgin asphalt,while CNTs had little effect.Moreover,during the degradation of CR,aromatic and aliphatic components were released.In particular,the aliphatic components of CR-modified asphalt were much higher than those of virgin asphalt,which had a significant effect on improving the low-temperature properties of the asphalt.The DSC test results showed that CR enhanced the low-temperature stability of the asphalt,while the addition of CNTs presented a slightly negative effect.展开更多
Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.In HuangHuai-Hai wheat growing area of China,the late spring coldness occurring at the jointing-booting stage(the an...Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.In HuangHuai-Hai wheat growing area of China,the late spring coldness occurring at the jointing-booting stage(the anther interval stage)has resulted in significant yield losses of winter wheat.This study attempts to develop an economical,feasible,and efficient cultivation technique for improving the low-temperature(LT)resistance of wheat by exploring the effects of twice-split phosphorus application(TSPA)on wheat antioxidant characteristics and carbon and nitrogen metabolism physiology under LT treatment at the anther interval stage using Yannong 19 as the experimental material.The treatments consisted of traditional phosphorus application and TSPA,followed by a-4℃ LT treatment and natural temperature(NT)control at the anther interval stage.Our analyses showed that,compared with the traditional application,the TSPA increased the net photosynthetic rate(P_(n)),stomatal conductance(Gs),and transpiration rate(T_(r))of leaves and reduced the intercellular carbon dioxide concentration(C_(i)).The activity of carbon and nitrogen metabolism enzymes in the young wheat spikes was also increased by the TSPA,which promoted the accumulation of soluble sugar(SS),sucrose(SUC),soluble protein(SP),and proline(Pro)in young wheat spike and reduced the toxicity of malondialdehyde(MDA).Due to the improved organic nutrition for reproductive development,the young wheat spikes exhibited enhanced LT resistance,which reduced the sterile spikelet number(SSN)per spike by 11.8%and increased the spikelet setting rate(SSR)and final yield by 6.0 and 8.4%,respectively,compared to the traditional application.The positive effects of split phosphorus application became more pronounced when the LT treatment was prolonged.展开更多
The metal oxide catalyst was prepared by loading MnOx and FeOx on carbon nano-tubes (CNTs) with impregnation method. Then the catalyst was characterized by BET and XPS, and the effect of adding FeOx on MnOx/CNTs catal...The metal oxide catalyst was prepared by loading MnOx and FeOx on carbon nano-tubes (CNTs) with impregnation method. Then the catalyst was characterized by BET and XPS, and the effect of adding FeOx on MnOx/CNTs catalyst at the low-temperature selective catalytic reduction of NO with NH3 was investigated. The results showed that the active components were loaded suc-cessfully and easily on the carriers by impregnation. The Mn-Fe/CNTs catalyst was chose 10% Fe(NO3)3 solution to impregnate Mn-Fe/CNTs. The species of active components loaded on the catalyst were Fe2O3. The different concentration of impregnant solution played an important role for NO conversion in SCR with NH3. With the increase of the concentration of impregnant solution, the NO conversion of catalysts was increasing initially then decreasing.展开更多
To study the modification mechanism of activated carbon(AC)by Fe and the low-temperature NH_(3)-selective catalytic reduction(SCR)denitration mechanism of Fe/AC catalysts,Fe/AC catalysts were prepared using coconut sh...To study the modification mechanism of activated carbon(AC)by Fe and the low-temperature NH_(3)-selective catalytic reduction(SCR)denitration mechanism of Fe/AC catalysts,Fe/AC catalysts were prepared using coconut shell AC activated by nitric acid as the support and iron oxide as the active component.The crystal structure,surface morphology,pore structure,functional groups and valence states of the active components of Fe/AC catalysts were characterised by X-ray diffraction,scanning electron microscopy,nitrogen adsorption and desorption,Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy,respectively.The effect of Fe loading and calcination temperature on the low-temperature denitration of NH_(3)-SCR over Fe/AC catalysts was studied using NH_(3)as the reducing gas at low temperature(150℃).The results show that the iron oxide on the Fe/AC catalyst is spherical and uniformly dispersed on the surface of AC,thereby improving the crystallisation performance and increasing the number of active sites and specific surface area on AC in contact with the reaction gas.Hence,a rapid NH_(3)-SCR reaction was realised.When the roasting temperature remains constant,the iron oxide crystals formed by increasing the amount of loading can enter the AC pore structure and accumulate to form more micropores.When the roasting temperature is raised from 400 to 500℃,the iron oxide is mainly transformed fromα-Fe_(2)O_(3)toγ-Fe_(2)O_(3),which improves the iron oxide dispersion and increases its denitration active site,allowing gas adsorption.When the Fe loading amount is 10%,and the roasting temperature is 500℃,the NO removal rate of the Fe/AC catalyst can reach 95%.According to the study,the low-temperature NH_(3)-SCR mechanism of Fe/AC catalyst is proposed,in which the redox reaction between Fe~(2+)and Fe~(3+)will facilitate the formation of reactive oxygen vacancies,which increases the amount of oxygen adsorption on the surface,especially the increase in surface acid sites,and promotes and adsorbs more reaction gases(NH_(3),O_(2),NO).The transformation from the standard SCR reaction to the fast SCR reaction is accelerated.展开更多
Exploiting high-performance yet low-cost hard carbon anodes is crucial to advancing the state-of-the-art sodium-ion batteries.However,the achievement of superior initial Coulombic efficiency(ICE)and high Na-storage ca...Exploiting high-performance yet low-cost hard carbon anodes is crucial to advancing the state-of-the-art sodium-ion batteries.However,the achievement of superior initial Coulombic efficiency(ICE)and high Na-storage capacity via low-temperature carbonization remains challenging due to the presence of tremendous defects with few closed pores.Here,a facile hybrid carbon framework design is proposed from the polystyrene precursor bearing distinct molecular bridges at a low pyrolysis temperature of 800℃ via in situ fusion and embedding strategy.This is realized by integrating triazine-and carbonylcrosslinked polystyrene nanospheres during carbonization.The triazine crosslinking allows in situ fusion of spheres into layered carbon with low defects and abundant closed pores,which serves as a matrix for embedding the well-retained carbon spheres with nanopores/defects derived from carbonyl crosslinking.Therefore,the hybrid hard carbon with intimate interface showcases synergistic Na ions storage behavior,showing an ICE of 70.2%,a high capacity of 279.3 mAh g^(-1),and long-term 500 cycles,superior to carbons from the respective precursor and other reported carbons fabricated under the low carbonization temperature.The present protocol opens new avenues toward low-cost hard carbon anode materials for high-performance sodiumion batteries.展开更多
Nitrogen doping of the carbon is an important method to improve the performance and durability of catalysts for proton exchange membrane fuel cells by platinum–nitrogen and carbon–nitrogen bonds. This study shows th...Nitrogen doping of the carbon is an important method to improve the performance and durability of catalysts for proton exchange membrane fuel cells by platinum–nitrogen and carbon–nitrogen bonds. This study shows that p-phenyl groups and graphitic N acting bridges linking platinum and the graphene/carbon black(the ratio graphene/carbon black = 2/3) hybrid support materials achieved the average size of platinum nanoparticles with(4.88 ± 1.79) nm. It improved the performance of the lower-temperature hydrogen fuel cell up to 0.934 W cm^(-2) at 0.60 V, which is 1.55 times greater than that of commercial Pt/C. Doping also enhanced the interaction between Pt and the support materials, and the resistance to corrosion, thus improving the durability of the low-temperature hydrogen fuel cell with a much lower decay of 10 mV at 0.80 A cm^(-2) after 30 k cycles of an in-situ accelerated stress test of catalyst degradation than that of 92 mV in Pt/C, which achieves the target of Department of Energy(<30 mV). Meanwhile,Pt/Nr EGO_(2)-CB_(3) remains 78% of initial power density at 1.5 A cm^(-2) after 5 k cycles of in-situ accelerated stress test of carbon corrosion, which is more stable than the power density of commercial Pt/C, keeping only 54% after accelerated stress test.展开更多
The conversion of waste tire pyrolysis oil(WTPO)into S-doped porous carbon nanorods(labeled as WPCNs)with hierarchical pore structure is realized by a simple template-directed approach.The specific surface area of as-...The conversion of waste tire pyrolysis oil(WTPO)into S-doped porous carbon nanorods(labeled as WPCNs)with hierarchical pore structure is realized by a simple template-directed approach.The specific surface area of as-obtained porous carbon nanorods can reach up to 1448 m^(2) g^(−1) without the addition of any activating agent.As the capacitive electrode,WPCNs possess the extraordinary compatibility to capacitance,different electrolyte systems as well as long-term cycle life even at a commercial-level areal mass loading(10 mg cm^(−2)).Besides,only an extremely small capacitance fluctuation is observed under the extreme circumstance(−40 to 80℃),reflecting the excellent high-and low-temperature performance.The relationship between the pore structure and capacitive behavior is analyzed by comparing WPCNs with mesopores-dominated asphalt-derived porous carbon nanorods(APCNs)and micropores-dominated activated carbon.The molecular dynamics simulation further reveals the ion diffusion and transfer ability of the as-prepared carbon materials under different pore size distribution.The total ion flow(NT)of WPCNs calculated by the simulation is obviously larger than APCNs and the N_(T) ratio between them is similar with the experimental average capacitance ratio.Furthermore,this work also provides a valuable strategy to prepare the electrode material with high capacitive energy storage ability through the high value-added utilization of WTPO.展开更多
A new family of superhard carbon allotropes C48(2i + 1 ) is constructed by alternating even 4 and 8 membered rings. These new carbon allotropes are of a spatially antisymmetrical structure, compared with the symmet...A new family of superhard carbon allotropes C48(2i + 1 ) is constructed by alternating even 4 and 8 membered rings. These new carbon allotropes are of a spatially antisymmetrical structure, compared with the symmetrical structures of bet- C4, Z-carbon, and P-carbon. Our calculations show that bulk moduli of C48(2i + 1 ) are larger than that of c-BN and smaller than that of cubic-diamond. C48(2i + 1 ) are transparent superhard materials possessing large Vicker hardness comparable to diamoud. This work can help us understand the structural phase transformations of cold-compression graphite and carbon nanotubes.展开更多
The influence of different factors on the plasma chemical reactions is widely studied today. However, insufficient consideration is given to the research of paramagnetic phenomena which takes place in plasma systems. ...The influence of different factors on the plasma chemical reactions is widely studied today. However, insufficient consideration is given to the research of paramagnetic phenomena which takes place in plasma systems. The results of modeling the process of redistribution carbon isotopes between different phases while oxidizing it in high-frequency low-temperature plasma in an external magnetic field are shown in the article. The equilibrium concentrations of components involved in the oxidation process in a plasma system are defined. A principle possibility of isotope-selective plasma chemical reactions in a magnetic field was experimentally determined. The increase of concentration of 13C in the gas phase up to 1.3 times relative to natural abundance was obtained. It was found that the content of the carbon heavy isotope in the gas phase depends on the magnetic field action area. The best results were achieved with the combination of magnetic field impact area and the priority area of the appearance of plasma chemical reactions products.展开更多
sp^2 carbon nanomaterials are mainly composed of sp^2-hybridized carbon atoms in the form of a hexagonal network. Due to the p bonds formed by unpaired electrons, sp^2 carbon nanomaterials possess excellent electronic...sp^2 carbon nanomaterials are mainly composed of sp^2-hybridized carbon atoms in the form of a hexagonal network. Due to the p bonds formed by unpaired electrons, sp^2 carbon nanomaterials possess excellent electronic, mechanical, and optical properties, which have attracted great attention in recent years.As the advanced sp^2 carbon nanomaterials, graphene and carbon nanotubes(CNTs) have great potential in electronics, sensors, energy storage and conversion devices, etc. The low-temperature synthesis of graphene and CNTs are indispensable to promote the practical industrial application. Furthermore, graphene and CNTs can even be expected to directly grow on the flexible plastic that cannot bear high temperature,expanding bright prospects for applications in emerging flexible nanotechnology. An in-depth understanding of the formation mechanism of sp^2 carbon nanomaterials is beneficial for reducing the growth temperature and satisfying the demands of industrial production in an economical and low-cost way. In this review, we discuss the main strategies and the related mechanisms in low-temperature synthesis of graphene and CNTs, including the selection of precursors with high reactivity, the design of catalyst, and the introduction of additional energy for the pre-decomposition of precursors. Furthermore, challenges and outlooks are highlighted for further progress in the practical industrial application.展开更多
For the continuous utilization of nuclear energy and efficient control of radioactive pollution, low-cost materials with high efficient U(VI) removal are of great importance. In this study, low temperature plasma meth...For the continuous utilization of nuclear energy and efficient control of radioactive pollution, low-cost materials with high efficient U(VI) removal are of great importance. In this study, low temperature plasma method was applied for the successful modification of Ophosphorylethanolamine(O-PEA) on the porous carbon materials. The produced materials(Cafe/O-PEA) could adsorb U(VI) efficiently with the maximum sorption capacity of 648.54mg/g at 1 hr, T=298 K, and p H=6.0, much higher than those of most carbon-based composites. U(VI) sorption was mainly controlled by strong surface complexation. From FTIR,SEM-EDS and XPS analyses, the sorption of U(VI) was related to the complexation with-NH2, phosphate and-OH groups on Cafe/O-PEA. The low temperature plasma method was an efficient, environmentally friendly and low-cost method for surface modification of materials for the effective enrichment of U(VI) from aqueous solutions.展开更多
基金supported by the National Natural Science Foundation of China(No.51907193,51822706,and 51777200)the Key Research Program of Frontier Sciences,CAS(No.ZDBS-LY-JSC047)the Youth Innovation Promotion Association,CAS(No.2020145)
文摘Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nitrogen-doped hard carbon nanofibers(NHCNFs)were prepared by a lowtemperature carbonization treatment assisted with electrospinning technology.Density functional theory analysis elucidates the incorporation of nitrogen heteroatoms with various chemical states into carbon matrix would significantly alter the total electronic configurations,leading to the robust adsorption and efficient diffusion of Na atoms on electrode interface.The obtained material carbonized at 600°C(NHCNF-600)presented a reversible specific capacity of 191.0 mAh g^(−1)and no capacity decay after 200 cycles at 1 A g^(−1).It was found that the sodium-intercalated degree had a correlation with the electrochemical impedance.A sodium-intercalated potential of 0.2 V was adopted to lower the electrochemical impedance.The constructed sodium-ion capacitor with activated carbon cathode and presodiated NHCNF-600 anode can present an energy power density of 82.1 Wh kg^(−1)and a power density of 7.0 kW kg^(−1).
基金the financial support from the Brazilian funding agencies CNPq(310544/2019-0),FAPESP(2014/02163-7&2017/11958-1)FAPEMIG(Financial support for the LMMA/UFVJM Laboratory)and CNPq(PQ-2 grant:Process 301095/2018-3)the support from Shell and the strategic importance of the support given by ANP(Brazil’s National Oil,Natural Gas,and Biofuels Agency)through the R&D levy regulation。
文摘Supercapacitors(SCs) are high-power energy storage devices with ultra-fast charge/discharge properties.SCs using concentrated aqueous-based electrolytes can work at low temperatures due to their intrinsic properties, such as higher freezing point depression(FPD) and robustness. Besides the traditional organic-and aqueous-based(salt-in-water) electrolytes used in SCs, water-in-salt(WISE) sodium perchlorate electrolytes offer high FPD, non-flammability, and low-toxicity conditions, allowing the fabrication of safer, environmentally friendly, and more robust devices. For the first time, this work reports a comprehensive study regarding WISE system’s charge-storage capabilities and physicochemical properties under low-temperature conditions(T < 0 ℃) using mesoporous carbon-based electrodes. The effect of temperature reduction on the electrolyte viscosity and electrical properties was investigated using different techniques and the in-situ(or operando) Raman spectroscopy under dynamic polarization conditions.The cell voltage, equivalent series resistance, and specific capacitance were investigated as a function of the temperature. The cell voltage(U) increased ~ 50%, while the specific capacitance decreased ~20%when the temperature was reduced from 25 ℃ to -10 ℃. As a result, the maximum specific energy(E = CU^(2)/2) increased ~ 100%. Therefore, low-temperature WISEs are promising candidates to improve the energy-storage characteristics in SCs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174242,11204265,11404278,11147007,and 11274151)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2012248)the Scientific Research Foundation of Yancheng Institute of Technology,China(Grant No.KJC2014024)
文摘Numerous new carbon allotropes have been uncovered by compressing carbon nanotubes based on our computational investigation. The volume compression calculations suggest that these new phases have a very high anti-compressibility with a large bulk modulus (B0). The predicted B0 of new phases is larger than that of c-BN (373 GPa) and smaller than that of diamond (453 GPa). All of the predicted structures are superhard transparent materials with a larger band gap and possess the covalent characteristics with sp3-hybridized electronic states. The simulated results will help us better understand the structural phase transition of cold-compressed carbon nanotubes.
基金the support from the National Natural Science Foundation of China (Grant No.52078051)the Technology Innovation Project of Department of Industry and Information Technology of Shandong Province (Grant No.Lugongxinji (2020) 8)+2 种基金the Transportation Department of Shandong Province (Grant No.Lujiaokeji (2017) 28)the Traffic Science and Technology Project of Xixian New District Management Committee of Shaanxi Province (2017 44)the Zhuhai Transportation Group Co.Ltd.(JT-HG-2020-21)
文摘The effect of adding crumb rubber(CR)and carbon nanotubes(CNTs)on the low-temperature properties of virgin asphalt was studied.Using the force-ductility test and the bending beam rheometer(BBR)test,the deformation resistance and rheological properties of asphalt samples at low temperatures were evaluated,respectively.Based on the result of BBR test,the creep functions of the Burgers model and the Zener model were used to fit the low-temperature creep characteristics of the asphalt samples.Furthermore,the differential scanning calorimetry(DSC)test and the attenuated total reflection-Fourier transform infrared spectroscopy(ATR-FTIR)test were utilized to appraise the low-temperature stability and chemical properties of asphalt samples,respectively.The results showed that CR significantly improved the low-temperature properties of virgin asphalt,while CNTs had little effect.Moreover,during the degradation of CR,aromatic and aliphatic components were released.In particular,the aliphatic components of CR-modified asphalt were much higher than those of virgin asphalt,which had a significant effect on improving the low-temperature properties of the asphalt.The DSC test results showed that CR enhanced the low-temperature stability of the asphalt,while the addition of CNTs presented a slightly negative effect.
基金This work was supported by the Major Science and Technology Projects in Anhui Province,China(202003b06020021)the Natural Science Foundation of Anhui Province,China(2008085QC122)+1 种基金the Postgraduate Quality Engineering Project in Anhui Province,China(2022cxcysj0066)the Special Fund for Anhui Agriculture Research System,China.
文摘Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.In HuangHuai-Hai wheat growing area of China,the late spring coldness occurring at the jointing-booting stage(the anther interval stage)has resulted in significant yield losses of winter wheat.This study attempts to develop an economical,feasible,and efficient cultivation technique for improving the low-temperature(LT)resistance of wheat by exploring the effects of twice-split phosphorus application(TSPA)on wheat antioxidant characteristics and carbon and nitrogen metabolism physiology under LT treatment at the anther interval stage using Yannong 19 as the experimental material.The treatments consisted of traditional phosphorus application and TSPA,followed by a-4℃ LT treatment and natural temperature(NT)control at the anther interval stage.Our analyses showed that,compared with the traditional application,the TSPA increased the net photosynthetic rate(P_(n)),stomatal conductance(Gs),and transpiration rate(T_(r))of leaves and reduced the intercellular carbon dioxide concentration(C_(i)).The activity of carbon and nitrogen metabolism enzymes in the young wheat spikes was also increased by the TSPA,which promoted the accumulation of soluble sugar(SS),sucrose(SUC),soluble protein(SP),and proline(Pro)in young wheat spike and reduced the toxicity of malondialdehyde(MDA).Due to the improved organic nutrition for reproductive development,the young wheat spikes exhibited enhanced LT resistance,which reduced the sterile spikelet number(SSN)per spike by 11.8%and increased the spikelet setting rate(SSR)and final yield by 6.0 and 8.4%,respectively,compared to the traditional application.The positive effects of split phosphorus application became more pronounced when the LT treatment was prolonged.
文摘The metal oxide catalyst was prepared by loading MnOx and FeOx on carbon nano-tubes (CNTs) with impregnation method. Then the catalyst was characterized by BET and XPS, and the effect of adding FeOx on MnOx/CNTs catalyst at the low-temperature selective catalytic reduction of NO with NH3 was investigated. The results showed that the active components were loaded suc-cessfully and easily on the carriers by impregnation. The Mn-Fe/CNTs catalyst was chose 10% Fe(NO3)3 solution to impregnate Mn-Fe/CNTs. The species of active components loaded on the catalyst were Fe2O3. The different concentration of impregnant solution played an important role for NO conversion in SCR with NH3. With the increase of the concentration of impregnant solution, the NO conversion of catalysts was increasing initially then decreasing.
基金Funded by the General Project of Science and Technology Plan of Yunnan Science and Technology Department(Nos.202001AT070029,2019FB077)Open Fund of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab-20-4)。
文摘To study the modification mechanism of activated carbon(AC)by Fe and the low-temperature NH_(3)-selective catalytic reduction(SCR)denitration mechanism of Fe/AC catalysts,Fe/AC catalysts were prepared using coconut shell AC activated by nitric acid as the support and iron oxide as the active component.The crystal structure,surface morphology,pore structure,functional groups and valence states of the active components of Fe/AC catalysts were characterised by X-ray diffraction,scanning electron microscopy,nitrogen adsorption and desorption,Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy,respectively.The effect of Fe loading and calcination temperature on the low-temperature denitration of NH_(3)-SCR over Fe/AC catalysts was studied using NH_(3)as the reducing gas at low temperature(150℃).The results show that the iron oxide on the Fe/AC catalyst is spherical and uniformly dispersed on the surface of AC,thereby improving the crystallisation performance and increasing the number of active sites and specific surface area on AC in contact with the reaction gas.Hence,a rapid NH_(3)-SCR reaction was realised.When the roasting temperature remains constant,the iron oxide crystals formed by increasing the amount of loading can enter the AC pore structure and accumulate to form more micropores.When the roasting temperature is raised from 400 to 500℃,the iron oxide is mainly transformed fromα-Fe_(2)O_(3)toγ-Fe_(2)O_(3),which improves the iron oxide dispersion and increases its denitration active site,allowing gas adsorption.When the Fe loading amount is 10%,and the roasting temperature is 500℃,the NO removal rate of the Fe/AC catalyst can reach 95%.According to the study,the low-temperature NH_(3)-SCR mechanism of Fe/AC catalyst is proposed,in which the redox reaction between Fe~(2+)and Fe~(3+)will facilitate the formation of reactive oxygen vacancies,which increases the amount of oxygen adsorption on the surface,especially the increase in surface acid sites,and promotes and adsorbs more reaction gases(NH_(3),O_(2),NO).The transformation from the standard SCR reaction to the fast SCR reaction is accelerated.
基金financially supported by the project of the National Natural Science Foundation of China (Grant Nos.51972270,52322203)the Key Research and Development Program of Shaanxi Province (Grant NO.2024GH-ZDXM-21)the Fundamental Research Funds for the Central Universities (Grant Nos.G2022KY0607,23GH0202277).
文摘Exploiting high-performance yet low-cost hard carbon anodes is crucial to advancing the state-of-the-art sodium-ion batteries.However,the achievement of superior initial Coulombic efficiency(ICE)and high Na-storage capacity via low-temperature carbonization remains challenging due to the presence of tremendous defects with few closed pores.Here,a facile hybrid carbon framework design is proposed from the polystyrene precursor bearing distinct molecular bridges at a low pyrolysis temperature of 800℃ via in situ fusion and embedding strategy.This is realized by integrating triazine-and carbonylcrosslinked polystyrene nanospheres during carbonization.The triazine crosslinking allows in situ fusion of spheres into layered carbon with low defects and abundant closed pores,which serves as a matrix for embedding the well-retained carbon spheres with nanopores/defects derived from carbonyl crosslinking.Therefore,the hybrid hard carbon with intimate interface showcases synergistic Na ions storage behavior,showing an ICE of 70.2%,a high capacity of 279.3 mAh g^(-1),and long-term 500 cycles,superior to carbons from the respective precursor and other reported carbons fabricated under the low carbonization temperature.The present protocol opens new avenues toward low-cost hard carbon anode materials for high-performance sodiumion batteries.
基金supported by the Engineering and Physical Sciences Research Council (EPSRC) EP/P009050/1 and EP/S021531/1the Henry Royce Institute for Advanced Materials, funded through the EPSRC grants EP/R00661X/1, EP/S019367/1, EP/P025021/1 and EP/P025498/1funding from the European Commission H2020ERC Starter grant Evolu TEM (715502)。
文摘Nitrogen doping of the carbon is an important method to improve the performance and durability of catalysts for proton exchange membrane fuel cells by platinum–nitrogen and carbon–nitrogen bonds. This study shows that p-phenyl groups and graphitic N acting bridges linking platinum and the graphene/carbon black(the ratio graphene/carbon black = 2/3) hybrid support materials achieved the average size of platinum nanoparticles with(4.88 ± 1.79) nm. It improved the performance of the lower-temperature hydrogen fuel cell up to 0.934 W cm^(-2) at 0.60 V, which is 1.55 times greater than that of commercial Pt/C. Doping also enhanced the interaction between Pt and the support materials, and the resistance to corrosion, thus improving the durability of the low-temperature hydrogen fuel cell with a much lower decay of 10 mV at 0.80 A cm^(-2) after 30 k cycles of an in-situ accelerated stress test of catalyst degradation than that of 92 mV in Pt/C, which achieves the target of Department of Energy(<30 mV). Meanwhile,Pt/Nr EGO_(2)-CB_(3) remains 78% of initial power density at 1.5 A cm^(-2) after 5 k cycles of in-situ accelerated stress test of carbon corrosion, which is more stable than the power density of commercial Pt/C, keeping only 54% after accelerated stress test.
基金supported by the National Key Research and Development Program of China(No.2018YFC1902603).
文摘The conversion of waste tire pyrolysis oil(WTPO)into S-doped porous carbon nanorods(labeled as WPCNs)with hierarchical pore structure is realized by a simple template-directed approach.The specific surface area of as-obtained porous carbon nanorods can reach up to 1448 m^(2) g^(−1) without the addition of any activating agent.As the capacitive electrode,WPCNs possess the extraordinary compatibility to capacitance,different electrolyte systems as well as long-term cycle life even at a commercial-level areal mass loading(10 mg cm^(−2)).Besides,only an extremely small capacitance fluctuation is observed under the extreme circumstance(−40 to 80℃),reflecting the excellent high-and low-temperature performance.The relationship between the pore structure and capacitive behavior is analyzed by comparing WPCNs with mesopores-dominated asphalt-derived porous carbon nanorods(APCNs)and micropores-dominated activated carbon.The molecular dynamics simulation further reveals the ion diffusion and transfer ability of the as-prepared carbon materials under different pore size distribution.The total ion flow(NT)of WPCNs calculated by the simulation is obviously larger than APCNs and the N_(T) ratio between them is similar with the experimental average capacitance ratio.Furthermore,this work also provides a valuable strategy to prepare the electrode material with high capacitive energy storage ability through the high value-added utilization of WTPO.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174242,11204265,11404278,11147007,and 11274151)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2012248)the Scientific Research Foundation of Yancheng Institute of Technology,China(Grant No.KJC2014024)
文摘A new family of superhard carbon allotropes C48(2i + 1 ) is constructed by alternating even 4 and 8 membered rings. These new carbon allotropes are of a spatially antisymmetrical structure, compared with the symmetrical structures of bet- C4, Z-carbon, and P-carbon. Our calculations show that bulk moduli of C48(2i + 1 ) are larger than that of c-BN and smaller than that of cubic-diamond. C48(2i + 1 ) are transparent superhard materials possessing large Vicker hardness comparable to diamoud. This work can help us understand the structural phase transformations of cold-compression graphite and carbon nanotubes.
文摘The influence of different factors on the plasma chemical reactions is widely studied today. However, insufficient consideration is given to the research of paramagnetic phenomena which takes place in plasma systems. The results of modeling the process of redistribution carbon isotopes between different phases while oxidizing it in high-frequency low-temperature plasma in an external magnetic field are shown in the article. The equilibrium concentrations of components involved in the oxidation process in a plasma system are defined. A principle possibility of isotope-selective plasma chemical reactions in a magnetic field was experimentally determined. The increase of concentration of 13C in the gas phase up to 1.3 times relative to natural abundance was obtained. It was found that the content of the carbon heavy isotope in the gas phase depends on the magnetic field action area. The best results were achieved with the combination of magnetic field impact area and the priority area of the appearance of plasma chemical reactions products.
基金supported by the National Natural Science Foundation of China (21673161)the Sino-German Center for Research Promotion (1400)the Postdoctoral Innovation Talent Support Program of China (BX20180224)
文摘sp^2 carbon nanomaterials are mainly composed of sp^2-hybridized carbon atoms in the form of a hexagonal network. Due to the p bonds formed by unpaired electrons, sp^2 carbon nanomaterials possess excellent electronic, mechanical, and optical properties, which have attracted great attention in recent years.As the advanced sp^2 carbon nanomaterials, graphene and carbon nanotubes(CNTs) have great potential in electronics, sensors, energy storage and conversion devices, etc. The low-temperature synthesis of graphene and CNTs are indispensable to promote the practical industrial application. Furthermore, graphene and CNTs can even be expected to directly grow on the flexible plastic that cannot bear high temperature,expanding bright prospects for applications in emerging flexible nanotechnology. An in-depth understanding of the formation mechanism of sp^2 carbon nanomaterials is beneficial for reducing the growth temperature and satisfying the demands of industrial production in an economical and low-cost way. In this review, we discuss the main strategies and the related mechanisms in low-temperature synthesis of graphene and CNTs, including the selection of precursors with high reactivity, the design of catalyst, and the introduction of additional energy for the pre-decomposition of precursors. Furthermore, challenges and outlooks are highlighted for further progress in the practical industrial application.
基金supported by the National Key Research and Development Program of China(Nos.2018YFC1900105,2016YFA0203200,2017YFA0207002)the Beijing Outstanding Young Scientist Program and the Fundamental Research Funds for the Central Universities(No.2019MS044)。
文摘For the continuous utilization of nuclear energy and efficient control of radioactive pollution, low-cost materials with high efficient U(VI) removal are of great importance. In this study, low temperature plasma method was applied for the successful modification of Ophosphorylethanolamine(O-PEA) on the porous carbon materials. The produced materials(Cafe/O-PEA) could adsorb U(VI) efficiently with the maximum sorption capacity of 648.54mg/g at 1 hr, T=298 K, and p H=6.0, much higher than those of most carbon-based composites. U(VI) sorption was mainly controlled by strong surface complexation. From FTIR,SEM-EDS and XPS analyses, the sorption of U(VI) was related to the complexation with-NH2, phosphate and-OH groups on Cafe/O-PEA. The low temperature plasma method was an efficient, environmentally friendly and low-cost method for surface modification of materials for the effective enrichment of U(VI) from aqueous solutions.