The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an...The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.展开更多
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr...Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.展开更多
Five strains of antarctic bacteria producing extracellular low-temperature lipase are screened from seawater collectedby CTD during the Chinese 18th Antarctic Scientific Expedition. Their phylogenetic positions on the...Five strains of antarctic bacteria producing extracellular low-temperature lipase are screened from seawater collectedby CTD during the Chinese 18th Antarctic Scientific Expedition. Their phylogenetic positions on the basis ofamplification, comparison and analysis of almost complete 16S rDNA sequence are determined by neighbor-joininganalysis. Phylogenetic analysis indicates that all of these five strains belong to g-proteobacteria. The strains 11102 and 92 are classified as genus Pseudoalteromonas sp. and genus Psychrobacter sp. respectively. The strains 25101, 2221 and 1281 are classified as genus Moritella sp.展开更多
Phenolic compounds have very strong toxicity, so it has been paid sharply attention to find an effective way of controlling the wastewater containing phenolic compounds. The work on this subject done by domestic and o...Phenolic compounds have very strong toxicity, so it has been paid sharply attention to find an effective way of controlling the wastewater containing phenolic compounds. The work on this subject done by domestic and overseas scholars is studied in this paper, and the progress of researches on low-temperature plasma treatment is summarized through the electrical discharge types, mechanism, kinetics of phenolic compounds decomposition and combination of several methods with low-temperature plasma treatment. In addition, the crucial problem and the developing tendency on low-temperature plasma treatment for phenol-bearing wastewater are briefly discussed.展开更多
The low-temperature heat capacities are studied for antiperovskite compounds AX M_3(A = Al, Ga, Cu, Ag, Sn, X = C,N, M = Mn, Fe, Co). A large peak in(C- γ T)/T^3 versus T is observed for each of a total of 18 com...The low-temperature heat capacities are studied for antiperovskite compounds AX M_3(A = Al, Ga, Cu, Ag, Sn, X = C,N, M = Mn, Fe, Co). A large peak in(C- γ T)/T^3 versus T is observed for each of a total of 18 compounds investigated,indicating an existence of low-energy phonon mode unexpected by Debye T^3 law. Such a peak is insensitive to the external magnetic field up to 80 k Oe(1 Oe = 79.5775 A·m-1). For compounds with smaller lattice constant, the peak shifts towards higher temperatures with a reduction of peak height. This abnormal peak in(C- γ T)/T^3 versus T of antiperovskite compound may result from the strongly dispersive acoustic branch due to the heavier A atoms and the optical-like mode from the dynamic rotation of X M_6 octahedron. Such a low-energy phonon mode may not contribute negatively to the normal thermal expansion in AX M_3 compounds, while it is usually concomitant with negative thermal expansion in open-structure material(e.g., ZrW_2O_8, Sc F_3).展开更多
Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined fo...Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined for ferric oxide reduction and phenol/benzoate degradation.All the isolates were iron reducers,but only 56.5%could couple iron reduction to phenol and/or benzoate degradation,as evidenced by depletion of phenol and benzoate after one week incubation.Analysis of degradative capability using Biolog...展开更多
Lignin is one of the most abundant biomasses in nature. It is composed of aromatic moieties and has great potential for use in the production of chemical alternatives to petroleum products. Because of increasing inter...Lignin is one of the most abundant biomasses in nature. It is composed of aromatic moieties and has great potential for use in the production of chemical alternatives to petroleum products. Because of increasing interest in biocatalysis, the potential for industrial application of microbial metabolism of lignin-derived compounds has gained considerable recent attention. Functional screenings of culturable bacteria isolated from sediments and sunken wood collected from the deep sea revealed the existence of a number of previously unidentified bacteria capable of metabolizing lignin-related aromatic compounds. Of the 510 isolates obtained in the present study, 208 completely or partially metabolized these compounds. The 208 isolates were classified into diverse phyla, including Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria. Among the 208 isolates, 61 unique 16S rRNA gene sequences were detected including previously unidentified marine lineage isolates. The metabolites of the isolates were analysed using liquid chromatography/mass spectrometry (LC/MS) or gas chromatography/mass spectrometry (GC/MS). Most of the representative 61 isolates non-oxidatively decarboxylated the substrates to produce the corresponding aromatic vinyl monomers, which are used as feed stocks for bio-based plastics production. Oxidative metabolism of the lignin-related compounds for assimilation was frequently observed. Our study showed that the deep-sea environment contains an abundance of microorganisms capable of both non-oxidative and oxidative bioconversion of lignin-derived aromatic compounds. The ability for bio-conversion of aromatic compounds found in this study will facilitate the development of future biotechnological applications.展开更多
A strain of psychrophilic bacterium, 2-5-10-1, which produces low-temperature lipase, is isolated from the deep sea of Prydz Bay in Southern Ocean. The highest lipase secretion of this strain is observed at 5 degreesC...A strain of psychrophilic bacterium, 2-5-10-1, which produces low-temperature lipase, is isolated from the deep sea of Prydz Bay in Southern Ocean. The highest lipase secretion of this strain is observed at 5 degreesC and this temperature is also for optimal growth. Tween 80 and olive oil enhance secretion of lipase. The optimal temperature and pH for lipase activity are 35 degreesC and 7.5 degreesC respectively. At 0degreesC, the lipase still has 37% relative enzyme activity. The lipase shows high thermolability, more than 50% activity lost after incubation at 60 degreesC for 15 min. EDTA has no effect on lipase activity, indicating the lipase activity is independent of divalent cation. In contrast, the lipase activity is inhibited drastically by Cu2+ and Zn2+.展开更多
The flucculation efficiency of compound bioflocculant produced by flocculant-producing bacteria was investigated in this study. Cheap cellulose was selected as the substrate for the production of a lower cost bioflocc...The flucculation efficiency of compound bioflocculant produced by flocculant-producing bacteria was investigated in this study. Cheap cellulose was selected as the substrate for the production of a lower cost bioflocculant. The end product of cellulose decomposing bacteria was utilized as substrate for flocculant-producing bacteria. The optimum fermentation conditions were determined as follows: the initial fermentation and fermentation time was 5 d and 1 d respectively, the temperature was 30 ℃, the rotation speed was 120 r/min, the amount of CaCl2 solution ( 10% ) was 1.5 ml/L. The flocculation test indicated that the bioflocculant had high efficiency in the removal of the turbldity raw water from Songhua River.展开更多
基金supported by the National Key Research and Development Program of China(2021YFD2100902-3)the National Natural Science Foundation of China(32072258)+5 种基金Major Science and Technology Program of Heilongjiang(2020ZX08B02)Harbin University of Commerce“Young Innovative Talents”Support Program(2019CX062020CX262020CX27)the Central Financial Support for the Development of Local Colleges and Universities,Graduate Innovation Research Project of Harbin University of Commerce(YJSCX2021-698HSD)Training plan of Young Innovative Talents in Universities of Heilongjiang(UNPYSCT-2020218).
文摘The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.
基金funded by the National Science Centre,Poland(Project No.:2017/26/D/NZ6/00136).
文摘Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.
文摘Five strains of antarctic bacteria producing extracellular low-temperature lipase are screened from seawater collectedby CTD during the Chinese 18th Antarctic Scientific Expedition. Their phylogenetic positions on the basis ofamplification, comparison and analysis of almost complete 16S rDNA sequence are determined by neighbor-joininganalysis. Phylogenetic analysis indicates that all of these five strains belong to g-proteobacteria. The strains 11102 and 92 are classified as genus Pseudoalteromonas sp. and genus Psychrobacter sp. respectively. The strains 25101, 2221 and 1281 are classified as genus Moritella sp.
文摘Phenolic compounds have very strong toxicity, so it has been paid sharply attention to find an effective way of controlling the wastewater containing phenolic compounds. The work on this subject done by domestic and overseas scholars is studied in this paper, and the progress of researches on low-temperature plasma treatment is summarized through the electrical discharge types, mechanism, kinetics of phenolic compounds decomposition and combination of several methods with low-temperature plasma treatment. In addition, the crucial problem and the developing tendency on low-temperature plasma treatment for phenol-bearing wastewater are briefly discussed.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2011CBA00111)the National Natural Science Foundation of China(Grant Nos.51322105,U1632158,51301165,and 51301167)
文摘The low-temperature heat capacities are studied for antiperovskite compounds AX M_3(A = Al, Ga, Cu, Ag, Sn, X = C,N, M = Mn, Fe, Co). A large peak in(C- γ T)/T^3 versus T is observed for each of a total of 18 compounds investigated,indicating an existence of low-energy phonon mode unexpected by Debye T^3 law. Such a peak is insensitive to the external magnetic field up to 80 k Oe(1 Oe = 79.5775 A·m-1). For compounds with smaller lattice constant, the peak shifts towards higher temperatures with a reduction of peak height. This abnormal peak in(C- γ T)/T^3 versus T of antiperovskite compound may result from the strongly dispersive acoustic branch due to the heavier A atoms and the optical-like mode from the dynamic rotation of X M_6 octahedron. Such a low-energy phonon mode may not contribute negatively to the normal thermal expansion in AX M_3 compounds, while it is usually concomitant with negative thermal expansion in open-structure material(e.g., ZrW_2O_8, Sc F_3).
文摘Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined for ferric oxide reduction and phenol/benzoate degradation.All the isolates were iron reducers,but only 56.5%could couple iron reduction to phenol and/or benzoate degradation,as evidenced by depletion of phenol and benzoate after one week incubation.Analysis of degradative capability using Biolog...
文摘Lignin is one of the most abundant biomasses in nature. It is composed of aromatic moieties and has great potential for use in the production of chemical alternatives to petroleum products. Because of increasing interest in biocatalysis, the potential for industrial application of microbial metabolism of lignin-derived compounds has gained considerable recent attention. Functional screenings of culturable bacteria isolated from sediments and sunken wood collected from the deep sea revealed the existence of a number of previously unidentified bacteria capable of metabolizing lignin-related aromatic compounds. Of the 510 isolates obtained in the present study, 208 completely or partially metabolized these compounds. The 208 isolates were classified into diverse phyla, including Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria. Among the 208 isolates, 61 unique 16S rRNA gene sequences were detected including previously unidentified marine lineage isolates. The metabolites of the isolates were analysed using liquid chromatography/mass spectrometry (LC/MS) or gas chromatography/mass spectrometry (GC/MS). Most of the representative 61 isolates non-oxidatively decarboxylated the substrates to produce the corresponding aromatic vinyl monomers, which are used as feed stocks for bio-based plastics production. Oxidative metabolism of the lignin-related compounds for assimilation was frequently observed. Our study showed that the deep-sea environment contains an abundance of microorganisms capable of both non-oxidative and oxidative bioconversion of lignin-derived aromatic compounds. The ability for bio-conversion of aromatic compounds found in this study will facilitate the development of future biotechnological applications.
文摘A strain of psychrophilic bacterium, 2-5-10-1, which produces low-temperature lipase, is isolated from the deep sea of Prydz Bay in Southern Ocean. The highest lipase secretion of this strain is observed at 5 degreesC and this temperature is also for optimal growth. Tween 80 and olive oil enhance secretion of lipase. The optimal temperature and pH for lipase activity are 35 degreesC and 7.5 degreesC respectively. At 0degreesC, the lipase still has 37% relative enzyme activity. The lipase shows high thermolability, more than 50% activity lost after incubation at 60 degreesC for 15 min. EDTA has no effect on lipase activity, indicating the lipase activity is independent of divalent cation. In contrast, the lipase activity is inhibited drastically by Cu2+ and Zn2+.
基金Sponsored by the Science Foundation of Heilongjiang Province(Grant No.GB02C202 -02).
文摘The flucculation efficiency of compound bioflocculant produced by flocculant-producing bacteria was investigated in this study. Cheap cellulose was selected as the substrate for the production of a lower cost bioflocculant. The end product of cellulose decomposing bacteria was utilized as substrate for flocculant-producing bacteria. The optimum fermentation conditions were determined as follows: the initial fermentation and fermentation time was 5 d and 1 d respectively, the temperature was 30 ℃, the rotation speed was 120 r/min, the amount of CaCl2 solution ( 10% ) was 1.5 ml/L. The flocculation test indicated that the bioflocculant had high efficiency in the removal of the turbldity raw water from Songhua River.