In order to optimize the atmospheric tower overhead low-temperature system,the physical parameters,multiphase composition,aqueous dew point temperature,and ammonium salt crystallization temperature are simulated with ...In order to optimize the atmospheric tower overhead low-temperature system,the physical parameters,multiphase composition,aqueous dew point temperature,and ammonium salt crystallization temperature are simulated with process simulation software.The temperature distribution in overhead heat exchanger is calculated by heat transfer calculation.The special parts with elbows near the inlet and outlet of heat exchanger are studied by fluid field analysis.Results indicate that under current operating conditions,the aqueous dew point temperature and initial crystallization temperature of NH4Cl are 91°C and 128°C,respectively.Ammonium salt appears in the distillation tower and liquid water occurs in heat exchanger tubes,in which the dew point induced corrosion is the most direct factor for heat exchanger corrosion.In the heat exchanger,condensate water appearing in the area 2.7 meters away from the bundle inlet can give rise to corrosion risk under the moist NH4Cl and high concentration of acidic solution circumstance.For the pipes and elbows located near the inlet and the outlet of heat exchanger,the flow field presents an unsymmetrical distribution.High risk areas are mainly concentrated on the external bend of elbows where the liquid water concentration is higher.The coupling of simulation methods established thereby is approved as an effective way to evaluate the corrosion risk in the atmospheric column overhead system and can provide a scientific basis for corrosion control.展开更多
Nitrogen doping of the carbon is an important method to improve the performance and durability of catalysts for proton exchange membrane fuel cells by platinum–nitrogen and carbon–nitrogen bonds. This study shows th...Nitrogen doping of the carbon is an important method to improve the performance and durability of catalysts for proton exchange membrane fuel cells by platinum–nitrogen and carbon–nitrogen bonds. This study shows that p-phenyl groups and graphitic N acting bridges linking platinum and the graphene/carbon black(the ratio graphene/carbon black = 2/3) hybrid support materials achieved the average size of platinum nanoparticles with(4.88 ± 1.79) nm. It improved the performance of the lower-temperature hydrogen fuel cell up to 0.934 W cm^(-2) at 0.60 V, which is 1.55 times greater than that of commercial Pt/C. Doping also enhanced the interaction between Pt and the support materials, and the resistance to corrosion, thus improving the durability of the low-temperature hydrogen fuel cell with a much lower decay of 10 mV at 0.80 A cm^(-2) after 30 k cycles of an in-situ accelerated stress test of catalyst degradation than that of 92 mV in Pt/C, which achieves the target of Department of Energy(<30 mV). Meanwhile,Pt/Nr EGO_(2)-CB_(3) remains 78% of initial power density at 1.5 A cm^(-2) after 5 k cycles of in-situ accelerated stress test of carbon corrosion, which is more stable than the power density of commercial Pt/C, keeping only 54% after accelerated stress test.展开更多
The oxidation and lower temperature hot corrosion (LTHC) processes occurring on the surface of Ni-Cr coatings pro-duced by high velocity arc spray (HVAS) were studied. Several different conditions were studied under s...The oxidation and lower temperature hot corrosion (LTHC) processes occurring on the surface of Ni-Cr coatings pro-duced by high velocity arc spray (HVAS) were studied. Several different conditions were studied under simulated boiler conditions at 650 ℃. The protection effect of an Al coating deposited by HVAS onto the Ni-Cr coating was also investigated. Microscope, X-ray diffraction and corrosion rate curves have been used to analyze corrosion mechanisms. The experimental results show that: 1) The oxidation rates are almost superposed in both air (no SO3) and in simulated coal-fired gas (containing SO3) as long as no salt was present on the surface. These rate curves show a logarithmic relationship. 2) When the surface is coated with salt (75%K2SO3 + 25%Na2SO3) the rate curve for LTHC of the Ni-Cr coated surface shows a parabolic shape in the simulated coal-fire flue gas. In air only the oxidation reaction takes place, the second type of LTHC was not seen. And 3) the Al over coating on the Ni-Cr enhances resistance to LTHC because an inter-metallic compound, Al3Ni2, forms at the Al/Ni-Cr interface and because of the increase in coating thickness.展开更多
Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value...Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value, thus, the recycle and reuse of the waste heat of tail flue gas is necessary. However, lower exhaust gas temperature will aggravate low temperature corrosion of the tail heating surface, which also causes huge economic losses. In order to solve this problem, this paper designs a monitoring experiment platform of flue gas low temperature corrosion, which can measure the corrosion condition of different materials by different flue gas compositions and temperature corrosion speeds. Besides, effects of low temperature corrosion factors are analyzed to find the best exhaust gas temperature and the surface material of tail heating surface.展开更多
基金This research was financially supported by the scientific research project through the SINOPEC Science and Technology Division(Contract No.318021-8).
文摘In order to optimize the atmospheric tower overhead low-temperature system,the physical parameters,multiphase composition,aqueous dew point temperature,and ammonium salt crystallization temperature are simulated with process simulation software.The temperature distribution in overhead heat exchanger is calculated by heat transfer calculation.The special parts with elbows near the inlet and outlet of heat exchanger are studied by fluid field analysis.Results indicate that under current operating conditions,the aqueous dew point temperature and initial crystallization temperature of NH4Cl are 91°C and 128°C,respectively.Ammonium salt appears in the distillation tower and liquid water occurs in heat exchanger tubes,in which the dew point induced corrosion is the most direct factor for heat exchanger corrosion.In the heat exchanger,condensate water appearing in the area 2.7 meters away from the bundle inlet can give rise to corrosion risk under the moist NH4Cl and high concentration of acidic solution circumstance.For the pipes and elbows located near the inlet and the outlet of heat exchanger,the flow field presents an unsymmetrical distribution.High risk areas are mainly concentrated on the external bend of elbows where the liquid water concentration is higher.The coupling of simulation methods established thereby is approved as an effective way to evaluate the corrosion risk in the atmospheric column overhead system and can provide a scientific basis for corrosion control.
基金supported by the Engineering and Physical Sciences Research Council (EPSRC) EP/P009050/1 and EP/S021531/1the Henry Royce Institute for Advanced Materials, funded through the EPSRC grants EP/R00661X/1, EP/S019367/1, EP/P025021/1 and EP/P025498/1funding from the European Commission H2020ERC Starter grant Evolu TEM (715502)。
文摘Nitrogen doping of the carbon is an important method to improve the performance and durability of catalysts for proton exchange membrane fuel cells by platinum–nitrogen and carbon–nitrogen bonds. This study shows that p-phenyl groups and graphitic N acting bridges linking platinum and the graphene/carbon black(the ratio graphene/carbon black = 2/3) hybrid support materials achieved the average size of platinum nanoparticles with(4.88 ± 1.79) nm. It improved the performance of the lower-temperature hydrogen fuel cell up to 0.934 W cm^(-2) at 0.60 V, which is 1.55 times greater than that of commercial Pt/C. Doping also enhanced the interaction between Pt and the support materials, and the resistance to corrosion, thus improving the durability of the low-temperature hydrogen fuel cell with a much lower decay of 10 mV at 0.80 A cm^(-2) after 30 k cycles of an in-situ accelerated stress test of catalyst degradation than that of 92 mV in Pt/C, which achieves the target of Department of Energy(<30 mV). Meanwhile,Pt/Nr EGO_(2)-CB_(3) remains 78% of initial power density at 1.5 A cm^(-2) after 5 k cycles of in-situ accelerated stress test of carbon corrosion, which is more stable than the power density of commercial Pt/C, keeping only 54% after accelerated stress test.
文摘The oxidation and lower temperature hot corrosion (LTHC) processes occurring on the surface of Ni-Cr coatings pro-duced by high velocity arc spray (HVAS) were studied. Several different conditions were studied under simulated boiler conditions at 650 ℃. The protection effect of an Al coating deposited by HVAS onto the Ni-Cr coating was also investigated. Microscope, X-ray diffraction and corrosion rate curves have been used to analyze corrosion mechanisms. The experimental results show that: 1) The oxidation rates are almost superposed in both air (no SO3) and in simulated coal-fired gas (containing SO3) as long as no salt was present on the surface. These rate curves show a logarithmic relationship. 2) When the surface is coated with salt (75%K2SO3 + 25%Na2SO3) the rate curve for LTHC of the Ni-Cr coated surface shows a parabolic shape in the simulated coal-fire flue gas. In air only the oxidation reaction takes place, the second type of LTHC was not seen. And 3) the Al over coating on the Ni-Cr enhances resistance to LTHC because an inter-metallic compound, Al3Ni2, forms at the Al/Ni-Cr interface and because of the increase in coating thickness.
文摘Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value, thus, the recycle and reuse of the waste heat of tail flue gas is necessary. However, lower exhaust gas temperature will aggravate low temperature corrosion of the tail heating surface, which also causes huge economic losses. In order to solve this problem, this paper designs a monitoring experiment platform of flue gas low temperature corrosion, which can measure the corrosion condition of different materials by different flue gas compositions and temperature corrosion speeds. Besides, effects of low temperature corrosion factors are analyzed to find the best exhaust gas temperature and the surface material of tail heating surface.